
August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Asia-Pacific Journal of Operational Research
Vol. 38, No. 4 (2021) 2050057 (28 pages)
c© World Scientific Publishing Co. & Operational Research Society of Singapore
DOI: 10.1142/S0217595920500578

Maximizing the Net Present Value in
Project Scheduling Under Periodic Inflation

Mahboobe Peymankar

Department of Industrial Engineering Faculty of Engineering
Ferdowsi University of Mashhad Mashhad, Iran

peymankar@mail.um.ac.ir

Mohammad Ranjbar∗

Department of Industrial Engineering Faculty of Engineering
Ferdowsi University of Mashhad Mashhad, Iran

m ranjbar@um.ac.ir

Received 20 December 2019
Accepted 27 September 2020

Published 25 March 2021

We investigate a project scheduling problem in which cash flows are periodically vari-
able, and we aim to maximize the net present value (NPV). For each activity, a set of
cash flows is considered where each one pertains to a particular period. This setting
is compatible with inflation rates that may well occur in some countries with unsta-
ble economic situations where the occurrence times of inflation are sometimes known
in advance. In this case, the project can be scheduled more suitably to abate proba-
ble pitfalls. In this paper, we investigate the problem in two settings: deterministic and
stochastic cash flows. In the deterministic case, in each period we consider the expected
value of cash flows of each activity as a constant and develop an integer linear program-
ming model in conjunction with a branch-and-bound algorithm to solve the problem
optimally. Moreover, we develop a multi-stage stochastic programming (MSSP) model
to formulate the stochastic version of the problem. Using a set of randomly generated
test instances and extensive computational results, we analyze the performance of our
developed solution approaches. In addition, we compare the deterministic and stochastic
models and analyze the sensitivity of the most important parameters.

Keywords: Project scheduling; net present value; branch-and-bound algorithm; multi-
stage stochastic programming.

1. Introduction

One of the significant goals in the field of project management and scheduling is the
maximization of project-based organizations’ profit, commonly expressed using the
net present value (NPV) criterion. In the literature, a project usually refers to a set

∗Corresponding author.

2050057-1

https://dx.doi.org/10.1142/S0217595920500578

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

of precedence-related activities where each one is associated with a duration and a
cash flow. In this project, activities should be scheduled in such a way that the NPV
is maximized. This goal would appear to be a major challenge because cash flows
of many real and long-lasting construction projects may change over time. Infla-
tion frequently happens in the prices of the project resources and this is one of the
integral parts of cost overruns. Mahamid and Dmaidi (2013) and Prajapati et al.
(2016) indicated that the top three important factors leading to cost overruns espe-
cially in big construction projects are political situation, fluctuation of materials
price and economic instability.

In some particular cases, the price of project resources increases greatly and
sharply which seems to be a serious challenge for project managers. For example,
the US government withdrew from the Iran nuclear deal on November 5 of 2018 and
announced it six months beforehand. This led to a high inflation rate in Iran such
that the home price tripled during six months after sanction imposition. Moreover,
several more economic sanctions have been imposed on Iran during recent decades
that all had been notified in advance (Wikipedia: Sanctions against Iran).

Moreover, sudden changes in climate, e.g., the temperature or precipitation, will
affect natural gas, crude oil, crops and electricity prices. Besides, the central bank’s
interest rate policies change asset prices, e.g., gold, currency, stock and house prices.
Furthermore, a technological revolution such as shale or electric vehicle affects the
price of related commodities, e.g., crude oil. Although economic fundamentals are
typically hard to predict, there are significantly related cases that have been rec-
ognized, e.g., the 2008 recession that was predicted by some people (Breuss, 2018;
Nyberg, 2010; Obstfeld et al., 2009). They were alleged to have been making failed
predictions, whereas they were right.

Accordingly, we can assume that periods and their corresponding changes in
cash flows are known in advance. Represented as new information about project
costs, this change may cause rescheduling the project to rise to new challenges.
Consequently, we can improve the NPV by planning a better baseline schedule for
the project activities. In thispaper, we assume that the execution phase of a project
can be divided into a few time periods where cash flows and discount rates might
increase from a period to its immediate next one due to economic inflation. We
consider two settings to formulate the problem: deterministic and stochastic. In
the deterministic case, we ignore the variance of cash flows of each activity in each
period, and we consider its expected value as a constant. In contrast, in the stochas-
tic case probable cash flows are factored in under a set of scenarios. We use a reactive
scheduling policy that revises an existing schedule in the light of a new inflation
rate. To do so, the problem is formulated through a stochastic programming model.

The contributions of this paper are threefold: (1) we formulate the project
scheduling problem with periodic inflation under deterministic setting as an integer
linear programming model; (2) we develop a branch-and-bound (B&B) algorithm
for the deterministic case, including efficient lower and upper bounds; and (3) We

2050057-2

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

develop a multi-stage stochastic programming (MSSP) model to formulate the prob-
lem in the stochastic setting.

The remainder of this paper is organized as follows. Related work is discussed
in Sec. 2. Section 3 includes our developments in the deterministic case including
problem formulation, an introductory example, and a B&B algorithm. Our stochas-
tic programming model is developed in Sec. 4. In Sec. 5, computational results are
discussed to show the competencies of our solution approaches. Finally, a summary
and outlook on future research are given in Sec. 6.

2. Related Work

There are numerous papers in the field of project scheduling in the literature (see
Demeulemeester and Herroelen, 2006). One of the well-known problems in this field
is the resource-unconstrained project scheduling problem for maximizing the net
present value (NPV), shown as max-npv. In this problem, activities are scheduled
subject to temporal precedence relations and a predetermined project deadline. The
concept of the NPV in project scheduling, as a project financial index, was firstly
introduced by Battersby (1967). The nonlinear problem presented by Russell (1986)
was transformed into the equivalent linear program and represented as an efficient
procedure by Grinold (1972). Kamburowski (1990) proposed another procedure for
maximizing the NPV in the generalized network according to Grinold’s approach.
We refer the interested readers to Herroelen et al. (1999), where the various prob-
lems in this field were classified.

Demeulemeester (1996) developed a recursive search algorithm performing on a
partial tree structure in which the precedence constraints are satisfied and pos-
itive cash flows are scheduled as early as possible whereas negative cash flows
are scheduled as late as possible. After that, De Reyck (1996) developed an opti-
mal scheduling procedure for maximizing the NPV by considering unconstrained
resources and generalized precedence relations. Schwindt and Zimmermann (2001)
designed a steepest ascent approach for maximizing the NPV of projects. Vanhoucke
(2006) employed the ideas presented in Demeulemeester (1996), De Reyck (1996)
and Schwindt and Zimmermann (2001) to develop a hybrid recursive search algo-
rithm. He aimed to maximize the NPV of a project under generalized precedence
relations, shown as max-npv-gpr. So far, this algorithm has been the most efficient
solution approach for max-npv and max-npv-gpr in the literature.

