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Abstract 
Support Vector Data Description (SVDD) characterizes a dataset by a spherically shaped boundary around it. Since the complexity of 
SVDD training is O(N3), its performance decreases for large-scale datasets. In this paper, we propose an improved SVDD algorithm, 
called EM-SVDD, which combines the Expectation Maximization (EM) algorithm and SVDD to reduce the complexity and accelerate 
the training phase, while the accuracy of the classifier remains unchanged. First, the dataset is clustered to obtain smaller subsets, and 
then the boundary of each subset is identified by SVDD. After that, to construct the dataset boundary and get the optimal weighted 
combination of SVDDs, the EM algorithm is utilized to estimate the parameters and weights of SVDDs. The time complexity of the 
proposed method is N/i times lower than SVDD, where i is the number of EM iterations. In addition to EM-SVDD, Sparse EM-SVDD 
is proposed to guarantee the sparsity of the iteratively estimated parameters. EM-SVDD is well compared with several similar methods. 
Simulation results indicate higher speed and performance of the proposed method in the training and testing phases. Furthermore, the 
capability of the proposed method is tested on a large image dataset acquired from social networks and our method identifies in-class 
and outlier images with 0.71 accuracy rate. 
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1. Introduction 
The one class classification (OCC) problem determines the boundary of a target set of samples (D. M. J. Tax, 2001). A 
one-class classifier differs from multiclass classifiers in two main aspects: 1) only the samples of one class are used to train 
the classifier and 2) the trained classifier recognizes in-class samples and outliers among the testing samples. Until now, 
many efforts have been made to address the problem of one class classification. These works can be divided into three 
major categories (Sanchez-Hernandez et al., 2007): reconstruction methods (Pizzi et al., 2001)(Yang et al., 1998), density 
methods (Fumera et al., 2000)(Dit-Yan Yeung & Chow, 2002), and boundary methods (Schölkopf et al., 2001)(David M 
J Tax & Duin, 1999). Among these categories, the boundary methods concentrate on the boundary that encloses the target 
class. The main superiority of the boundary methods is that they do not require extensive knowledge and a large amount 
of information about the dataset (D. M. J. Tax, 2001). Support vector data description (SVDD) (H. Jiang et al., 2019)(J. 
Wang et al., 2019) and one-class support vector machine (OCSVM) (H.-J. Xing & Li, 2020)(H.-J. Xing & Liu, 2020) are 
two commonly used methods among boundary-based classifiers. OCSVM describes the target class by a hyperplane in the 
feature space such that every sample located below the hyperplane is considered as an outlier. On the other hand, the 
objective function of SVDD tries to construct a minimum spherical boundary around the samples of the target class. 
However, under certain conditions, OCSVM and SVDD are proved to be equivalent (Schölkopf et al., 2001)(David M.J. 
Tax & Duin, 2004). SVDD is used in many research fields, such as outlier detection and clustering (Jae Hyuk Shin et al., 
2011)(S. Wang et al., 2013)(Prakash & Singh, 2015), fault prognostic (Benkedjouh et al., 2012), process monitoring (Ge 
et al., 2011)(Q. Jiang et al., 2014), image reconstruction (Hwang et al., 2014) and feature selection (Nekkaa & Boughaci, 
2015). 
SVDD was introduced by Tax and Duin (David M.J. Tax & Duin, 2004) based on the SVM method (Vapnik, 1999). 
Following their approach, many methods attempted to improve the efficiency and the performance of classification, as 
explained in Section 2. In order to construct the decision boundary, a constrained convex quadratic programming (QP) 
problem is solved in the training phase of SVDD. Although all samples are considered in the training phase, the boundary 
of the classifier can be described by minority samples called support vectors (Y. Li, 2011)(Manevitz & Yousef, 2001). 



 
 

Therefore, an efficient training set can be generated by selecting support vector samples. A test sample is classified as in-
class when it is inside the decision boundary, while outliers are defined as samples located outside the boundary. Since the 
spherical boundary is not applicable to all kinds of classes, kernel functions are utilized. The kernel function transforms 
the data to a high-dimensional feature space and makes the classifier more flexible. 
SVDD is impractical for large-scale datasets due to the high time and space complexity of the training phase. The space 
complexity of SVDD is O(N2) and its time complexity is O(N3), where N is the number of targets. Therefore, the major 
challenges of SVDD for large-scale datasets are dealing with the large amount of memory and enormous training time. In 
this paper, we propose EM-SVDD to reduce the computational complexity of the SVDD training. The idea is to construct 
the dataset boundary from a mixture of a finite number of weighted SVDD distributions with unknown parameters. To 
achieve this goal, the dataset is partitioned into smaller subsets and the SVDD classifier is used to build the boundary of 
each subset. After that, the support vectors that are not included in other SVDDs are selected. Then, to build the dataset 
boundary from the optimal weighted combination of SVDDs, the EM algorithm is used to estimate the weights of SVDDs 
and the coefficients of the selected support vectors. 
The EM algorithm (Dempster et al., 1977)(Krishnan & McLachlan, 2008) is an iterative approach for parameter estimation. 
It is frequently used in the maximum likelihood estimate problem in the presence of missing data. This algorithm is 
appropriate for many statistical models especially Gaussian mixture models (GMMs) which is the focus of this paper. The 
major advantages of the EM algorithm over alternates are reliable global convergence, low computational cost per iteration, 
low storage requirement and easy programming. In addition, the sequence generated by the EM iterations increases the 
likelihood and often converges quickly to a maximum point. 
Consider X as the set of observed data and Y as the set of complete data. In addition, let )|,(),;( θθ YXpYXL =  be the 

likelihood function generated by the statistical model, where θ is the vector of the parameters of the statistical model. The 
goal of the maximum likelihood estimate problem is to find the maximum likelihood estimate of θ, formulated in (1). 
However, solving this problem is not always simple. Therefore, the EM algorithm attempts to find the solution in two main 
steps. In the beginning of the algorithm, an initial guess about θ is made. In the first step, called the E-step, the conditional 
expected log-likelihood, termed the Q-function, is formed. The Q-function formulates the expected value of the log-
likelihood function with regard to the conditional distribution of Y given X and the current value of θ. The Q-function is 
demonstrated in (2) where θg is the current estimate of θ. In the M-step, the new estimate of θ that maximizes the Q-function 
is constructed. These two steps iterate until convergence is achieved. 
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The rest of this paper is organized as follows. Related work is reviewed in Section 2. Motivations and the proposed method 
are explained in Section 3. Finally in Section 4, the experiments that demonstrate our method’s advantages are presented. 

