Sparsity-aware Support Vector Data Description Reaed

by Expectation Maximization
Mahdie Eghdamj Hadi Sadoghi Yazdi, Neshat SaleRi

Department of Computer Engineering, Ferdowsi Ursitgrof Mashhad, Mashhad, Iran

leghdami.mahdie@mail.um.ac.ir
%h-sadoghi@ um.ac.ir
Ssalehi.63@mail.um.ac.ir
: Corresponding author

Conflicts of Interest Statement
The authors certify that they have NO affiliatiomgh or involvement in any organization or entitytlwany financial
interest or non-financial interest in the subjeetter discussed in this manuscript.

Abstract

Support Vector Data Description (SVDD) charactesiaedataset by a spherically shaped boundary arbuBihce the complexity of
SVDD training is O(N), its performance decreases for large-scale datdsethis paper, we propose an improved SVDD ritigm,
called EM-SVDD, which combines the Expectation Maization (EM) algorithm and SVDD to reduce the cdemfly and accelerate
the training phase, while the accuracy of the diassemains unchanged. First, the dataset isteted to obtain smaller subsets, and
then the boundary of each subset is identified ¥D[S. After that, to construct the dataset boundanyg get the optimal weighted
combination of SVDDs, the EM algorithm is utilizénl estimate the parameters and weights of SVDDes.tifhe complexity of the
proposed method N/i times lower than SVDD, wheids the number of EM iterations. In addition to EBB¥DD, Sparse EM-SVDD
is proposed to guarantee the sparsity of the itelgtestimated parameters. EM-SVDD is well companéth several similar methods.
Simulation results indicate higher speed and pevémice of the proposed method in the training astihge phases. Furthermore, the
capability of the proposed method is tested orrgelamage dataset acquired from social networkscamdnethod identifies in-class
and outlier images with 0.71 accuracy rate.
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1. Introduction

The one class classification (OCC) problem deteesithe boundary of a target set of samples (D..May, 2001). A
one-class classifier differs from multiclass clfiess in two main aspects: 1) only the samplesnaf class are used to train
the classifier and 2) the trained classifier reépggin-class samples and outliers among the gesamples. Until now,
many efforts have been made to address the probileme class classification. These works can baléd into three
major categories (Sanchez-Hernandez et al., 208d)nstruction methods (Pizzi et al., 2001)(Yanglt1998), density
methods (Fumera et al., 2000)(Dit-Yan Yeung & Ch8@02), and boundary methods (Scholkopf et al. 12@xvid M
J Tax & Duin, 1999). Among these categories, thendary methods concentrate on the boundary thénssxthe target
class. The main superiority of the boundary mettisdisat they do not require extensive knowledge atarge amount
of information about the dataset (D. M. J. Tax, BOGupport vector data description (SVDD) (H. gian al., 2019)(J.
Wang et al., 2019) and one-class support vectohma¢OCSVM) (H.-J. Xing & Li, 2020)(H.-J. Xing &ilu, 2020) are
two commonly used methods among boundary-basesifitas. OCSVM describes the target class by a iplpee in the
feature space such that every sample located bilevinyperplane is considered as an outlier. Orother hand, the
objective function of SVDD tries to construct a imim spherical boundary around the samples of dhget class.
However, under certain conditions, OCSVM and SVDPB @roved to be equivalent (Schélkopf et al., 20Dayid M.J.
Tax & Duin, 2004). SVDD is used in many researeld, such as outlier detection and clustering kBae Shin et al.,
2011)(S. Wang et al., 2013)(Prakash & Singh, 20fsilf prognostic (Benkedjouh et al., 2012), prace®nitoring (Ge
et al., 2011)(Q. Jiang et al., 2014), image recantbn (Hwang et al., 2014) and feature selecf{dekkaa & Boughaci,
2015).

SVDD was introduced by Tax and Duin (David M.J. T&0Duin, 2004) based on the SVM method (Vapnik, 999
Following their approach, many methods attempteoinforove the efficiency and the performance of sifiation, as
explained in Section 2. In order to construct tleeision boundary, a constrained convex quadratgramming (QP)
problem is solved in the training phase of SVDDthAlgh all samples are considered in the trainhmggp, the boundary
of the classifier can be described by minority ssalled support vectors (Y. Li, 2011)(ManevitzY&usef, 2001).