Although most of the research studies in the field of project scheduling aim
to maximize the NPV have assumed that cash flows of activities are constant,
Elmaghraby and Herroelen (1990) alluded the idea of time-dependent cash flows.
They assumed that the cash flow of each activity is dependent on its finish time.
Moreover, Etgar and Shtub (1997) considered incentive payments (penalties) for
early (late) event occurrences and presumed that the costs of resources over time
are time-dependent. To solve the problem, they developed a branch-and-bound
(B&B) algorithm. Vanhoucke et al. (2001a) considered the unconstrained project

2050057-3

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

scheduling problem with discounted cash flows, where the net cash flows were
assumed to be linearly dependent on the finish times of corresponding activities.
They also developed a very efficient exact recursive search algorithm. This algo-
rithm starts by constructing an early tree and continues with a current tree which is
updated recursively in such a way that activities with negative (positive) cash flows
are pushed towards the project deadline (starting time). In addition to this, this
recursive search procedure was utilized by Vanhoucke et al. (2001b) in a B&B algo-
rithm to find the optimal solution of the resource-constrained version of the prob-
lem. Finally, Vanhoucke et al. (2003) studied the unconstrained project scheduling
problem with discounted cash flows. In that research, they assumed that the cash
flow of each activity is dependent on its finish time. They also presumed that cash
outflows occur when an activity is finished, whereas cash inflows are acquired as
progress payments at the end of some periods.

Another related category of research papers to ours is project scheduling prob-
lems with uncertain parameters (Hazir and Ulusoy, 2019). The most frequent
assumption is the stochastic duration of activities. Buss and Rosenblatt (1997),
Tilson et al. (2006) and Sobel et al. (2009) considered the exponential distribu-
tion function for the duration of activities and adopted continues-time Markov
chains to model the problem. Their methods are suitable for small projects because
the number of states in Markov chain grows exponentially when the size of the
project increases. Wiesemann et al. (2010) addressed this problem when the dura-
tion of activities and cash flows are described by discrete scenarios and employed
the method developed by Benati (2006) to devise a B&B algorithm. Three models
based on the chance-constrained model, the expected value model and the chance
maximization model was developed by Zhao et al. (2016) to apply uncertainty in
the problem. Then, an estimation of distribution algorithm was developed to solve
the problem. Zheng et al. (2018) first used the time buffering method and proac-
tive scheduling model to construct a robust schedule and then proposed two reactive
scheduling models to adjust the developed baseline schedule. Moreover, three heuris-
tic approaches based on tabu search algorithm and variable neighborhood search
algorithm were designed to solve the problem. Liang et al. (2019) proposed the
NPV and an expected penalty cost to measure the robustness quality and solution
robustness when activity durations are uncertain. In addition to this, they develop a
two-stage algorithm which integrates tabu search algorithm and simulated anneal-
ing algorithm. Their results indicated that the proactive project schedules with
composite robustness to effectively protect the payment plan from disruptions by
means of allocating appropriate time buffers and achieve a remarkable performance.
There are a few articles in the literature that have studied the project scheduling
problem with max-npv goal and time-dependent cash flows. In those research works,
cash flows were often considered either decreasing or increasing over time based on
a linear function or a curve. This function, which most often has been assumed to
be linear, seems not to be applicable to our setting.

2050057-4

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

3. The Deterministic Case

3.1. Problem description and modeling

In this section, we describe the deterministic version of the problem as follows.
Consider an activity-on-node (AON) network, represented by a graph G = (N, A)
with a set of nodes N , which defines the project activities, and a set of arcs A,
which shows the temporal precedence relations among the activities. This network
includes two dummy activities numbered 0 and n+1. The duration of each activity
i ∈ N is denoted by di where d0 = dn+1 = 0, and the project must be completed by
a given deadline (δ). The precedence relations among activities are represented in
standard form, i.e., start-to-start precedence relations with a minimal time lag lij
between activities (i, j) ∈ A. Each activity has a cash flow, where negative cash flows
illustrate costs and positive ones correspond to benefits. As previously mentioned,
economic changes and inflation may lead to noticeable upticks in the predicted cash
flows and discount rates. We presume that the project horizon is divided into r + 1
periods where cash flow of each activities increases from each period e to period
e + 1, but it is supposed to be constant within periods. As a result, we define r as
the number of change points in cash flows over project time horizon, namely change
point e indicates the exact border between periods e− 1 and e. It is worthwhile to
mention that durations of different periods are not necessarily equal. Furthermore,
the objective of the problem is to maximize the NPV of the project. We also assume
that activities are non-preemptive and all required resources are unconstrained. In
Table 1, the parameters of the problem are described.

Regardless of the finish times of activities, it is assumed that the cash flow of
each activity is determined at the start of the activity, but it is paid and incurred
whenever the activity is finished. In other words, if activity i finishes at time t

Table 1. The defined parameters of the problem.

Parameter Definition

N = {0, . . . , n + 1} the set of activities with indices i and j
A the set of precedence relations
Suci the set of direct successors of activity i
Predi the set of direct predecessors of activity i
di duration of activity i
δ project deadline
r number of change points

CP = {cp0 = 0, cp1, . . . , cprcpr+1 = δ} the set of change points
P = {1, 2, . . . , r + 1} the set of periods with index e
cie the cash flow of activity i when it starts in period e
lij the start-to-start time lag between activities i and j
αe the discount rate of period e
T = {0, . . . , δ} the set of times with index t
cnpv
it the NPV of activity i if it finishes at time t

cpl the critical path length of the project

2050057-5

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

where t ∈ (cpe−1, cpe] and t − di ∈ [cpe′−1, cpe′), we have cnpv
it = cie′ exp(−αe(t −

cpe−1) − [
∑e−1

f=1 αf (cpf − cpf−1)]). It should be noted that we consider fixed price
contracts in which cost of each activity is determined at the beginning of that. This
assumption makes the problem more challenging and signifies the role of scheduling.
We also presume costs (benefits) are paid (received) at finish times. In other words,
the cost of an activity only depends on its start time period and inflation rates
in upcoming periods have no impact on it. However, we have to consider inflation
rates in calculation of the NPV.

To formulate this problem, the following decision variable is used.

xit =

{
1; If activity i finishes at time t

0; Otherwise.

In the following, the deterministic model (DM) is presented for the deterministic
version of the problem.

DM : Max
∑
i∈N

δ∑
t=0

cnpv
it xit (1)

s.t.
δ∑

t=0

xit = 1 ∀ i ∈ N (2)

δ∑
t=0

txjt −
δ∑

t=0

txit ≥ lij + dj − di; ∀ (i, j) ∈ A (3)

xit ∈ {0, 1}; ∀ i ∈ N, ∀ t ∈ T (4)

The maximization of the net presented value is presented in objective function
(1). Constraints (2) enforce a unique finish time for each activity. Constraints (3)
present the start-to-start minimal time lag precedence constraints. Finally, con-
straints (4) define the xit as binary variables.

3.2. An example of the deterministic case

Consider the project network of Fig. 1, including five non-dummy activities and
three periods. In this instance, each node indicates an activity, the above number
shows its duration and three below numbers show the corresponding cash flows of
three periods. As can be seen, cash flows embody an inflated circumstance. More-
over, the number associated with each arrow indicates the start-to-start minimal
time lag between the beginning and ending activities of the arrow. We consider two
change points at cp1 = 7 and cp2 = 12. The project must be finished by δ = 22 and
the discount rates in the three periods are assumed to be α1 = 0.05, α2 = 0.055
and α3 = 0.06, respectively.

2050057-6

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

Fig. 1. Precedence network of the example project.

Table 2. Cash flows of different periods.