2. Related Work 
In this section, we review the methods which aim to solve the high complexity problem of SVM-based classifiers, with an 
emphasis on SVDD classifiers. Generally, these methods are divided into four categories: 

 
I. Dataset Level: In these methods, a pre-processing is performed to remove a number or a group of non-support vector 

samples from the dataset. Therefore, the complexity of the QP optimization and SVDD training is reduced. Literature 
(Liang et al., 2009), proposed to extract boundary targets based on the boundary description determined by the support 
vectors. In Fast SVDD (FSVDD) (Luo et al., 2010), the dataset was decomposed and then the decomposed regions 
were combined to derive a global solution. Literature (Xiao et al., 2010), proposed a two-step method. First, the k-
farthest neighbour method was used to identify the samples around the boundary, while other data samples were 
removed from the training set in the second step. Literature (Chaudhuri et al., 2016), developed a sampling-based 
method which computed the target class description by combining the iteratively computed SVDDs on independent 
random samples obtained from the training dataset. Incremental SVDD (Inc-SVDD) (Hua & Ding, 2011) and 
Incremental Fast SVDD (IFSVDD)(H. Jiang et al., 2019) analyzed the possible change of support vectors set after 
new samples were added to the training set. 

II. Feature Level: Weston proved that the standard SVM can suffer from the presence of irrelevant features (Weston et 
al., 2000). Thus, feature level methods were proposed to select a smaller feature subset to improve the efficiency and 
the accuracy of the classifier. Literature (Vergara & Estévez, 2014), divided the feature selection methods into three 
groups: filter (Lorena et al., 2015), wrapper (Kohavi & John, 1997) and embedded methods (Lal et al., 2006). In filter 
methods, a metric independent of the classifier is used to evaluate the selected features. However, selected features are 
evaluated using the classifier in wrapper methods. Embedded methods attempt to take advantage of both filter and 
wrapper strategies. Fung et al. (Fung & Mangasarian, 2004) proposed a reformulation for SVM training to enforce 
feature sparsity in the solution. Literature (Peng et al., 2015), developed an outlier detection method based on SVDD 
in which sparse feature selection was modelled using integer programming and the complex problem was solved by 



 
 

an iterative method.  In (Lorena et al., 2015), a feature selection method was introduced for one class classification. 
First, a number of adapted feature importance measures were proposed. Then, a ranked list of features was created for 
each measure. Finally, the rankings were combined using rank aggregation methods.    

III.  Classification Level: These methods change the objective function or the conditions of the problem to reduce the 
complexity of the QP optimization problem. SMO (Platt, 1999) and SVMlight (Joachims, 1998) broke the large QP 
problem of the SVM training into a series of smallest QP problems. LIBSVM (Chang & Lin, 2011) was an online 
integrated software whose LIBSVM-SVDD component used SMO to accelerate SVDD training. KM-SVDD (D. M. 
J. Tax, 2001) used K-means clustering to divide the training set into smaller subsets. After that, SVDD was used to 
describe the boundary of each subset. The training time of SVDD was decreased in this algorithm due to the smaller 
size of the training set. After that, many efforts have been done to improve KM-SVDD, such as (C.-D. Wang & Lai, 
2013)(D. Wang & Tan, 2013)(Xu et al., 2011). One of the most recent methods was SA-SVDD (Wu et al., 2016) 
which used Affinity Propagation clustering algorithm (Frey & Dueck, 2007) to cluster the input data. Then, SVDD 
was used to obtain the boundary of each cluster. The parameters of SVDD were acquired by the global prediction-
based adaptive mutation particle swarm optimization algorithm (GPAM–PSO) (Q. Li et al., 2014). Recently, some 
coordinate descent methods for linear OCSVM and SVDD classifiers have also been developed to accelerate the 
convergence (Chou et al., 2020).In addition, a dynamic hyper-sphere SVDD without describing boundary was 
proposed to classify complicated datasets. In this method, first, important support vectors of the training dataset were 
extracted to describe the static hyper-sphere. Then, the dynamic hyper-sphere was determined using new important 
support vectors of the training dataset and testing sample. Finally, the testing sample was classified as an outlier if a 
significant change of hyper-sphere structure was observed.  

 
IV.  Combining classification Level: To refine the accuracy of one class classification and to obtain a more compact 

boundary for the target class as well, Tax and Duin (David M J Tax & Duin, 2001) proposed the ensemble of OCCs. 
In this approach, a number of base classifiers are combined together to benefit from their advantages (Alimoglu & 
Alpaydin, 1997)(Hatami & Ebrahimpour, 2007). An important issue in these methods is selecting the combination 
rules so that the base classifiers cover the weaknesses of each other. Zhang et al. (J. Zhang et al., 2011) utilized a 
number of SVDDs as the base classifiers, and combined their outputs using different rules. Hamdi and Bennani (Hamdi 
& Bennani, 2011) developed an ensemble of OCCs by utilizing the orthogonal projection operator and the bootstrap 
idea. The clustering-based ensemble of one-class classifiers was proposed by Krawczyk et al. (Krawczyk et al., 2014) 

where the target class was clustered into several sub-regions and then a single OCC was trained on each sub-region. 
Finally, the outputs of all the OCCs were combined together. Due to the computational overhead of constructing 
several base classifiers and their combinations, Zhou et al. (Zhou et al., 2002) proposed to select part of base classifiers 
to participate in the ensemble.  Therefore, selective ensemble algorithms were appeared (N. Li & Zhou, 2009)(L. 
Zhang & Zhou, 2011)(Yan et al., 2017). As an instance, literature (H. Xing & Wang, 2017) proposed SESVDD, a 
selective ensemble strategy, where the Renyi entropy based diversity measure was used to get the optimal combination 
weights of base classifiers. 