Therefore, an efficient training set can be gemeraly selecting support vector samples. A test Eamlassified as in-
class when it is inside the decision boundary, evhiltliers are defined as samples located outs&lbdundary. Since the
spherical boundary is not applicable to all kindslasses, kernel functions are utilized. The kefaection transforms
the data to a high-dimensional feature space anesrhe classifier more flexible.

SVDD is impractical for large-scale datasets duthohigh time and space complexity of the trainihgse. The space
complexity of SVDD is O(R) and its time complexity is O@)\ where N is the number of targets. Therefore ntiagor
challenges of SVDD for large-scale datasets aréndeaith the large amount of memory and enormaeasing time. In
this paper, we propose EM-SVDD to reduce the coatfmrtal complexity of the SVDD training. The ideatd construct
the dataset boundary from a mixture of a finite bemof weighted SVDD distributions with unknown aareters. To
achieve this goal, the dataset is partitioned amw@ller subsets and the SVDD classifier is usdaltnl the boundary of
each subset. After that, the support vectors treahat included in other SVDDs are selected. Themuild the dataset
boundary from the optimal weighted combination ¥D®s, the EM algorithm is used to estimate the Weigpf SVDDs
and the coefficients of the selected support vector

The EM algorithm (Dempster et al., 1977)(KrishnaM&Lachlan, 2008) is an iterative approach for pegter estimation.
It is frequently used in the maximum likelihoodie®ite problem in the presence of missing data. &lgsrithm is
appropriate for many statistical models especi@byssian mixture models (GMMs) which is the foct#his paper. The
major advantages of the EM algorithm over altermate reliable global convergence, low computatioost per iteration,
low storage requirement and easy programming. thtiad, the sequence generated by the EM iteratiooeases the
likelihood and often converges quickly to a maximpaint.

Consider X as the set of observed data and Y asethef complete data. In addition, lefg; X,Y) = p(X,Y |8) be the

likelihood function generated by the statisticaldab whered is the vector of the parameters of the statistizadlel. The
goal of the maximum likelihood estimate problentdsfind the maximum likelihood estimate &f formulated in (1).
However, solving this problem is not always simfleerefore, the EM algorithm attempts to find tbiiSon in two main
steps. In the beginning of the algorithm, an ihijiaess abou is made. In the first step, called the E-step cthraditional
expected log-likelihood, termed the Q-functionfasmed. The Q-function formulates the expected ai the log-
likelihood function with regard to the conditiordiktribution of Y given X and the current valuefofThe Q-function is
demonstrated in (2) whe#&is the current estimate 6fIn the M-step, the new estimateddhat maximizes the Q-function
is constructed. These two steps iterate until cayerece is achieved.

OmLe = argmaxlog(L(g; X)) 1)
6

Q(9|99)= Eyx.00 [log L(6; X)] = Eyix.69 [log L(g;Xx)| x,egjz Eyix.0 [1(g; x)] )

The rest of this paper is organized as followsakel work is reviewed in Section 2. Motivations #melproposed method
are explained in Section 3. Finally in Sectionhg ¢xperiments that demonstrate our method’s adgaatare presented.

2. Related Work
In this section, we review the methods which airadlve the high complexity problem of SVM-basedssliers, with an
emphasis on SVDD classifiers. Generally, these austlare divided into four categories:

Dataset Levelln these methods, a pre-processing is performedrhove a number or a group of non-support vector
samples from the dataset. Therefore, the complexitige QP optimization and SVDD training is reddickiterature
(Liang et al., 2009), proposed to extract boundanyets based on the boundary description detethip¢he support
vectors. In Fast SVDD (FSVDD) (Luo et al., 2010 dataset was decomposed and then the decommugedsr
were combined to derive a global solution. Literat(Xiao et al., 2010), proposed a two-step metfact, the k-
farthest neighbour method was used to identify slmples around the boundary, while other data ssmpére
removed from the training set in the second stéqerature (Chaudhuri et al., 2016), developed apsiagrbased
method which computed the target class descrigiijonombining the iteratively computed SVDDs on ipdedent
random samples obtained from the training datdsetemental SVDD (Inc-SVDD) (Hua & Ding, 201&nd
Incremental Fast SVDD (IFSVDD)(H. Jiang et al., 2D&nalyzed the possible change of support vesetrafter
new samples were added to the training set.