Activity (i) ci1 cie

e = 2 e = 3

1 −12 −11.07 −6.50
2 10 11.07 11.82
3 15 12.30 14.78
4 −23 −22.14 −16.55
5 30 35.66 39.02

Moreover, Table 2 presents new cash flows cie = ci(e−1)(1+κie)

1+μe
for each activity

i ∈ N and period e ∈ P , where κie indicates the inflation rate of activity i in period
e and μe =

Pn
i=1 κie

n .
To cope with this situation, one option is to dismiss both change points and

inflated cash flows. In this case, the DM results in the schedule of Fig. 2 with an
NPV of 10.4 cost units. Another option for dealing with the problem is to consider
the first change point and ignore the other one. In this case, the output of the DM
is the schedule of Fig. 3 with an NPV of 13.26 cost units.

Fig. 2. The optimal schedule obtained regardless of change points.

2050057-7

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

Fig. 3. The optimal schedule with one change point, i.e., cp1 = 7.

Fig. 4. The optimal schedule with two change points: cp1 = 7 and cp2 = 12.

Alternatively, we can schedule the activities by considering both change points
that occur in time moments 7 and 12, respectively. By doing so, the DM gives us
the schedule depicted in Fig. 4 and results in an NPV of 16.4 cost units.

3.3. Sketch of the solution approach

To solve optimally the deterministic version of the problem, we design a two-phase
solution approach. In the first phase, the start period of each activity is determined
using a B&B algorithm, and in the second phase, activities are scheduled subject
to given periods. In the second phase, for each solution obtained from phase 1, we
modify the project network using the network modification procedure, described
in Sec. 3.3, and then apply the recursive search algorithm (RSA) developed by
Vanhoucke (2006) to find the corresponding best solution.

3.4. A branch-and-bound algorithm

The search tree of our B&B algorithm has at most n levels wherein each level the
start period of at least one activity is determined. Moreover, we employ a depth-
first strategy to extend the search tree. Since the cash flows and durations of two
dummy activities 0 and n + 1 are zero, the starting periods of these activities
are periods 1 and r + 1, respectively. Furthermore, the earliest and latest feasible
start periods of each real activity j ∈ N , shown as Pmin

j , Pmax
j respectively, are

determined according to the earliest and latest start times of the activity.
Each node in the search tree defines the assignment of (at least) one activity to

one of its feasible start periods. In other words, the branches of each node denote

2050057-8

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

feasible time periods in which a particular activity can start. In some cases, deter-
mining the start period of an activity might result in fixing the start periods of
some other precedence-related activities. We assume that activities are considered
in the search tree based on the non-decreasing order of their number of (direct and
indirect) successors (using the largest activity number as a tie-breaker).

We consider various types of precedence relations in the project network, i.e.,
finish-to-start, start-to-start, start-to-finish and finish-to-finish, with minimal time
lags. Therefore, we first need to transform the project network into a standard form,
including only start-to-start precedence relations with minimal time lags. After that,
the modified label correcting algorithm, developed by Orlin et al. (1993) is utilized
to calculate the earliest and the latest start time of each activity i ∈ N , shown as
esi and lsi respectively.

The earliest and latest start times of the activities of the example project in
conjunction with their feasible start periods are displayed in Table 3.

In branching phase, the start period of each activity i, shown as Pi, is initialized
as Pi = Pmin

i . If si indicates the start time of activity i, it has to be in period
[cpPi−1, cpPi

). By fixing Pi, we know that Pj ≤ Pi; ∀ j ∈ Predi. It is worthwhile to
note that for each pair of activities i and j, where j is a direct or indirect predecessor
of i, if Pmin

j = Pi, then we must fix Pj as Pj = Pi. In the search tree, when the
start periods of all activities are determined over a path from the root node to a
leaf, we must use the backtracking operator to search all other possible solutions.
In other words, the backtracking operator generates multiple nodes at the same
level, branched from the same node in the upper level. Whenever the backtracking
operator is utilized, a new start period is considered for the activity, and this new
branch is created when Pi + 1 ≤ min{Pmax

i , minj∈Suci{Pj}}.
The search tree of the example project is depicted in Figs. 5(a) and 5(b). In each

node, the numbers shown at the first and second rows denote the number of nodes
and the number of activities whose start periods are fixed at the corresponding
level, respectively. This should be noted that the activity index written on the left
side indicates the main considered activity and others, given at the right side, show
the predecessors of the main one. Moreover, periods of activities determined in the
second row are shown in the last row.

Considering the example project, we first choose activity 5 to determine its start
period. As can be seen in Fig. 5(a), this activity starts in its first feasible period, i.e.,

Table 3. The earliest and latest start
times and feasible start periods.

Activity (i) esi lsi Pmin
i Pmax

i

1 0 12 1 3
2 0 11 1 2
3 3 21 1 3
4 4 15 1 3
5 6 17 1 3

2050057-9

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

(a)

(b)

Fig. 5. (a) The search tree of the example project-part 1, (b) The search tree of the example
project-part 2.

P5 = 1. Three direct and indirect predecessors of activity 5, i.e., activities 1, 2 and
4, start at the same period because we have Pmin

4 = Pmin
2 = P

min

1 = P 5. Therefore,
in the first node, the start period of the four mentioned activities are fixed. After-
ward, the start period of activity 3 is calculated as described in the previous node.
Having determined the start period of activity 3, we use the backtracking opera-
tor. Consequently, node 3 is created to shift the main considered activity of this

2050057-10

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

level, i.e., activity 3, to the next period (P 3 = 2). The branching and backtracking
processes continue until all feasible start periods of activities are enumerated. In the
example project, there are 61 nodes and 34 different feasible solutions obtained by
the first phase. We must apply the RSA to each of which to find the corresponding
best schedules. To do so, we modify the project network by inserting a set of new
precedence constraints, described in Sec. 3.3. The RSA builds an early tree based on
the critical path idea in the project network with generalized precedence relations.
Then, it iteratively searches the tree for sets of activities to shift. In order to find
solutions with better NPVs, these activities are shifted forwards in time within a
calculated displacement period.

3.5. The network modification procedure

To find the best schedule corresponding to each solution acquired from the B&B
algorithm, we must first modify the project network through adding some new
nodes and arrows. To do so, r new nodes with numbers n + 2 to n + r + 1 must
be added to the network. Moreover, node n + 2 must be connected to dummy
activity 0 so as to start at time cp1. For this purpose, two arrows are added to the
network where the first one connects node 0 to node n + 2 with a minimal time lag
l0,n+2 = cp1 and the other connects node n + 2 to node 0 with a minimal time lag
ln+2,0 = −cp1.Thereafter, two new arrows are added to link node n+1 and n+r+1
with minimal time lags of ln+1,n+r+1 = δ − cpr and ln+r+1,n+1 = cpr − δ. These
precedence constraints ensure that there is a period with a length of δ−cpr between
the last change point and the project deadline. Following, two new arrows with
minimal time lags li,i+1 = cpi−n − cpi−n−1 and li+1,i = cpi−n−1 − cpi−n are added
between nodes i and i+1 where i ∈ {n+2, . . . , n+ r. These precedence constraints
guarantee that all periods are sequenced in the correct order and predetermined
lengths. As a result, the network is transformed into a generalized form of precedence
relations.

In the example project, since r = 2, we first add two dummy nodes with indices
7 and 8. Then, two arrows are inserted between nodes 0 and 7 with minimal and
maximal time lags of 7 and −7, respectively. Besides, the start time of node 7 is
cp1 = 7. Thereafter, two arrows are added between nodes 7 and 8 with l7,8 =
cp2− cp1 = 5 and l8,7 = cp1 − cp2 = −5. Finally, we add two arrows between nodes
6 and 8 with time lags of l6,8 = cp2−δ = −10 and l8,6 = δ−cp2 = 10. The modified
network is illustrated in Fig. 6.