EM-SVDD belongs to the last category which proposes an ensemble of weighted SVDDs to reduce the complexity of 
SVDD training. The details of the proposed method are described in Section 3.  

3. Proposed Method 

3.1. Motivation 
As previously declared, the performance of SVDD classifier decreases when the number of training samples increases. 
Therefore, to deal with large-scale datasets, this paper proposes an algorithm to speed up the SVDD training phase, without 
reducing its performance. Consequently, the proposed classifier can be used in the real-world applications which usually 
cope with thousands of training samples. To this aim, we break the main problem into a set of smaller sub-problems with 
lower complexities. After solving sub-problems, the solution of the main complex problem is determined by a mixture of 
sub-solutions. Fig. 1 summarizes the procedure of the proposed method. Considering the training dataset given in Fig. 1-a, 
first, the training data is partitioned into several subsets and a boundary is constructed for each subset (Fig. 1-b). After that, 
the boundary of the whole dataset is built by combining the subsets’ boundaries (Fig. 1-c). 
 
 

3.2. SVDD via Risk Minimization 

Consider a dataset which contains N samples { }NiRxx d
ii ....,1, =∈ . SVDD aims to construct the hyper-sphere with minimal 

volume that encloses most of the dataset samples. For a hyper-sphere described by the centre a and the radius R>0, the 
cost function of the SVDD classifier is stated in (3), where λ is a known constant coefficient and the loss function, i.e. l(e), 
is formulated as l(e)= max (0, ||x-a||2-R2). Thus, l(e) equals zero for samples located inside or on the hyper-sphere. On the 
other hand, l(e)=||x-a||2-R2 for samples that are outside the hyper-sphere. 



 
 

 
 

Figure 1:  a) Training samples. b) Clustering the training samples and using SVDD classifier, the numbers present the 
cluster number of each sample. c) Selecting non-overlapped support vectors and estimating decision boundary. 
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Using a non-parametric method,  f(ei) can be written as: 
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Thus, in the case of replacing ξi by l(ei) in (4), the SVDD model can be defined by the following optimization problem: 
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By factoring out  λ and setting C=1/λ and  f(ei)=1, the standard SVDD optimization can be formulated as follows: 
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ξi indicates the misclassification penalty and the regularization parameter C indicates the trade-off between the volume of 
the sphere and the number of outliers. The parameter C should be selected before the SVDD training phase.  
By using Lagrange multipliers αi ≥ 0 and γi ≥ 0 for the constraints and replacing them in (7), the following Lagrange 
function is obtained:     
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Setting the partial derivatives of L with respect to R, a and  to zeros, respectively, we have: 
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Using the obtained results, we get the dual programming in (10), where <xi,xj>  indicates the inner product of the vectors. 
The samples with 0<αi<C are on the boundary of the hyper-sphere and are called support vectors. The samples with αi=0 
are inside the hyper-sphere and are termed in-class samples. In addition, outliers which are outside the hyper-sphere have 
αi =C. The center a and the radius R can be obtained by figuring out the optimal solution of the dual problem in (10). As a 
result, a given test sample z is accepted if its distance to the hyper-sphere center is less than or equal to R; otherwise, it is 
rejected. The acceptance condition is shown in inequality (11), where each xi is a support vector.  
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Similarly, we can get the dual programming in (12) for the kernel case, where ( )ii xx ,φ  is the kernel function. For any 

support vector xk, the radius of the hyper-sphere can be computed using (13). In addition, the acceptance condition is 
expressed in (14), in which each xi is a support vector. 
 

�������� 	 
����, ��
�

− 	 
�
����, � 
�,�

 

�. �.  	 
� = �,  � ≤ 
� ≤ �
�

 
(12) 

( ) ( ) ( ) ( ) +−=−=
ji

iiji
i

ikikkkk xxxxxxaxxR
,

22 ,,2, φααφαφ  
(13) 

( ) ( ) ( )  ≤+−
i ji jijiii Rxxxzzz

,
2,,2, φααφαφ  (14) 

 
Gaussian kernel function, demonstrated in (15), is usually used for transforming the samples into a higher-feature space. 
In this case, the bandwidth σ of the kernel function must be selected beforehand. 
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3.3. EM-SVDD Algorithm 

EM-SVDD’s main idea has been taken from the GMM, in which the boundary of the dataset is assumed to be generated 
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from a mixture of a finite number of weighted SVDD distributions with unknown parameters: 
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SVDD(x;θm) is the probability density function of the mth partition of data which is described by an SVDD with parameter 
θm and ωm is the weight assigned to the mth partition’s SVDD. The other novelty of the paper is estimating the weights and 
the parameters of SVDDs via the EM technique. To achieve this goal, first, the training data is divided into M partitions. 
Second, partial SVDDs are constructed by applying the SVDD classifier to each partition. Third, a probability density 
function is constructed for each partition. Fourth, partial SVDDs are combined to construct the final boundary, where the 
EM algorithm is used to estimate the weights and the parameters of partial SVDDs. In the rest of this section, the steps of 
the EM-SVDD training phase are described in detail. After that, the testing phase of EM-SVDD is stated. Then, the 
computational complexity and the convergence of EM-SVDD are discussed. Finally, SEM-SVDD is proposed to refine the 
performance of EM-SVDD.  

Step 1 Data partitioning 
The training dataset is broken down into M data partitions { }M

mmD 1=
where the mth partition consists of Nm samples. We 

suppose Nm=k, where k is a constant number and, as a result, the number of partitions is obtained by M= N/k, in which N 
is the number of training samples. The value of k should be chosen in such a way that the following statements hold: 

• Since traditional SVDD will be applied to each partition, k is chosen so that SVDD achieves acceptable accuracies 
at reasonable times on partitions. 

• M is large enough to correctly describe the complex datasets. 