Feature LevelWeston proved that the standard SVM can suffanfthe presence of irrelevant features (Weston et
al., 2000). Thus, feature level methods were prepgds select a smaller feature subset to improzetficiency and
the accuracy of the classifier. Literature (Verg@rgstévez, 2014), divided the feature selectionthoés into three
groups: filter (Lorena et al., 2015), wrapper (Keh& John, 1997) and embedded methods (Lal e28Dg). In filter
methods, a metric independent of the classifiased to evaluate the selected features. Howelected features are
evaluated using the classifier in wrapper methé&sisbedded methods attempt to take advantage offitiethand
wrapper strategies. Fung et al. (Fung & Mangasa@if4) proposed a reformulation for SVM trainimgeinforce
feature sparsity in the solution. Literature (Pebgl., 2015), developed an outlier detection methased on SVDD

in which sparse feature selection was modelledguisiteger programming and the complex problem vehges by



an iterative method. In (Lorena et al., 2015)atdire selection method was introduced for ones disssification.
First, a number of adapted feature importance nmeasuere proposed. Then, a ranked list of featwesscreated for
each measure. Finally, the rankings were combisatyuank aggregation methods.

Classification LevelThese methods change the objective function erctinditions of the problem to reduce the
complexity of the QP optimization problem. SMO {Bl4999) and SVMlight (Joachims, 1998) broke thegé QP
problem of the SVM training into a series of smstll®P problems. LIBSVM (Chang & Lin, 2011) was anlime
integrated software whose LIBSVM-SVDD componentduS8O to accelerate SVDD training. KM-SVDD (D. M.
J. Tax, 2001) used K-means clustering to dividettaiming set into smaller subsets. After that, /as used to
describe the boundary of each subset. The traiimimg of SVDD was decreased in this algorithm duthtosmaller
size of the training set. After that, many effdresre been done to improve KM-SVDD, such as (C.-Bn@/& Lai,
2013)(D. Wang & Tan, 2013)(Xu et al., 2011). Onetted most recent methods was SA-SVDD (Wu et all,620
which used Affinity Propagation clustering algonti{Frey & Dueck, 2007) to cluster the input dateefi, SVDD
was used to obtain the boundary of each clustes. peltameters of SVDD were acquired by the globadliption-
based adaptive mutation particle swarm optimizatityorithm (GPAM—-PSO) (Q. Li et al., 2014). Recgndome
coordinate descent methods for linear OCSVM and B\assifiers have also been developed to accelehat
convergence (Chou et al., 2020).In addition, a dyinahyper-sphere SVDD without describing boundargsw
proposed to classify complicated datasets. Inrtt@ghod, first, important support vectors of théntireg dataset were
extracted to describe the static hyper-sphere. Tinendynamic hyper-sphere was determined usingingaertant
support vectors of the training dataset and testargple. Finally, the testing sample was classiig@n outlier if a
significant change of hyper-sphere structure waenked.

Combining classification Levello refine the accuracy of one class classificattmd to obtain a more compact
boundary for the target class as well, Tax and @David M J Tax & Duin, 2001) proposed the ensendfl©CCs.
In this approach, a number of base classifierscamebined together to benefit from their advanta@ésnoglu &
Alpaydin, 1997)(Hatami & Ebrahimpour, 2007). An iotant issue in these methods is selecting the owtibn
rules so that the base classifiers cover the wessleseof each other. Zhang et al. (J. Zhang e2@11) utilized a
number of SVDDs as the base classifiers, and cogdlifreir outputs using different rules. Hamdi aediBani (Hamdi
& Bennani, 2011) developed an ensemble of OCCstibying the orthogonal projection operator and Hootstrap
idea. The clustering-based ensemble of one-classifiers was proposed by Krawczyk et al. (Krawoceyél., 2014)
where the target class was clustered into sevebategions and then a single OCC was trained oh salo-region.
Finally, the outputs of all the OCCs were combinegether. Due to the computational overhead of ttoatng
several base classifiers and their combinationsu al. (Zhou et al., 2002) proposed to seledtqdase classifiers
to participate in the ensemble. Therefore, seleatinsemble algorithms were appeared (N. Li & ZI2009)(L.
Zhang & Zhou, 2011)(Yan et al., 2017). As an ins&riterature (H. Xing & Wang, 2017) proposed SE®Y a
selective ensemble strategy, where the Renyi eptvaped diversity measure was used to get the aptiombination
weights of base classifiers.