Now, consider a solution obtained from the B&B algorithm in which activity
i; i = 1, . . . , n must start in interval [cpe, cpe+1); e = 0, . . . , r. To modify the project
network, if e ∈ {1, . . . , r − 1}, we insert an arrow originating from node n + e + 1
and ending to node i with a time lag of ln+e+1,i = 0. We also add another arrow
from node i to node n + e + 2 with a time lag of li,n+e+2 = 1. Moreover, if e = 0,
we insert a single arrow from node i to node n + 2 with a time lag of li,n+2 = 1.

2050057-11

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

Fig. 6. The modified network of the example project.

Furthermore, if e = r, we add only one arrow from node n + r + 1 to node i with a
time lag ln+r+1,i = 0.

Consider the example project and the solution P1 = 2, P2 = 1, P3 = 3, P4 = 3
and P5 = 3, obtained from the B&B algorithm. The modified network with newly
added arrows is depicted in Fig. 7. This new network is given as an input to the
RSA and results in the following solution with an NPV of 15.57: s0 = 0, s1 = 9, s2 =
0, s3 = 12, s4 = 12, s5 = 14, s6 = 22, s7 = 7, s8 = 12.

Fig. 7. The modified network of the example project corresponding to the solution P1 = 2, P2 =
1, P3 = 3, P4 = 3, P5 = 3.

2050057-12

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

3.6. The lower bound

We develop a lower bound (LB) to generate a feasible solution for the problem in
the root node of the search tree. Finding a good lower bound leads to improvement
in the performance and efficiency of the B&B algorithm because it causes to fathom
many redundant nodes of the search tree. Our developed LB is constructed based
on a heuristic greedy search algorithm whereby a feasible start period is determined
for each activity. Subsequently, the RSA is utilized to obtain the corresponding best
schedule. Moreover, whenever a better solution is found, the LB is updated.

To obtain an LB, we develop a heuristic algorithm in both forward and backward
versions where the latter is presented as a pseudo-code in Algorithm 1. The main
idea of this algorithm is to fix the start period of activities that have the largest vari-
ations in their cash flows. To this end, we first construct a matrix Ω = [ωie]n×(r+1)

including n rows, indicating n non-dummy activities, and r + 1 columns, denoting
the number of periods. If an activity can be assigned to no period, we write down
“-” in the corresponding cell of Ω, otherwise we calculate the remaining entries as
ωie = |cie|

max∀ e∈EPi
|cie| , where EP i shows eligible periods of the start time of activity

i. We also use the symbol “×”to specify the ineligible activities.
In the first step of the backward heuristic algorithm, we define two sets SA and

EA as the scheduled and eligible activities, respectively. In addition to this, EP i is
defined for activity i = 1, . . . , n as EP i = {Pmin

i , . . . , Pmax
i }. Next, activity i∗ ∈ EA

which shows the largest range of variation, i.e., i∗ = argmax∀ i∈EA{max∀ e(ωie) −
min∀ e(ωie)}, is selected. Thereafter, activity i∗ is assigned to start period e∗ in such
a way that for activities with positive (negative) cash flows e∗ = argmax∀ e{ωi∗e}
(e∗ = argmin∀ e{ωi∗e}). Subsequently, activity i∗ is added to set SA, and set EA

and matrix Ω are updated subsequently. In order to update set EA, each activity
i ∈ N\{SA ∪ EA} for which Suci ⊆ SA is included in EA. Additionally, matrix Ω
is updated using replacing symbol * with ωi∗e∗ (EP i∗ = ∅). After the assignment
of activity i∗ to period e∗, we might be able to limit or even fix the start period
of some predecessors of activity i∗ according to the rules described in Sec. 3.2. In
other words, EP j might be updated for some j ∈ Predi∗ . This process is repeated
until EA is not null.

To improve the quality of our developed LB, we apply the forward heuristic
algorithm in which we follow the same steps of the backward one but from the

Algorithm 1. Pseudo-code of the backward heuristic algorithm for the LB.
1. Initialize SA = {0, n + 1}, EA = {i ∈ N\SA : Suci ⊆ SA}, EP i for i = 1, . . . , n

While EA 	= ∅ do
2. Let i∗ = argmax∀ i∈EA{max∀ e∈EP i(ωie)−min∀ e∈EP i(ωie)}
3. If i∗ has positive cash flows, then let e∗ = arg max∀ e∈EP i∗{ωi∗e}.
4. Else let e∗ = argmin∀ e∈EP i∗{ωi∗e}.
5. Assign activity i∗ to period e∗, SA← i∗ and update EA and Ω.

End while

2050057-13

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

beginning of the project. For this purpose, EA is initialized as EA = {i ∈ N\SA :
Predi ⊆ SA} and updated by adding each activity i ∈ N\{SA ∪ EA} for which
Predi ⊆ SA. We consider LB as the best-found solution from both the forward and
backward versions of the heuristic algorithm.

For the example project, we first apply the backward version of the developed
heuristic algorithm in which SA, EA, EP i and Ω are initialized as follows.

SA = {0, 6}, EA = {3, 5},

EP 1 = EP 3 = EP 4 = EP 5 = {1, 2, 3}, EP2 = {1, 2}

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × −
1 0.81 0.98

× × ×
0.76 0.91 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Regarding matrix Ω, activity 5 is selected and since it has a positive cash flow,
this activity is assigned to period 3. Consequently, sets SA, EA are updated as
SA = {0, 6, 5}, EA = {4, 3}. Moreover, the eligible start period of activity 4 must
be updated as EP 4 = {3} and matrix Ω is subsequently updated as follows.

Ω(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × −
1 0.81 0.98

1 0.96 0.71

− − ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Next, activity 4 is selected because it has the largest range of variation in cash flows.
The eligible start period of this activity is EP 4 = {1, 2, 3}, its feasible start period
is e = 3 and matrix Ω(1) is updated as Ω(2). This process will continue until the
start periods of all activities are determined. Matrix Ω(4) indicates the final solution
of this example.

Ω(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
0.9 1 −
1 0.81 0.98

− − ∗
− − ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ω(3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

× − −
0.9 1 −
∗ − −
− − ∗
− − ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

, Ω(4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∗ − −
− ∗ −
∗ − −
− − ∗
− − ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

When activity 3 is assigned to period 1 in matrix Ω(3), activity 1 cannot start at
period 2 or 3, hence periods 2 and 3 must be removed from the eligible period of
activities 1, implying EP 1 = {1}. Moreover, the eligible start period of activity
2 is EP 2 = {1, 2} and its feasible start period is e = 2. Now, the start periods

2050057-14

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

of all activities are feasible and we apply the RSA to this solution resulting in an
NPV of 14.07. Regarding the forward version of the heuristic algorithm, matrix Ω
is updated two times where the final one is reached as below:

Ω(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− − ∗
− ∗ −
− − ∗
− − ∗
− − ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the RSA and Ω(2), we reach an NPV of 14.47 leading to LB =
max{14.07, 14.47}= 14.47.