Step 2 SVDD applying 
In this step, an SVDD classifier is applied to each data partition. Therefore, the SVDD’s dual problem in (12) is solved for 
all partitions. Let the solution for the mth partition be βmi, i=1,…,Nm, the Lagrange coefficient of the ith support vector, and 

{1,..., }m mJ N⊂  be the set of the indices of the nonzero βmis. As a result, the trained Gaussian kernel support function for 

the mth data partition can be written as follows in (17) for each test sample z (Lee & Lee, 2007). 
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Step 3 Constructing a prior embed for each partial SVDD 
Utilizing the pseudo-density function expressed in (18) for each data partition, literature (Lee & Lee, 2007) proposed the 
pseudo-posterior probability distribution function demonstrated in (19) for the mth SVDD, where fm(x) and rm=R2(xk) can 
be computed using (17) and (13), respectively. 
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Using the distribution function in (19) makes it impossible to estimate the parameters, i.e., the Lagrange coefficients of 
support vectors, via the EM algorithm, due to the complexity of the Q-function derivative and the parameters’ dependence. 
Furthermore, using (19) as the pseudo-probability distribution function in the gradient EM technique (Lange, 1995) is 
aborted, due to the limited domain of the logarithm function. In order to overcome this problem, we propose to modify the 
probability distribution function in (19) in such a way that parameters can be estimated in the EM algorithm. Thus, a new 
probability density function is defined using the exponential function, owing to its monotonicity and non-negative output. 
The new probability density function for SVDD is formulated as follows: 
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Step 4 Estimating the parameters of the target class’s boundary using EM 
Due to the similarity of our central idea to the GMM problem (Sundberg, 1972), we choose the EM technique to solve it. 
Since the likelihood function of the GMM problem is formulated as presented in (21) (Dempster et al., 1977), the log-
likelihood function of the proposed method can be formulated as expressed in (22) (Dempster et al., 1977), where pm(xn;θm) 
and SVDDm(xn;θm) are probability density functions. 
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Lemma: the conditional distribution p(m|xn,θg) can be formulated as p(m|xn,θ
g)=
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. In our specific problem, 

pm(xn|θm
g ) can be computed by the density function introduced in (20). 

 
Proof: p(m|xn,θg) represents the probability of occurrence of the mth SVDD with regard to the data sample xn and the 
parameter θg.  Utilizing the conditional probability definition, p(m|xn,θg) can be rewritten as follows: 
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p(m|θg) is the probability of occurrence of the mth SVDD with parameter θg, which is the same as the weight of the mth 
SVDD in the gth iteration, i.e., p(m|θg)=ωm

g. In addition, p(xn|m,θg) can be compressed as pm(xn|θm
g). Therefore, we obtain: 
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Using the conditional probability definition and the marginal distribution, i.e., p�A�= ∑ p(A,B)B , we have: 
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In order to estimate the unknown parameters using the EM algorithm, first, the non-overlapped support vectors, i.e., support 
vectors that are not included in other SVDDs, are selected from all SVDDs. Then, the EM algorithm iterates over the E-
step and the M-step to find the optimal weights of SVDDs and the Lagrange coefficients of selected support vectors. These 
two steps are described below: 

• E-step: In this step, first, the probability of each sample associated with each SVDD is estimated using (25) and 
then, the Q-function is constructed by (26) (Dempster et al., 1977), in which θ and θg are the new and old 
parameters, respectively.  
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• M-step: In this step, θ* = arg max Q(θ|θg) should be computed. To this aim, first, the constraint ∑ ωm
M
m=1 =1 is 

incorporated into (26) with the help of a Lagrange multiplier. Second, the partial derivative of Q(θ|θg) with respect 
to ωm is set to zero and, consequently, the new weights of the SVDDs are estimated: 
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Third, the partial derivative of Q(θ|θg) with respect to θm should be set to zero to find the new estimation of θm. 
Since in our problem, θm represents the Lagrange coefficients of the SVDDs, the partial derivative of Q(θ|θg) with 
respect to βmi, i.e., the coefficient of the ith selected support vector of the mth SVDD, is computed. Then, the density 



 
 

function introduced in (20) is incorporated into the Q-function derivative and as a result, a new estimation of βmi 
is obtained by setting the derivative to zero: 
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Generally, EM-SVDD generates the weight together with the Lagrange coefficients of the selected support vectors of each 
SVDD. The procedure of the training algorithm is presented in Fig. 2 and illustrated in Fig. 3. Consider a dataset that 
contains a number of training samples given in Fig. 3-a. First, the training data is partitioned into several clusters (Fig. 3-
b). After that, the SVDD classifier is applied to each cluster (Fig. 3-c). Hence, we will have some SVDD classifiers, each 
of which is an expert in a small area of the whole dataset region. After selecting non-overlapped support vectors, the 
Lagrange coefficients of support vectors are estimated using the EM algorithm to form the final classifier (Fig. 3-d).  
 
 
 
Testing phase 
After the training phase, in order to use the selected support vectors of all SVDDs in the final decision function, the 
coefficient of each support vector, γi, is defined by the product of its Lagrange coefficient and the corresponding SVDD’s 
weight. To evaluate a test sample z, the decision function is formulated by:   
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3.4. Computational Complexity Analysis 

In this section, the runtime complexity of the proposed method is calculated. First, the dataset of N samples with d features 
is clustered into M partitions using any clustering method, where M=N/k and k is a constant number. In the case of using 
the fuzzy c-means (FCM) clustering method (Dunn, 1973), a clustering method in which each data sample can belong to 
one or more clusters, the runtime complexity of the first step is O(NM2dr), in which r is the number of FCM repetitions. 
By constant consideration of r, the complexity of the clustering step will be O(NM2d). Second, SVDD classifier is applied 
to each of the M clusters. Since the complexity of the SVDD training on a set of k samples is O(k3d3), the complexity of 
performing M SVDDs is O(Mk3d3). Third, the non-overlapped support vectors are selected which is performed in O(Mkd). 
Fourth, the EM algorithm is utilized to estimate the parameters of final classifier. Since the complexity of the E-step and 
the M-step is O(NM+N) and O(2NM), respectively, the complexity of the last step will become O(iNM) where i is the 
number of EM iterations. Thus, in the case of i<<N , the overall runtime complexity of the proposed method is obtained as 
follows: 
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By replacing N/k by M and bearing in mind that k is a constant number, the runtime complexity of the proposed method 
becomes: 
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The above relation shows that the runtime complexity of EM-SVDD is better than the traditional SVDD ҆s runtime 
complexity which is O(N3d3). In addition, it can be concluded that the runtime complexity of the proposed method depends 
on the runtime complexity of the FCM clustering. By considering the clustering phase as a preprocess step, the EM-SVDD ҆s 
complexity is N/i times lower than traditional SVDD ҆s. 
 