EM-SVDD belongs to the last category which propasesnsemble of weighted SVDDs to reduce the coxiiplef

SVDD training. The details of the proposed methgdescribed in Section 3.

3. Proposed Method

3.1. Motivation

As previously declared, the performance of SVDDssiéer decreases when the number of training sasniplcreases.
Therefore, to deal with large-scale datasets pifyEer proposes an algorithm to speed up the SVaibing phase, without
reducing its performance. Consequently, the prapatsssifier can be used in the real-world appilicest which usually
cope with thousands of training samples. To this, aie break the main problem into a set of smalldr-problems with
lower complexities. After solving sub-problems, g@ution of the main complex problem is determibgda mixture of
sub-solutions. Fig. 1 summarizes the procedurbeptoposed method. Considering the training dagagen in Fig. 1-a,
first, the training data is partitioned into seVet#bsets and a boundary is constructed for edubes(Fig. 1-b). After that,
the boundary of the whole dataset is built by corinlgj the subsets’ boundaries (Fig. 1-c).

3.2.SVDD via Risk Minimization
Consider a dataset which contains N sambl@& RYj= 1...,N}. SVDD aims to construct the hyper-sphere with mati

volume that encloses most of the dataset samptesa Ryper-sphere described by the ceateand the radiuRk>0, the
cost function of the SVDD classifier is stated 3), wherel is a known constant coefficient and the loss fiomcti.e.l(e),

is formulated af{e)= max (0, ||x-afi-R?). Thus,I(e) equals zero for samples located inside or on ypersphere. On the
other handl(e)=||x-a||>-R? for samples that are outside the hyper-sphere.
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Figure 1: a) Training samples. b) Clustering theraining samples and using SVDD classifier, the nungrs present the
cluster number of each sample. c) Selecting non-alepped support vectors and estimating decision bawary.

AR a)=E{i(e} + AR’ ©)
On letting g{(e)} =I (9 f(dde: the cost function can be expressed as:

J(Ra)=% (a) )+ AJRP ()

Using a non-parametric methof{g) can be written as:

o1 S [(e-a)?
f(Q)_N«/Ehiz::leX;{ 2h§ } ®)

Thus, in the case of replaciggby I(ej) in (4), the SVDD model can be defined by the follogvoptimization problem:

MinimizeJ(Ra)=i%5i fle)+ AR (6)

st. Ei ZHXi —B.H-RZ, {i >0,



By factoring outA and settingc=1/1 and f(e)=1, the standard SVDD optimization can be formulats follows:

N
Minimize J(R a)=CY & +R?
=1 )

st. |5 -a®<R?+§&, &=00
& indicates the misclassification penalty and tlgutarization parameter C indicates the trade-offveen the volume of
the sphere and the number of outliers. The parar@esdiould be selected before the SVDD trainingspha

By using Lagrange multipliers; > 0 andy; > O for the constraints and replacing them in (@ following Lagrange
function is obtained:

L = R? +CZiN:15i _ziai{Rz +¢i _(HX| _d‘z)}_%ﬁﬂ (8)

Setting the partial derivatives of L with respex® aand <C| to zeros, respectively, we have:

9)

M=

N
ai=1 a=Y aj%, 0sa;sC
i=1

i=1

Using the obtained results, we get the dual progreng in (10), wherex;,x> indicates the inner product of the vectors.
The samples witB<ai<C are on the boundary of the hyper-sphere and #isdupport vectors. The samples withO
are inside the hyper-sphere and are termed in-s&asples. In addition, outliers which are outstue tiyper-sphere have
a; =C. The centea and the radiuR can be obtained by figuring out the optimal soltof the dual problem in (10). As a
result, a given test samptes accepted if its distance to the hyper-sphenteces less than or equal ® otherwise, it is
rejected. The acceptance condition is shown inuakty (11), where eack is a support vector.