3.7. The upper bound

For each node of the search tree, we can predict the maximum value of the NPV
before branching that node. If the upper bound (UB) obtained for a particular node
is less than the best lower bound found so far, there is no need to branch that node.
To obtain a UB for each node, we modify the project network based on the nodes
placed on the path from the root to that node of the search tree. Giving this
network to the RSA as an input, we find the corresponding upper bound of that
node.

Having applied the lower and upper bound procedures to the search tree of the
example project, we obtain the search tree displayed in Fig. 8 in which the above
number of each node indicates the UB and the nodes for which UB ≤ LB are

Fig. 8. The search tree of the example project truncated using the LB and UB procedures.

2050057-15

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

fathomed. As can be seen, the search tree has been truncated and the number of
nodes was reduced to 42.

4. The Stochastic Case

4.1. A multi-stage stochastic problem modeling

In this section, we formulate the stochastic version of the problem as a MSSP model.
This formulation imposes a reactive scheduling policy in each predetermined period.
Generally speaking, we divide the time horizon into a number of periods, where
each period has its own probabilistic inflation rates and prices except period one,
indicating the curret time and all prices are known there. In each period, we have to
decide which activities must start based on realized data and probabilistic iflation
rates in upcoming periods.

Our stochastic program has (r + 1) stages and includes a sequence of random
parameters Γ2, . . . , Γr+1 defined on a discrete probability space. In the problem at
hand, stage one corresponds to period e = 1 in which no stochastic parameter has to
be taken into account whereas stage e; e ≥ 2 corresponds to random parameter Γe.
In a MSSP, a scenario is a realization of random parameters Γ2, . . . , Γr+1, shown as
(Γγ

2 , . . . , Γγ
r+1), and can be represented as a scenario tree. The different realizations

of Γe; e ≥ 2 imply different possibilities of the cash flow corresponding to period
e. Dupačová (1995) indicated that the random parameter of the last stage only
influences the objective function. To present stochasticity of cash flows in all periods
as a discreet scenario tree, we define a set of scenario Γ where the number of
scenarios, shown by |Γ|, is a finite number. This set describes the uncertainty of
cash flows where cieγ ; ∀ i ∈ N, ∀ e ∈ P\{1}, ∀ γ ∈ Γ indicates the cash flow of
activity i in period e under scenario γ, which is incurred with probability pγ where∑

∀ γ∈Γ pγ = 1. In other words, if each real activity i ∈ N is going to start at time
t < cp1, the initial cash flow ci1 is factored in. Moreover, if activity i starts at period
e([cpe−1, cpe); ∀ e ∈ P\{1}) and scenario γ ∈ Γ occurs, cieγ has to be taken into
account. It is worth mentioning that the stochastic parameter cieγ is supposed to
remain constant in period e.

In our MSSP model, called MSSPM, the realization of random parameters
Γ2, . . . , Γe has been detected at cpe−1, and the remaining uncertainty relates to
Γe+1, . . . , Γr+1. Furthermore, the distribution of unrealized parameters is condi-
tional on the realization of random parameters from previous periods. Accord-
ing to Dupačová (1995), a MSSP model can be presented by imposing non-
anticipativity constraints. A reactive scheduling policy in our developed MSSPM is
non-anticipative, namely decisions in each period do not depend on realization of
cash flows in the next periods.

The NPV of each activity can be computed in a preprocessing step based
upon the start time of the activity. Given that activity i ∈ N finishes at time
t ∈ (cpe−1, cpe]; ∀ e ∈ P , if it starts in the first period, the corresponding NPV is
shown by cnpv

it , otherwise, it starts in a period e′ where e′ > 1 and the corresponding

2050057-16

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

NPV is shown with cnpv
itγ . These two quantities can be calculated using the formulas

(5) and (6), respectively.

cnpv
it = ci1 exp

⎛
⎝−αe(t− cpe−1)−

⎡
⎣e−1∑

f=1

αf (cpf − cpf−1)

⎤
⎦
⎞
⎠ , (5)

cnpv
itγ = cie′γ exp

⎛
⎝−αe(t− cpe−1)−

⎡
⎣e−1∑

f=1

αf (cpf − cpf−1)

⎤
⎦

⎞
⎠ . (6)

We introduce the variable zit that gets one if activity i finishes at time t <

cp1 +di and gets zero otherwise. Furthermore, we define variable yietγ that gets one
if activity i starts in period e and finishes at time t ≥ cpe−1 + di under scenario γ

and gets zero otherwise. Let us introduce Tie = {di+cpe−1, . . . , min{di+cpe−1, δ}}
as the set of times at which activity i can be finished if it is started in period e. In
the following, the problem formulation is presented.

MSSPM : Max
∑
i∈N

∑
t∈Ti1

cnpv
it zit +

∑
i∈N

∑
e∈P\{1}

∑
γ∈Γ

∑
t∈Tie

pγcnpv
itγ yietγ , (7)

s.t
∑

t∈Ti1

zit +
∑

e∈P\{1}

∑
t∈Tie

yietγ = 1; ∀ i ∈ N, ∀ γ ∈ Γ (8)

∑
t∈Tj1

tzjt −
∑

t∈Ti1

tzit +
∑

e∈P\{1}

∑
t∈Tje

tyjetγ

−
∑

e∈P\{1}

∑
t∈Tie

tyietγ ≥ lij + dj − di; ∀ (i, j) ∈ A, ∀ γ ∈ Γ (9)

∑
t∈Tie

tyietγ =
∑

t∈Tie

tyietγ′ ; ∀i ∈ N, ∀γ, γ′ ∈ Γ : γ < γ′, (Γγ
2 , . . . , Γγ

e)

= (Γγ′
2 , . . . , Γγ′

e), ∀ e ∈ {P1, r + 1} (10)

zit ∈ {0, 1}; ∀ i ∈ N, ∀ t ∈ Ti1 (11)

yietγ ∈ {0, 1}; ∀ i ∈ N, ∀ γ ∈ Γ, ∀ e ∈ P\{1}, ∀ t ∈ Tie (12)

Maximization of the expected net presented value is presented in objective
function (7). Constraints (8) impose a unique finish time to each activity under
each scenario. Constraints (9) present the start-to-start minimal time lag prece-
dence constraints. The non-anticipativity Constraints (10) for all γ, γ′ ∈ Γ such
that (Γγ

2 , . . . , Γγ
e) = (Γγ′

2 , . . . , Γγ′
e) ensure if activity i ∈ N starts in period in

e ∈ P\{1, r + 1}, it has an identical start time under scenarios γ, γ′ ∈ Γ. Finally,
Constraints (11) and (12) define the binary variables.

2050057-17

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

4.2. An example of the stochastic case

This example indicates how considering change point and the data provided by
scenarios may change the schedule in comparison with the deterministic case. Let
us consider all data of the example presented in Sec. 3 apart from the cash flows of
the second and third periods for which we need to define a set of possible realizations
for cash flows. We create set of scenarios Γ through the scenario tree depicted in
Fig. 9. In this example, we consider three different realization for Γ2 and Γ3 leading
to |Γ| = 9 scenarios.

Fig. 9. The scenario tree of the example project.

Table 4. Cash flows in different time periods and scenarios.