 

Figure 2: Flowchart of EM-SVDD 

3.5. Convergence Analysis 

As declared previously, θ* is an estimation of θ which maximizes Q(θ|θg). In addition, by performing the EM algorithm 
with the current estimation of θ, i.e. θg, Q(θg|θg)=0 will be resulted. In the gth iteration of the maximization step, θ* is 
selected using (34). 
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Thus, θ* is selected in such a way that the inequality in (35) is established. 



 
 

 

( ) ( )ggg QQ θθθθ ||* ≥  (35) 

 
Therefore, according to (34), (35) and (2), the following analysis can be derived: 
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(36) satisfies the sufficient condition of convergence, which means that the logarithm of the likelihood increases in each 
iteration and will tend to a local maximum. Consequently, in the case of choosing a proper initial estimation of θ, it will 
move to a global maximum. The initial estimation of the proposed method is suitably chosen as the Lagrange coefficients 
of SVDDs. 
 

 

Figure 3:  a) Training samples. b) Clustering the training samples. c) Using SVDD classifier. d) Selecting non-overlapped 
support vectors and estimating their coefficient. 

3.6. Sparse EM-SVDD 

In order to guarantee the sparsity of the parameters estimated in the EM iterations, Sparsity-aware EM-SVDD approach is 
introduced. Besides generating sparse parameters, SEM-SVDD will help to reduce the noise effect. 
As discussed previously, the new estimation of parameter θ is computed as follows: 
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In addition, we know that the Laplacian prior for parameter θ is: 
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Thus, log p(θ|X) which is termed J(θ) will be: 
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Consequently, the new estimation of the parameter θ is obtained by maximizing J(θ). On letting J1(θ)=log p(X|θ) and 
J2(θ)=log λ/r-λ|θ|, we have: 
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, where θold equals the θ* computed in each iteration of the M-step of EM-SVDD. Therefore, for each part of θ from (28) 
and (30) we have: 
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To clarify the procedure of SEM-SVDD, its main steps are presented in Fig. 4. 
 

 

Figure 4: An overview of SEM-SVDD main steps. 

4. Experimental Results 
To evaluate EM-SVDD, 10 datasets taken from the UCI Machine Learning Dataset Repository 
(http://archive.ics.uci.edu/ml/) and 3 artificial datasets are used. In addition, an Intrusion Detection System (IDS) dataset 
is utilized to investigate the performance of the proposed method on large-scale datasets. All the experiments are performed 
on a PC with Intel Quad- Core 2.5 GHZ CPU and 4GB Memory, and Gaussian kernel is used. Furthermore, the FCM 
method is used to partition the dataset in all experiments. Besides the traditional canonical and online training methods, 
including standard SVDD (David M.J. Tax & Duin, 2004), FSVDD (Luo et al., 2010) , Inc-SVDD (Hua & Ding, 2011) 
and LibSVM with SVDD toolbox (Chang & Lin, 2011), EM-SVDD is compared with six ensemble-based classifiers which 
are ensemble of SVDDs by bagging (Breiman, 1996) , ensemble of SVDDs by AdaBoost (Freund et al., 1999), random 
subspace method based ensemble of SVDDs (RSMESVDDs) (Cheplygina & Tax, 2011), clustering based ensemble of 
SVDDs (CESVDDs) (Krawczyk et al., 2014), selective ensemble of SVDDs (SESVDDs) (H. Xing & Wang, 2017), and 
robust AdaBoost based ensemble of OCSVMs (H.-J. Xing & Liu, 2020). Furthermore, as a case study, EM-SVDD is 
applied to a large scale dataset of images obtained from social networks to identify in-class and outlier images. In this case 
study, the impact of the number of clusters on the performance of the proposed method has been investigated. 

4.1. Evaluation Metrics 

To compare the training speed of the proposed method with the other methods, the training time of the methods is measured. 
In addition, to evaluate the accuracy of the different methods, we consider the accuracy rate(ACC) and the geometric mean 
(g-mean) which can be calculated using (43) and (44), respectively. TP is the number of in-class test samples that are 
classified correctly while FN is the number of in-class test samples that are classified incorrectly. Similarly, TN is the 
number of outlier test samples that are classified correctly and FP is the number of outlier test samples that are classified 
incorrectly. Furthermore, to compare the testing time of the proposed method with others, the percentage of the number of 
support vectors out of the total number of training samples, i.e. SV%, is considered. It is noteworthy to declare that the 
decision function of SVDD-based classifiers is a function of support vector samples (see (31)). Thus, the number of support 
vectors affects the testing time and the required storage space. 
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4.2. Parameter Tuning 

Tuning SVDD parameters, i.e., the regularization parameter C and the bandwidth σ of the kernel function, is very uphill 
for some datasets. Fig. 5 shows some artificial datasets in which tuning SVDD parameters is hard, or even impossible in 
some cases, because of their complex nature. Therefore, to compare EM-SVDD with rival methods, we use the grid search 
approach to obtain the best parameters of each method for each dataset. In other words, to achieve the best performance of 
methods for each dataset, C and σ are exhaustively searched. The domains of C and σ depend on the complexity of the 
training data. Furthermore, the variable k which controls the number of clusters in the proposed method is also exhaustively 
searched in such a way that the number of clusters is big enough to correctly describe the complex datasets. However, with 
a large number of clusters, a proper value, i.e., a larger value, should be selected for σ to prevent overfitting.  
 