Maximize ZCZ,-(x,-,xi) —Zaiaj(xi,xj)
" 7 (10)
s.t. Zai=1, 0<ag;<C

2
|z-al? <R = (22)- 2% a1z x)+ 3, aay (x.x]) < R® (11)
Similarly, we can get the dual programming in (1@) the kernel case, wheg, ) is the kernel function. For any

support vectok, the radius of the hyper-sphere can be computet {83). In addition, the acceptance condition is
expressed in (14), in which eaxlis a support vector.

Maximize Z a;p(x;, x;) — Z a;a;p(x;, x;)
7 i

12

s.t. Zai=1, 0<a;<C 42

RZ(Xk):HXk_aﬂz:dxkvxk)_zzai¢(Xeri)+zaiajd)ﬁvxi) (13)
i 1]

Az2)-23 dzxi)J'Zi,j”i“i gﬂ(x,xj)st (14)

Gaussian kernel function, demonstrated in (15)siglly used for transforming the samples intoghdi-feature space.
In this case, the bandwidthof the kernel function must be selected beforehand

2
x -x
oo v ) 1L — (15)

3.3.EM-SVDD Algorithm
EM-SVDD'’s main idea has been taken from the GMMwinich the boundary of the dataset is assumed tgeberated



from a mixture of a finite number of weighted SV@I3tributions with unknown parameters:

M
SVDD: (x,8) = > wy SVDDy (X 6m) (16)
m=1

SVDD(xPm) is the probability density function of thefrpartition of data which is described by an SVDRhwparameter
Om andwn is the weight assigned to thé'partition’s SVDD. The other novelty of the papgestimating the weights and
the parameters of SVDDs via the EM technique. Tieae this goal, first, the training data is divddato M partitions.
Second, partial SVDDs are constructed by applylrg$VDD classifier to each partition. Third, a pblity density
function is constructed for each partition. Fougértial SVDDs are combined to construct the fimalindary, where the
EM algorithm is used to estimate the weights amdpdrameters of partial SVDDs. In the rest of Heistion, the steps of
the EM-SVDD training phase are described in defsfter that, the testing phase of EM-SVDD is statétien, the
computational complexity and the convergence of §¥BD are discussed. Finally, SEM-SVDD is proposetkfine the
performance of EM-SVDD.

Step 1 Data partitioning
The training dataset is broken down ifModata partitions{Dm}r"T/'Flwhere the i partition consists oNn samples. We

supposeNn=k, where k is a constant number and, as a resalfytimber of partitions is obtained b= N/k, in whichN
is the number of training samples. The valuk sfiould be chosen in such a way that the follovgtagements hold:
» Since traditional SVDD will be applied to each jtarh, k is chosen so that SVDD achieves acceptable adesrac
at reasonable times on partitions.
* Mis large enough to correctly describe the compktasets.

Step 2 SVDD applying

In this step, an SVDD classifier is applied to edata partition. Therefore, the SVDD’s dual probleni12) is solved for
all partitions. Let the solution for the'hpartition befm;, i=1,...,Nn, the Lagrange coefficient of th® support vector, and
J. 04,.,N} be the set of the indices of the nonz&rs. As a result, the trained Gaussian kernel sugpodtion for

the nmi" data partition can be written as follows in (1) éach test sampig(Lee & Lee, 2007).

m(@)=1-2 3 B AzXmi)* Y BilBoni Ao Xrmi) 17)

mildy, mimjdJ,

Step 3 Constructing a prior embed for each partiaSVDD

Utilizing the pseudo-density function expressedli8) for each data partition, literature (Lee & 1.8807) proposed the
pseudo-posterior probability distribution functidamonstrated in (19) for the'h8VDD, wherefy(x) andrm=R?(xJ) can
be computed using (17) and (13), respectively.