Activity (i) Γ2 Γ3 The expected value of
cash flow in period e

1 2 3 1 2 3 e = 2 e = 3

1 −11.07 −12.90 −15.71 −18.71 −10.33 −10.41 −14.40 −11.01
2 11.07 9.67 9.43 9.62 12.54 9.61 9.67 9.24
3 12.3 22.57 11.31 13.36 13.28 20.02 14.79 15.34
4 −22.14 −16.12 −25.14 −16.04 −17.71 −23.22 −22.13 −18.36
5 35.66 22.57 27.02 26.73 36.89 24.82 26.55 25.13
Probability of 0.1 0.3 0.6 0.2 0.3 0.5 1 1

each possibility

2050057-18

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

Fig. 10. The optimal schedules of the example obtained from the MSSPM.

Fig. 11. The optimal schedule of the example obtained from the DM.

The details of the scenarios are presented in Table 4. For instance, the first
scenario is constituted through combination of the first elements of Γ2 and Γ3 with
probability p1 = 0.1× 0.2 = 0.02.

The output of the MSSPM is a set of schedules depicted in Fig. 10 with an
expected NPV of 12.13 cost units. Figure 10(a) corresponds to scenarios 1 and 2.
Moreover, Fig. 10(b) is related to scenario 3, Fig. 10(c) corresponds to scenarios 4,
5 and 6, and Fig. 10(d) matches to scenarios 7, 8 and 9.

As can be seen, the partial schedule before the first change point is the same
under all scenarios. Moreover, in scenarios 1, 2 and 3, originated from the first ele-
ment of Γ2, an identical partial schedule has been obtained in the second period
(Figs. 10(a) and 10(b)), implying non-anticipativity concept. The same feature
exists for scenarios created based on the second and third elements of Γ2.

If we dismiss scenarios data and consider the expected value of cash flows in
each period as constant values, we have to solve the example using the DM. In this
case, the optimal schedule, depicted in Fig. 11, results in a NPV of 10.26 cost units.

5. Computational Experiments

We performed computational experiments to analyze the performance of our devel-
oped solution approaches. Moreover, we evaluated the impact of the project deadline
and change points on the optimal solutions and the NPV.

2050057-19

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

5.1. Experimental setup

We coded the B&B algorithm in Visual C++ 2012 and performed all computational
experiments on a PC Intel� CoreTM i7@ 3.4GHz processor with 32GB of internal
memory. We also used ILOG CPLEX solver 12.8 to solve the DM and MSSPM on
the same PC. To validate our developed algorithms, we generated two test sets, i.e.,
Set1 and Set2. Set1, including 1,080 test instances, was created using the random
network generator RanGen (Demeulemeester et al., 2003) to evaluate the B&B algo-
rithm and the DM. To generate the start-to-start minimum time lags between two
activities (i, j) ∈ A, we let lij = di where di is chosen randomly from {1, . . . , 10}.
We chose n = 60, 90, 120, 150 and OS = 0.25, 0.5, 0.75 where OS indicates the order
strength, defined as the number of elements of A divided by the theoretically max-
imum number of precedence-related activities in a project network (Mastor, 1970).
We also considered r = 1, 3, 5 and δ = β × cpl where coefficient β takes three val-
ues 1.5, 2 and 2.5. For each combination of n, OS, r and β, we generated 10 random
test instances resulting in 1,080 test instances. For these instances, we assumed that
change points are integers and uniformly distributed over time horizon {1, . . . , δ−1}.
Moreover, the percentage of negative cash flows in the first period is selected ran-
domely based on the discrete uniform distribution{25%, 50%, 75%}. Moreover, in
the first period, positive and negative cash flows are selected casually from dis-
crete uniform distributions {10, . . . , 100} and {−100, . . . ,−10}, respectively. The
cash flow of each activity in the second period is generated based on its initial cash
flow multiplied by a random inflation rate. The inflation rate of each activity in
subsequent periods is selected randomly from the continuous uniform distribution
U [0%, 30%]. Likewise, the cash flow of each activity in each period e : e ≥ 2 is gen-
erated based on its corresponding value in period e− 1. Furthermore, we consider
the discount rate of the first period as α1 = 0.05, and for the subsequent periods we
calculate the discount rate as αe = εαe−1; e > 2 where ε is randomly chosen from
the uniform distribution U [0%, 10%].

Set2, including 810 test instances, was created to evaluate the MSSPM and has
a great deal in common with Set1. What sets Set2 apart from Set1 is the number of
activities and cash flows except for the first period. In Set2, we consider n = 60, 65
and 70 because the CPU run times and the required memory strongly depends on
the size of the problem and grows very fast. According to the method described
in the example of Sec. 4.2, we consider three different realization for cash flows
in each period e leading to |Γ| = 3r scenarios. Since we consider r = 1, 3, and 5,
we have |Γ| = 3, 27 and 243 scenarios for each test instance. The inflation rate
corresponding to each scenario is selected randomly from the uniform distribution
U [0%, 30%]. Therefore, the new cash flows in each time period e : e ≥ 2 and under
each scenario are generated based on their corresponding values in time period
e− 1. Additionally, the probability of each realization in each period was randomly
generated by U [0, 1]; all generated probablitiies are normalized so that we have∑

∀ γ∈Γ pγ = 1. Finally, for each combination of n, OS, r, β and r, 10 random test
instances were generated resulting in 810 test instances.

2050057-20

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

Table 5. The average CPU run times (seconds) of the DM.

OS n

60 90 120 150

DM B&B DM B&B DM B&B DM B&B

0.25 9.32 14.56 132.75 139.63 1,943.76 624.16 3,489.54 982.64
0.5 19.74 28.94 547.57 530.72 2,863.65 947.93 — 1,394.31
0.75 49.71 65.41 952.87 894.82 3579.3 1225.74 — 2173.59
Avg. 26.26 36.30 544.40 521.72 2,795.57 932.61 3,489.54 1,516.85

5.2. Computational results of the deterministic solution

approaches

5.2.1. Comparative computational performance

We ran both the DM and the B&B algorithm to solve all generated test instances.
As some of the instances are intractable, we imposed a one-hour time limit to our
experiments. Table 5 indicates the average CPU run times (seconds) of the DM and
the B&B algorithm. As can be seen, which is common to both solution methods
is that the more the number of activities, the more required CPU run time. This
is due to the fact that when the number of activities increases, the number of
required variables and constraints in both the algorithms rise. Despite the project
scheduling problems with the makespan minimization goal in which smaller amounts
of OS results in more complex and time-consuming instances, for max-npv problems,
higher amounts of OS make instances harder. This happens because the sign and
amount of each activity cash flow may contribute to the optimal schedule of all
its predecessors and successors. However, what sets the B&B algorithm apart from
the DM is its overall better performance, namely the total average CPU run time
for the DM and the B&B algorithm are 1,358.7 and 751.87, respectively. Although
the DM outperforms the B&B algorithm for majority of instances with n = 60 and
they have nearly identical performances for instances with n = 60, the superiority
of the B&B algorithm is highlighted when instances are more complex, i.e., having
larger amounts of n and OS. The last row of Table 5 indicates the average CPU
run time (Avg.) based upon different values of n. It is worthwhile to note that none
of instances with n = 60 and OS = 0.5, 0.75 could be solved using the DM.

Due to the imposed time limit, the DM or B&B algorithm might not be able
to find optimal solutions for all instances. Table 6 indicates the number of optimal
solutions (out of 270 test instances) obtained by the DM model and the B&B

Table 6. Number of found optimal solutions using
the DM and the B&B algorithm.

n 60 90 120 150

DM 270 219 164 84
B&B algorithm 270 263 240 205

2050057-21

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

algorithm. Overall, the B&B algorithm shows better performance, and the DM
could find the optimal solution of 737 out of 1,080 while that was 978 for the B&B
algorithm.