 

Figure 5:  Artificial datasets - The black points: target samples. The hollow points: outlier samples. 

4.3. Comparison of EM-SVDD with Other Methods on Artificial Datasets 

In this experiment, a 10-fold cross validation is performed to compare EM-SVDD with the other methods on CrossOver, 
Spiral and Ring artificial datasets. Some details about these datasets are provided in Table 1. Table 2 shows the results of 
comparisons according to the average values of evaluation metrics on artificial datasets. The results illustrate that the 
proposed method outperforms other compared methods on dense datasets. The worst result of EM-SVDD belongs to the 
Spiral dataset which is sparse. The reason is that tuning of kernel parameter σ is hard for sparse datasets and so, leads to a 
performance reduction. One of the weaknesses of LIBSVM in comparison with EM-SVDD is that the number of final 
support vectors is about the half of the training samples. In addition, LIBSVM has the least training time among compared 
methods but not considering the distribution of data leads to a low accuracy.   FSVDD is comparable with EM-SVDD from 
the point of support vector samples percentage. On the other hand, it is a weak method from the point of the training time 
and the accuracy rate of SVDD. Fig. 6 and Fig. 7 illustrate the comparison of accuracy rates and support vectors percentage 
of the methods. 

TABLE 1 
The number of in-class and outlier samples in artificial datasets 

 CrossOver Spiral Ring 
In-Class samples # 3000 5000 10000 
Outliers # 100 100 100 

 
TABLE 2 

The performance of EM-SVDD in comparison with other methods on artificial datasets 

Datasets Measurements 
Methods 

SVDD1 FSVDD LIBSVM  proposed method 

CrossOver 
SV(%) 3.33 11.44  31.12  0.89  

Training Time (s) 1.07 27.10  0.41  1.53  
ACC 100 80.20  80.82  95.38  

Spiral 
SV(%) -  4.53  40.09  6.42  

Training Time (s) -  23.59  1.12  18.48  
ACC - 81.24 77.99  84.14  

Ring 
SV(%) - 3.47 50.02  3.65  

Training Time (s) -  45.37 5.50  11.43  
ACC -  66.73  62.99  88.12  

samplesSVDD method is unable to be performed on datasets with more than 3000 
1  



 
 

 
 

  

Figure 6:  Comparison of the accuracy rate of the proposed 
method with online and canonical methods. 

Figure 7:  Comparison of the percentage of support vectors 
of the proposed method with online and canonical methods. 

4.4. Comparison of EM-SVDD with Rival Methods on UCI Datasets 

In this section, first, EM-SVDD performance is compared with standard SVDD, FSVDD and LibSVM with SVDD toolbox 
on 10 UCI datasets. After that, the accuracy of EM-SVDD is compared with its six related methods, including ensemble 
of SVDDs by bagging, ensemble of SVDDs by AdaBoost, random subspace method based ensemble of SVDDs 
(RSMESVDDs), clustering based ensemble of SVDDs (CESVDDs), selective ensemble of SVDDs (SESVDDs), and 
robust AdaBoost based ensemble of OCSVMs (H.-J. Xing & Liu, 2020). 

4.4.1. Comparison of EM-SVDD with SVDD, FSVDD and LIBSVM   
In this experiment, a 10-fold cross validation is performed to compare EM-SVDD with traditional SVDD, FSVDD and 
LIBSVM on the 10 well-known datasets from UCI Machine Learning Dataset Repository. Table 3 provides some details 
about selected datasets. Furthermore, the percentage of SVs, training times and accuracy rates are presented in Table 4 to 
compare EM-SVDD with the three mentioned methods on small and medium datasets. Both classes of each dataset are 
considered as the target class, respectively. From this table, it can be concluded that EM-SVDD is competitive with existing 
classifiers. In comparison with other methods, the proposed method achieved good time and accuracy results in small and 
medium datasets. It is obvious that only LIBSVM is superior to EM-SVDD in terms of training time, but its percentage of 
the support vectors is high. Thus, it is not a good achievement for LIBSVM. Fig. 8 illustrates the accuracy rate comparison 
of the methods. The results indicate that EM-SVDD has almost better accuracy rate than FSVDD and LIBSVM. Fig. 9 
clearly shows that the percentage of the support vectors of EM-SVDD is generally less than all other methods. 
 

TABLE 3 
UCI Datasets information 

Size Dataset Class# Sample # Feature # 

Small 

Sonar 2 208 60 
Liver 2 345 6 

Ionosphere 2 351 34 
Pima 2 768 8 

Medium 
German 2 1000 24 
Splice 2 1000 60 
Cloud 2 2048 10 

Large 
Football 2 4288 13 

Spambase 2 4601 58 
Mushroom 2 8124 112 

 
 
The results on large datasets are summarized in the Table 5 and indicate a performance reduction. The EM-SVDD has a 
much better accuracy than LIBSVM and FSVDD, except in Mushrooms dataset which is not likely dense. The training 
time of LIBSVM is better than EM-SVDD while providing a large number of support vectors and low accuracy. The main 
reason that leads to the increase of training time is the time complexity of the FCM. Also, the performance can be affected 
by noisy and outlier data. Despite comparable accuracy rates, the training time of EM-SVDD is lower than FSVDD. The 
results of accuracy rates and support vector percentages are summarized in Fig. 10 and Fig. 11. 
 