H1m)= L= 1) 19)

{mix)=constx mix)= pm). f{xim)=""1 1y £, (x) (19)

m

N
Using the distribution function in (19) makes itgossible to estimate the parameters, i.e., thedragyr coefficients of
support vectors, via the EM algorithm, due to thmplexity of the Q-function derivative and the paeders’ dependence.
Furthermore, using (19) as the pseudo-probabilgyribution function in the gradierEM technique (Lange, 1995) is
aborted, due to the limited domain of the logariftumction. In order to overcome this problem, wegase to modify the
probability distribution function in (19) in suchwaay that parameters can be estimated in the Ebtighgn. Thus, a new
probability density function is defined using thgenential function, owing to its monotonicity andn-negative output.
The new probability density function for SVDD igfoulated as follows:

& (mix)=ex W7t - ()] (20)

Step 4 Estimating the parameters of the target class boundary using EM

Due to the similarity of our central idea to the @INbroblem (Sundberg, 1972), we choose the EM teglento solve it.
Since the likelihood function of the GMM problemfeemulated as presented in (21) (Dempster etl8l7)7), the log-
likelihood function of the proposed method candreiulated as expressed in (22) (Dempster et al.7 )1 vheredm(Xn; Om)
andSVDD(xn; 6m) are probability density functions.



L(x:6)= {X,m16)= [ @mprlxni o) (21)

n=1
N N N
log(L(6; X))=1(8; X) = Zlog(c%SVDDn(xn;Bm)) =>"log iy, + D log SVDDy(Xn; 6m) (22)
n=1 n=1 n=1

OPnl O

Lemma: the conditional distributiop(m|»,69) can be formulated a){mm,ag):z,\,l .
k=1 @i Pi(*nlfi

3 In our specific problem,

pm(xn|9?n) can be computed by the density function introdundg@0).

Proof: p(m|»%,09) represents the probability of occurrence of tHe$WDD with regard to the data sampieand the
parameter?. Utilizing the conditional probability definitiomp(m|»%,69) can be rewritten as follows:

i 09 P ) on 136 )l 6 )l 1m, 69 Jokmio® olo®) _ ol 1m0 epi et
" pxq, 9 o, 89) pxn 169 Jpl6? pbx, 169 (23)

p(m§p) is the probability of occurrence of the"rBVDD with paramete#®, which is the same as the weight of th& m
SVDD in the §'iteration, i.e.p(m¥)=wnf. In addition,p(x|m g9 can be compressed @gx.|0nd). Therefore, we obtain:

_ om169 Jolxn 1m.69) _ 08 pinln 168)
dmix,.69)= pxnu;g) - me”;l;g m (24)

Using the conditional probability definition andetmarginal distribution, i.ep(A)= Jsp(A,B) we have:

i, 60)= @ B 18)_ ot oo 198)_ ot pufentB) o 18]
oxn 169) Zk;p(xn,kwg) zk;p(xnlk,eg)P(kleg) k%ﬁg pk(xnwf) @

In order to estimate the unknown parameters usi@@&M algorithm, first, the non-overlapped suppextors, i.e., support
vectors that are not included in other SVDDs, atected from all SVDDs. Then, the EM algorithm dtiexs over the E-
step and the M-step to find the optimal weightS¥DDs and the Lagrange coefficients of selecteghstiprectors. These
two steps are described below:
» E-step:In this step, first, the probability of each sama$sociated with each SVDD is estimated using 428
then, the Q-function is constructed by (26) (Derapst al., 1977), in whicld and ¢°® are the new and old
parameters, respectively.

Q(9|99)=E(|(9;x)|><,99)= %I(B; X) ;{m|x,99)=

u N "N (26)
> > log(wm) p{m|xn,99)+ > > log(SVDDy(xn: 6m)) ;{m|xn,99)
m=1n=1 m=1n=1

«  M-step: In this stepg = arg max Q@|6%) should be computed. To this aim, first, the caistyM.; wy,=1 is
incorporated into (26) with the help of a Lagrangdtiplier. Second, the partial derivative@(0]0%) with respect
to wm is set to zero and, consequently, the new weigfritse SVDDs are estimated:

o | MN M
P {Z Zlog(%)f{mlxn,eg)u[z%—lﬂzo )
@ | m=1n=1 el
_ » 1N
= A=-N and %—Nzl;{mlxn,eg) 28)