5.2.2. Sensitivity analyses

In this section, we run several experiments to analyze the impact of two signifi-
cant parameters of the problem, the project deadline and the occurrence times of
change points. To this end, we consider the example project illustrated in Sec. 3.2
to understand how optimal NPV may alter when these parameters change.

Figure 12 depicts the impact of the project deadline on the NPV in which we
have considered three values for δ as δ = 1.5cpl, 2cpl and 3cpl. As can be seen, the
higher the amount of project deadline is, the more the NPV will be. This trend
indicates that when activities have more slacks, better start times can be chosen
for them, leading to a better NPV. Another notable result is that the NPV shows
more increase in the first piece of Fig. 12. This seems to indicate that the impact
of δ on the NPV gradually decreases when the project deadline rises hugely.

To investigate the impact of occurrence times of change points in the example
project, we first consider the second change point as a fixed parameter and alter
the first one as cp1 = 1, . . . , 11. This investigation has been shown in Fig. 13. For
cp1 = 2, . . . , 11, we obtained s1 = 12, s2 = 0, s3 = 15, s4 = 15 and s5 = 17. If
we let cp1 = 1, the only change is s2 = 1 because the positive cash flow of this
activity increases after the first change point. For cp1 = 2, . . . , 11, we obtained
s2 = 0 due to the time value of money and the larger discount rate of the second
period. Consequently, we see a downward trend at the beginning of Fig. 13. Since
the optimal schedule do not change for cp1 = 2, . . . , 11 and apart from activity 3,
cash flows of other activities starting in the second period increase, the project will
be more profitable if the occurrence time of the first change point rises.

Fig. 12. The impact of δ on the NPV in the example project.

2050057-22

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

Fig. 13. The impact of cp1 on the NPV when cp2 = 12.

Fig. 14. The impact of cp2 on the NPV when cp1 = 7.

Similarly, if we consider cp1 as a constant parameter and alter the second one
as cp2 = 8, . . . , 21, Figure 14 indicates the behavior of the NPV. Despite the overall
upward trend in Fig. 13, this figure indicates a downward trend. In other words,
the larger the amount of cp2, the smaller the NPV. Moreover, Fig. 14 implies that
the impact of cp2 is higher than cp1 because it shows a larger range of variation
on the NPV. When cp2 = 8, we obtain s2 = 0 and others start at soon as possible
after cp2. This policy is followed by the optimal schedules until cp2 = 12, but at
cp2 = 13 we have s1 = 0 and s3 = 3 because the project must be completed by
the given deadline. Consequently, for cp2 = 13, 14 and 15, we have s1 = 0, s2 = 0,
s3 = 3 and activities 4 and 5 start as soon as possible after cp2. While the star
times of activities 1, 2 ,3 remain constant in the optimal schedules corresponding to
cp2 = 13, . . . , 21, the start times of activities 4 and 5 change as s4 = 7 and s5 = 9.
This is due to the fact that no activity must be completed after the project deadline.
The optimal schedule pertaining to cp2 = 16 is also optimal for cp2 = 17, . . . , 21.

5.3. Computational results of the stochastic solution approach

5.3.1. Computational performance

All generated test instances were solved by the MSSPM and using the CPLEX.
Since finding the optimal solution of some instances was very time and

2050057-23

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

Table 7. Number of found opti-
mal solutions using the MSSPM.

|Γ| n

60 65 70

3 90 82 79
27 78 67 46
243 54 43 32

memory-consuming, we imposed the one-hour time limit to our experiments. Some
instances could not be optimally solved within the given time limit or the mem-
ory limitation. The number of optimally solved instances (out of 90 test instances)
for the MSSPM is shown in each cell of Table 7. According to Table 7, increasing
the number of activities and the number of scenarios cause more complexity of the
problem and less found optimal solutions.

Tables 8 indicates the average CPU run times (seconds) of the MSSPM based
on different values of n and |Γ|. As can be seen, the larger n and |Γ| and smaller
OS is, the more CPU run time is required to solve instances optimally.

5.3.2. Merit and pitfall of the Stochastic solution approach

In contrast to the DM that ignores the scenarios data and focus on the expected
value of cash flows in each period, the MSSPM considers all scenarios and generates
schedules corresponding to each. In order to compare these two policies, we ran all
instances of Set2 using the DM. To do so, in each period, we considered the expected
value of different realizations of each cash flow as a constant. The corresponding
results are presented in Tables 9 and 10. Table 9 indicates that if the stochastic
model is utilized, how many percents the objective function of the problem can be
improved, and Table 10 summarizes the average CPU run times in conjunction with
the number of optimally solved instances (out of 270 instances), shown inside paren-
thesis. According to Table 9, the stochastic model contributes to more improvement
for larger values of OS. In contrast, there is no improvement trend based on the
number of activities. However, the MSSPM can create an average improvement of
15% in the expected NPV. On the other hand, by comparing Table 10 to Tables 7
and 8, we conclude that the average CPU run time of the MSSPM is 22 and 26 times

Table 8. The average CPU run times (seconds) of the MSSPM.

|Γ| n Avg.

60 65 70

3 41.71 69.98 122.80 78.16
27 385.43 892.74 1,094.69 790.95
243 3,199.81 3,457.92 3,521.65 3,393.13
Avg. 1,208.98 1,473.55 1,579.71 1,420.75

2050057-24

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

Table 9. The average percentage
of improvement of objective fun-
tion when we use the MSSPM in
comparison to the DM.

OS N
60 65 70

0.25 2% 7% 10%
0.5 18% 21% 11%
0.75 28% 24% 15%

Table 10. The average CPU run times (seconds)
of the DM and B&B and the number of found
optimal solutions.

n 60 65 70

DM 29.21 (270) 42.98 (265) 85.82 (254)
B&B 38.65 (270) 47.21 (270) 79.43 (267)

more than the DM and the B&B algorithm, respectively. Moreover, the MSSPM
fails to solve instances having more than 70 activities within one-hour time limit.
As expected, the stochastic model can build better solutions but consumes more
CPU run times and memory, which grow very fast.

Generally speaking, we conclude that there is a trade-off between the quality of
obtained solutions and CPU run times and memory consumption. In an uncertain
circumstance, the DM model results in lower quality solution but it can be solved
faster whereas the MSSPM achieves better solutions but it needs far more CPU run
times and memory.

6. Conclusions and Outlook on Perspective Research

In this paper, we formulated a project scheduling problem under periodic infla-
tion to maximize the NPV. We considered the problem in both deterministic and
stochastic settings and developed an integer linear programming model for each
case. In addition to this, we developed an efficient branch-and-bound algorithm to
solve large instances of the deterministic version of the problem. Using extensive
computational experiments, we analyzed and compared the performances of our
developed solution approaches. On average, we showed that the stochastic model
may lead to 15% improvement in the expected NPV rather than the DM, but it
needs much more CPU run time to achieve this superiority. Moreover, we analyzed
the impact of the project deadline and the occurrence time of change points on the
project NPV.

As a future research opportunity, we recommend developing heuristic or
metaheuristic algorithms for the problem. Moreover, developing exact solution
approaches like benders decomposition might be an interesting research topic.

2050057-25

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

References

Battersby, A (1967). Network Analysis for Planning and Scheduling. Macmillan.
Benati, S (2006). An optimization model for stochastic project networks with cash flows.