 
 

TABLE 4 
The performance of EM-SVDD in comparison with the other methods on both classes of small and medium UCI Datasets 

Datasets Measurements 
Methods 

SVDD FSVDD LIBSVM  proposed method 
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

S
m

al
l 

S
on

ar
 SV(%) 55.35 66.9 83.92 74.07 20.31 42.02 18.46 14.09 

Training Time(s) 0.02 0.02 2.91 0.33 0 0 0.02 0.01 
Training ACC(%) 49.24 58.18 47 29.31 49.55 48.6 54.15 48.6 
Testing ACC(%) 80.21 75.49 79.01 51.21 75.32 50 64.16 58.03 

Li
ve

r 

SV(%) 41.61 40.32 39.06 18.03 50.78 50.82 33.05 68.15 
Training Time(s) 0.03 0.04 0.11 0.49 0 0 0.03 0.1 

Training ACC(%)  100 100 60.96 55.56 67.24 70.82 100 100 
Testing ACC(%) 100 100 58.82 88.24 62.94 51.18 100 100 

Io
no

sp
he

re
 

SV(%) 4.46 47.79 24.75 77.88 0.48 53.1 16.34 70.27 
Training Time(s) 0.02 0.03 0.45 0.78 0.01 0 0.01 0.03 

Training ACC(%)  100 100 54.83 31.67 70.84 51.33 88.01 90.51 
Testing ACC(%) 100 100 30.43 23.08 47.83 38.45 100 100 

P
im

a 

SV(%) 52.4 28.07 32.37 31.42 50.83 40.33 49.79 30.87 
Training Time(s) 0.09 0.14 1.78 3.91 0.01 0.02 0.05 0.31 

Training ACC(%)  100 100 85.06 75.91 80 69.93 68.77 78.94 
Testing ACC(%) 100 100 74.07 75.52 45.21 54.53 62.07 79.25 

M
ed

iu
m

 

G
er

m
an

 SV(%) 28.81 - 63.59 72.32 99.84 90 48.81 46.86 
Training Time(s) 0.45 - 63.04 5.52 0.1 0.03 0.15 0.05 

Training ACC(%)  100 - 98.37 44.43 69.6 52.77 100 88.75 
Testing ACC(%) 100 - 98.59 34.48 53.52 65.52 100 89.66 

S
pl

ic
e 

SV(%) 42.65 43.72 37.96 32.24 34.27 33.77 20.62 15.69 
Training Time(s) 0.24 0.36 3.45 3.15 0.03 0.02 0.15 0.15 

Training ACC(%) 100 100 43.21 44.43 70.47 50.84 86.02 51.46 
Testing ACC(%) 100 100 43.49 48.61 62.46 56.41 93.44 61.54 

C
lo

ud
 SV(%) 1.73 1.96 4.21 3.47 20.05 10.27 8.71 37.73 

Training Time(s) 0.51 0.27 1.38 0.91 0.07 0.07 0.2 1.39 
Training ACC(%)  100 100 90.06 91.98 70.27 80.05 98.6 92.6 
Testing ACC(%) 100 100 90.16 91.75 83.47 82.43 99.02 64.73 

 
TABLE 5 

The performance of EM-SVDD in comparison with the other methods on both classes of large UCI datasets 

Datasets Methods 
Datasets 

FSVDD LIBSVM  proposed method 
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

La
rg

e 

F
oo

tb
al

l SV(%) 11.67 10.12 10.17 23.21 31.7 20.29 
Training Time(s) 19.1 40.25 0.18 0.47 0.55 1.38 

Training ACC(%)  78.69 92.33 50.17 50.04 94.03 83.58 
Testing ACC(%) 80.38 93.73 35.5 32.84 93.04 84.54 

S
pa

m
ba

se
 

SV(%) 27.89 28.94 40.21 33.16 46.09 16.86 
Training time(s) 169.64 113.04 0.34 0.6 2.91 2.9 

Training ACC(%)  52.55 55.73 42.55 49.96 78.97 65.29 
Testing ACC(%) 50.72 54.4 43.96 48.96 78.03 58.74 

M
us

hr
oo

m
s SV(%) 26.41 14.19 31.15 42.28 18.48 21.34 

Training Time(s) 269.08 46.36 1.15 1.03 0.28 0.33 
Training ACC(%)  69.6 96.94 36.97 74.04 65.2 62.15 

Testing ACC(%) 69.6 96.94 38 75.77 65.56 64.8 

 

4.4.2. Comparison of EM-SVDD with Six Related Methods 
In this section, the accuracy of the proposed classifier is compared with five ensemble-based SVDD classifiers, i.e., 
ensemble of SVDDs by bagging, ensemble of SVDDs by AdaBoost, random subspace method based ensemble of SVDDs 
(RSMESVDDs), clustering based ensemble of SVDDs (CESVDDs) and selective ensemble of SVDDs (SESVDDs), and 
one ensemble-based OCSVM classifier, entitled robust AdaBoost based ensemble of OCSVMs (RAEOOCSVMs). To this 
aim, we apply all methods on four UCI datasets. In each dataset, the samples of one class are considered as in-class data 
and so the samples of the other class are outliers. Furthermore, for each dataset, the training set is constructed by randomly 
choosing 70% samples from the in-class data, while the testing set consists of the rest 30% samples of the in-class data and 
the whole outliers. Table 6 represents some details about the number of in-class and outlier samples in each selected dataset. 
Table 7 provides the average g-mean together with their corresponding standard deviations of all the methods after tuning 
their parameters on the four datasets (see (H. Xing & Wang, 2017) and (H.-J. Xing & Liu, 2020)). Usually, the goal of the 
ensemble methods is to improve the accuracy of the classifier. Thus, their base classifiers utilize almost all training samples. 
However, the goal of EM-SVDD is to speed up the classification on large datasets. Therefore, every base classifier is 
trained on a partition of the training dataset and then the results of them are aggregated. Therefore, the accuracy of EM-



 
 

SVDD can be lower than the other ensemble methods. However, the results indicate that the proposed method outperforms 
the other ensemble-based methods on Liver and Pima datasets. In addition, EM-SVDD shows higher accuracies on German 
dataset, compared to Bagging, AdaBoost and RSMESVDD. It is worth to mention that EM-SVDD outperforms OCSVM 
classifier on all datasets. The P-values obtained from paired T-tests which are reported in Table 7 confirm that the accuracy 
improvements of EM-SVDD are significant.  Moreover, the reported standard deviation values show that the proposed 
method is more stable than the other five SVDD classifiers on all the four datasets. 
 

 

Figure 8:  Comparison of the accuracy rate of the proposed 
method with online and canonical methods on small and 

medium datasets. 

Figure 9:  Comparison of support vectors percentage of the 
proposed method with online and canonical methods on 

small and medium datasets. 