Third, the partial derivative d(0]8% with respect t@m should be set to zero to find the new estimatibé.o
Since in our problemgn, represents the Lagrange coefficients of the SVDiespartial derivative dD(0]9% with
respect tgm, i.e., the coefficient of th&iselected support vector of th&®VDD, is computed. Then, the density



function introduced in (20) is incorporated inte tQ-function derivative and as a result, a newregton offmi
is obtained by setting the derivative to zero:

aQ(ewg)_ [%%1log[svoqn Xn; p(m|xn, )}
3Bmi 0Bmi
[n%:l;llog{exp{ ﬂ F(mlxnv )]
) i
0[%%'09{%{ [rm—l+2 > B % Xmi) = 2 BB w(xmi,xmj)m [{m|xn,99)}
_ m=1n=1 mildy, mimiJy, -0 (29
0Bmi )

. A
31" o

. 6
=] ) —x—xj7 (3())
Lo = -2 B 20°
= Lmi Nn%( F{ﬁxnﬁgn ZIDJm,i:tirme

Generally, EM-SVDD generates the weight togethéh tie Lagrange coefficients of the selected suppmtors of each
SVDD. The procedure of the training algorithm iggented in Fig. 2 and illustrated in Fig. 3. Coesid dataset that
contains a number of training samples given in Big. First, the training data is partitioned istveral clusters (Fig. 3-
b). After that, the SVDD classifier is applied t@acé cluster (Fig. 3-c). Hence, we will have somé8\tlassifiers, each
of which is an expert in a small area of the whadg¢aset region. After selecting non-overlapped supyectors, the
Lagrange coefficients of support vectors are esgchasing the EM algorithm to form the final cldigsi(Fig. 3-d).

Testing phase

After the training phase, in order to use the setbsupport vectors of all SVDDs in the final demisfunction, the
coefficient of each support vector, is defined by the product of its Lagrange coéfit and the corresponding SVDD’s
weight. To evaluate a test samplehe decision function is formulated by:

(@=1-2 S z=x)+ £ S vy n.x)) @)

osv OSV [psv

3.4. Computational Complexity Analysis

In this section, the runtime complexity of the ppepd method is calculated. First, the datasBts#Emples withd features
is clustered intdV partitions using any clustering method, whisteN/k andk is a constant number. In the case of using
the fuzzy c-means (FCM) clustering method (Dunr¥,3)9a clustering method in which each data samgfebelong to
one or more clusters, the runtime complexity offtre step iSO(NM?dr), in whichr is the number of FCM repetitions.
By constant consideration ofthe complexity of the clustering step will ®NMd). Second, SVDD classifier is applied
to each of theM clusters. Since the complexity of the SVDD tragnon a set ok samples i©O(Kd®), the complexity of
performingM SVDDs isO(MKd®). Third, the non-overlapped support vectors arecset! which is performed @(Mkd).
Fourth, the EM algorithm is utilized to estimate tharameters of final classifier. Since the comipleof the E-step and
the M-step iSO(NM+N) and O(2NM), respectively, the complexity of the last stepl wécomeO(iINM) wherei is the
number of EM iterations. Thus, in the caséafN , the overall runtime complexity of the proposedimod is obtained as
follows:

RCem -svop = O(N-M 2.d + Mk3d3+ Mkd +iNM )= o[N.M2d) (32)

By replacingN/k by Mand bearing in mind th&tis a constant number, the runtime complexity ef pnoposed method
becomes:



RCEM -SvDD = o(N3.d +Nd3+Nd + i.N2)= o(N3.d) (33)

The above relation shows that the runtime complegit EM-SVDD is better than the traditional SVD®runtime
complexity which i<O(N®d®). In addition, it can be concluded that the runtsomplexity of the proposed method depends
on the runtime complexity of the FCM clustering. &nsidering the clustering phase as a preprotegzstee EM-SVDDs
complexity isN/i times lower than traditional SVD®&

tram
dataset

k=a constant number,
N=number of training samples,
M=N/k

cluster the dataset mto M partitions

apply SVDD classifier on each
partition

select non-overlaped support vectors
from all SVDDs

initialize @
1- initialize the weigh of SVDDs,
Ou=I/M, m=1Ito M
2-initialize the coefficent of selected support vectors,
Pmi~the Lagrangian coefficient of i support vector of
mt SVDD, m=] to M and =/ to the nunber of selected

support vectors from m® SVDD

E-step: compute Of 6 &)
1-for each sample, compute the probability of belonging
to each partition using (25),
pmlx, &), n=1,.. . Nandm=I,..M
2-construct Q6| &) using (26)