Computational Management Science, 3(4), 271–284.
Breuss, F (2018). Would DSGE models have predicted the great recession in Austria?

Journal of Business Cycle Research, 14(1), 105–126.
Buss, AH and MJ Rosenblatt (1997). Activity delay in stochastic project networks. Oper-

ations Research, 45(1), 126–139.
De Reyck, B (1996). An optimal procedure for the unconstrained max-npv project schedul-

ing problem with generalized precedence relations. DTEW Research Report 09642,
1–33.

Demeulemeester, E (1996). An optimal recursive search procedure for the deterministic
unconstrained max-npv project scheduling problem. DTEW Research Report 09603,
1–15.

Demeulemeester, E and WS Herroelen (2006). Project Scheduling: A Research Handbook,
Vol. 49. Springer Science & Business Media.

Demeulemeester, E, M Vanhoucke and W Herroelen (2003). RanGen: A random network
generator for activity-on-the-node networks. Journal of Scheduling, 6(1), 17–38.

Dupačová, J (1995). Multistage stochastic programs: The state-of-the-art and selected
bibliography. Kybernetika-Praha, 31(2), 151–174.

Elmaghraby, SE and WS Herroelen (1990). The scheduling of activities to maximize the net
present value of projects. European Journal of Operational Research, 49(1), 35–49.

Etgar, R and A Shtub (1997). A branch and bound algorithm for scheduling projects
to maximize net present value: The case of time dependent, contingent cash flows.
International Journal of Production Research, 35(12), 3367–3378.

Grinold, RC (1972). The payment scheduling problem. Naval Research Logistics Quarterly,
19(1), 123–136.

Hazir, O and G Ulusoy (2019). A classification and review of approaches and methods for
modeling uncertainty in projects. International Journal of Production Economics,
223, 107522.

Herroelen, W, E Demeulemeester and B De Reyck (1999). A classification scheme for
project scheduling. In Project Scheduling, pp. 1–26. Springer, Boston, MA.

Kamburowski, J (1990). Maximizing the project net present value in activity networks
under generalized precedence relations. In Proc. 21st DSI Annual meeting, San
Diego, pp. 748–750.

Liang, Y, N Cui, T Wang and E Demeulemeester (2019). Robust resource-constrained
max-npv project scheduling with stochastic activity duration. OR Spectrum, 41(1),
219–254.

Mahamid, I and N Dmaidi (2013). Risks leading to cost overrun in building construction
from consultants’ perspective. Organization, Technology & Management in Con-
struction: An International Journal, 5(2), 860–873.

Mastor, AA (1970). An experimental investigation and comparative evaluation of produc-
tion line balancing techniques. Management Science, 16(11), 728–746.

Nyberg, H (2010). Dynamic probit models and financial variables in recession forecasting.
Journal of Forecasting, 29(1–2), 215–230.

Obstfeld, M, JC Shambaugh and AM Taylor (2009). Financial instability, reserves, and
central bank swap lines in the panic of 2008. American Economic Review, 99(2),
480–486.

Orlin, J, R Ahuja and T Magnanti (1993). Network Flows, Theory, Algorithms and Appli-
cations. Vol. 5. New Jersey: Prentice Hall.

2050057-26

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

Maximizing the NPV in Project Scheduling Under Periodic Inflation

Prajapati, S, R Gupta and M Pandey (2016). Causes and effects of cost overrun on con-
struction projects in Madhya Predesh. International Journal of Engineering Devel-
opment and Research, 4(2), 1346–1350.

Russell, RA (1986). A comparison of heuristics for scheduling projects with cash flows and
resource restrictions. Management Science, 32(10), 1291–1300.

Schwindt, C and J Zimmermann (2001). A steepest ascent approach to maximizing the
net present value of projects. Mathematical Methods of Operations Research, 53(3),
435–450.

Sobel, MJ, JG Szmerekovsky and V Tilson (2009). Scheduling projects with stochastic
activity duration to maximize expected net present value. European Journal of Oper-
ational Research, 198(3), 697–705.

Tilson, V, MJ Sobel and JG Szmerekovsky (2006). Scheduling projects with stochastic
activity duration to maximize EPV. SSRN eLibrary.

Vanhoucke, M (2006). An efficient hybrid search algorithm for various optimization prob-
lems. European Conf. Evolutionary Computation in Combinatorial Optimization.

Vanhoucke, M, E Demeulemeester and W Herroelen (2001a). Scheduling projects with
linear time-dependent cash flows to maximize the net present value. International
Journal of Production Research, 39(14), 3159–3181.

Vanhoucke, M, E Demeulemeester and W Herroelen (2001b). On maximizing the net
present value of a project under renewable resource constraints. Management Sci-
ence, 47(8), 1113–1121.

Vanhoucke, M, E Demeulemeester and W Herroelen (2003). Progress payments in project
scheduling problems. European Journal of Operational Research, 148(3), 604–620.

Wiesemann, W, D Kuhn and B Rustem (2010). Maximizing the net present value of a
project under uncertainty. European Journal of Operational Research, 202(2), 356–
367.

Wikipedia, Sanctions against Iran. https://en.wikipedia.org/wiki/Sanctions against Iran.
Accessed May 18, 2020.

Zhao, C, H Ke and Z Chen (2016). Uncertain resource-constrained project scheduling
problem with net present value criterion. Journal of Uncertainty Analysis and Appli-
cations, 4(1), 12.

Zheng, W, Z He, N Wang and T Jia (2018). Proactive and reactive resource-constrained
max-npv project scheduling with random activity duration. Journal of the Opera-
tional Research Society, 69(1), 115–126.

Biography

Mahboobe Peymankar is a PhD student in Industrial Engineering at Ferdowsi
University of Mashhad (Iran). She received her BSc and MSc degrees in Industrial
Engineering both from Ferdowsi University of Mashhad in 2012 and 2014, respec-
tively. She is interested in the field of Project Scheduling, Machine Scheduling,
Supply Chain and Logistics. She has published a research paper in Journal of Pro-
duction Economics. She also has published several papers in the field of scheduling
in Persian journals.

Mohammad Ranjbar is a Professor of Industrial Engineering at Ferdowsi Uni-
versity of Mashhad (Iran). He received his PhD in Industrial Engineering in 2007
from Sharif University of Technology. His research field includes Project Scheduling,

2050057-27

August 5, 2021 10:0 WSPC/S0217-5959 APJOR 2050057.tex

M. Peymankar & M. Ranjbar

Project Scheduling, Machine Scheduling, Transportation and Logistics and Health-
care Systems. He has published more than 30 papers in high-quality international
journals such as European Journal of Operational Research, Computers and Oper-
ations Research, Computers and Industrial Engineering, Journal of the Operational
Research Society, International Transaction in Operations Research and Journal of
Manufacturing Systems.

2050057-28

	Introduction
	Related Work
	The Deterministic Case
	Problem description and modeling
	An example of the deterministic case
	Sketch of the solution approach
	A branch-and-bound algorithm
	The network modification procedure
	The lower bound
	The upper bound

	The Stochastic Case
	A multi-stage stochastic problem modeling
	An example of the stochastic case

	Computational Experiments
	Experimental setup
	Computational results of the deterministic solution approaches
	Comparative computational performance
	Sensitivity analyses

	Computational results of the stochastic solution approach
	Computational performance
	Merit and pitfall of the Stochastic solution approach

	Conclusions and Outlook on Perspective Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