 

Figure 10:  Comparison of the accuracy rate of the proposed 
method with online and canonical methods on large datasets. 

Figure 11:  Comparison of support vectors percentage of 
the proposed method with online and canonical methods on 

large datasets. 

TABLE 6 
The number of in-class an outlier samples selected from each 

UCI dataset in the experiment 

Datasets In-class samples# Outlier samples # 

German 300 700 
Liver  145 200 
Pima 268 500 
Sonar 111 97 

 
 TABLE 7 

The average g-mean and standard deviation of ensemble methods on the four selected UCI datasets, 
together with the P-values of paired T-tests 

Datasets 
 Methods 

Bagging AdaBoost RSMESVDDs CESVDDs SESVDDs RAEOCSVMs Proposed Method 

German 78.65±1.31 
P=2.3105e-07 

78.17±1.48 
P=6.8831e-

09 

73.58±2.28 
P=2.1966e-18 

79.19±1.14 
P=1.7481e-04 

82.12±2.09 
- 

76.41±0.08 
- 

80.21±0.02 
- 

Liver 83.49±0.94 
P=9.3572e-35 

80.44±0.96 
P=5.3355e-

39 

71.41±2.13 
P=8.2404e-38 

79.06±0.86 
P=1.1050e-41 

84.57±1.25 
P=1.3608e-33 

82.53±0.055 
- 

93.47±0.03 
- 

Pima 
79.92±1.94 

P=6.4676e-36 

77.27±1.95 
P=2.1406e-

35 

70.50±4.52 
P=6.6404e-24 

78.61±1.97 
P=2.3317e-38 

80.81±1.99 
P=3.4493e-30 

84.73±0.005 
- 

99.78±0.003 
- 

Sonar 91.56±1.60 
 

89.36±2.14 
 

79.30±3.45 
P=9.7525e-05 

90.48±3.16 
 

92.12±1.61 
 

78.46±0.067 
- 

85.13±0.04 
- 



 
 

 
 

4.5 Comparison of EM-SVDD with Rival Methods on an IDS Dataset 

To compare the accuracy of the proposed method with Inc-SVDD and LIBSVM on large-scale datasets, we apply them on 
NSL-KDD dataset (http://nsl.cs.unb.ca/NSL-KDD/). The samples of this dataset are divided into five different classes, 
including Normal, Denial-of-Service (DoS), Probing (Probe), Remote-To-Local (R2L) and User-to-Root (U2R) which all 
have 41 features.  The training and testing dataset descriptions and the obtained results are presented in Table 8 and Table 
9, respectively. Furthermore, the samples of Normal, Dos and Probe classes are used to train the methods, respectively. As 
an instance, in the first experiment, the first row of Table 9, the classifiers are trained using the Normal samples of the 
training dataset and then they are evaluated by Normal samples of the testing dataset together with a set of randomly 
selected samples from all other classes. The results indicate that EM-SVDD provides comparable accuracies with the other 
methods ones.  
 

TABLE 8 
The number of samples of each class in NSL-KDD training and testing datasets 

Dataset 
Classes 

Normal DoS Probe R2L U2R 
NSL-KDD Train+  67343 45927 11656 995 52 
NSL-KDD Test+ 9710 7458 2422 2887 67 

 
TABLE 9 

The accuracy rate comparison of EM-SVDD in comparison with the other 
methods on NSL-KDD dataset 

Training class 
Methods 

Inc-SVDD LIBSVM  Proposed Method 
Normal 90.44 89.63 92.25 
DoS 82.74 81.19 80.41 
Probe 87.58 80.32 82.12 

 
 

4.6 Case Study 

500px community has offered a job to research on machine learning models which can power spam detection in photos 
(“Machine Learning Engineer Summer Intern”). In order to illustrate the capability of the proposed method, we apply EM-
SVDD classifier to "Carrots" dataset, a dataset obtained from 500px containing 1855 images. All images in this dataset are 
tagged as "Carrot"; however, some of them are irrelevant. The goal of the case study is to recognize irrelevant images. 
Therefore, each image is described by 4096 features using convolutional neural network, and then SEM-SVDD is used to 
classify the images. Consequently, all images that are accepted using the decision function of the SEM-SVDD are detected 
as in-class images. Similarly, the rejected images are detected as outliers. By tuning the SVDD parameter, C, and kernel 
parameter, σ, the number of outlier images can be controlled. Therefore, the best values for C and σ are obtained by a brute 
force search using different parameters. The results show that SEM-SVDD scores with g-mean equals 0.71 (C=0.5 and 
σ=0.3). Moreover, Fig. 12  is provided to illustrate the effectiveness of the parameters C and σ in the performance of the 
proposed method. Fig. 12-a shows some photos detected as outliers using SEM-SVDD. Improper tuning of C and σ leads 
to incorrect detection of outlier images. Fig. 12-b shows some outlier photos detected by improper tuning of C and σ. 

5 Conclusions 
In this paper, we proposed EM-SVDD and SEM-SVDD methods based on the EM technique to enhance the performance 
and speed up the SVDD classifier. It is well known that SVDD has a low performance when it is trained using a large 
population of training samples. Therefore, the proposed algorithms enhance the SVDD in order to be applicable to large-
scale datasets, decrease the training time, and maintain the classification accuracy. The main contributions can be 
summarized as: 

I. Using a combination of weighted SVDDs 
II. Utilizing the EM algorithm to estimate the SVDD parameters 

III.  Considering the size of dataset in partitioning 
IV.  Considering data distribution in classification 
V. Proposing a new probability density function for SVDD 

Considering the convergence of the proposed method, EM-SVDD ensures the optimality of SVDD weights and support 
vectors coefficients, but it suffers from the high time complexity and noise sensitivity of the FCM method in the partitioning 
step. Thus, in the future work, to refine the performance of the proposed methods, we can replace it by a robust clustering 
method which dictates a lower overhead.  



 
 

 

 

Figure 12: Spam images detected by EM-SVDD. (a) Proper tuning of C and σ. (b) Improper tuning of C and σ. 
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