M-step: compute & =argmax O(6 &)
1- compute the new weight of SVDDs using (28):
", m=1,.. .M
2- compute the new coefficient of support vectors using
(30):
Bmi®, m=1I to M andi=I to the number of selected
support vectors from m® SVDD

No
a-g }- |6-6nl<e

Yes

report &

Figure 2: Flowchart of EM-SVDD

3.5.Convergence Analysis

As declared previously] is an estimation of which maximize€Q(9|#9). In addition, by performing the EM algorithm
with the current estimation df, i.e. #9, Q(#9)69)=0 will be resulted. In the ®yiteration of the maximization stef;, is

selected using (34).

6 = argmaxQ(H | 09) (34)
)

Thus,&" is selected in such a way that the inequalityd®) (s established.



ale"169)2qle? 169) (39)
Therefore, according to (34), (35) and (2), théofeing analysis can be derived:

ix16")=qle" 169)+Rlp9 69)
>Q|gY |69 +R99|99) (36)
=1|x |69

(36) satisfies the sufficient condition of convarge, which means that the logarithm of the likefitioncreases in each
iteration and will tend to a local maximum. Conseuily, in the case of choosing a proper initialneation ofé, it will
move to a global maximum. The initial estimatiortioé proposed method is suitably chosen as theabagrcoefficients
of SVDDs.

Figure 3: a) Training samples. b) Clustering theraining samples. c) Using SVDD classifier. d) Seléng non-overlapped
support vectors and estimating their coefficient.

3.6.Sparse EM-SVDD

In order to guarantee the sparsity of the parametstimated in the EM iterations, Sparsity-aware ®X¥DD approach is
introduced. Besides generating sparse parametel4; 8/DD will help to reduce the noise effect.
As discussed previously, the new estimation of pataré is computed as follows:

6" = argmax p(#| X) = argmaxlog p(6| X) (37)
2] 0

In addition, we know that the Laplacian prior farametep is:
A
p(6)="exp(- 1le) (38)
Thus,log p@|X) which is termed(6) will be:

J(8)=log p(6| X)=log(p(X |8)p(8)) =log p(X |8)+log p(8) =log p(X |6’)+Iog%—/1\ﬂ (39)

Consequently, the new estimation of the paramtsrobtained by maximizing(f). On lettingJi(6)=log p(X|¢) and
Jx(6)=log Alr-1)6], we have:

23(8) aJ 8J2
gnew _ gold _ :9old . 91 294
30 30 " H 50

23
=0% — 2~ o (= Asgrl@))

(40)



, Whereé° equals th&" computed in each iteration of the M-step of EM-S¥/[Therefore, for each part 6ffrom (28)
and (30) we have:

new _

W= gy + A o) (41)

new _

e = Boni + p/ Sgr(p:ni) (42)

To clarify the procedure of SEM-SVDD, its main stepe presented in Fig. 4.

* Set the number of clusters to M=N/k N
* Partition datainto M clusters.
« Perform the SVDD classification for each cluster
« |nitialize the weights of each SVDD with @,=1/M
ere ae . « Select non-overlapped support vectors of each SVDD
Initialization * Initialize the coefficient of each support vector with its
Lagrangian coefficient
+ Do until convergence \
* E-step: Estimate the probability of each sample associated to
each SVDD and construct the Q-function, using (25 and 26)
* M-step: Estimate new parameters, SVDD weights and
Parameters support vector coefficients, using (28 and 30)
o Etan:
Estimation Sparsity-step: Make the parameters sparse using (41 and 42)

Figure 4: An overview of SEM-SVDD main steps.

4. Experimental Results

To evaluate EM-SVDD, 10 datasets taken from the U®lachine Learning Dataset Repository
(http://archive.ics.uci.edu/ml/) and 3 artificisdtdsets are used. In addition, an Intrusion Dete@ystem (IDS) dataset
is utilized to investigate the performance of thegesed method on large-scale datasets. All thererpnts are performed
on a PC with Intel Quad- Core 2.5 GHZ CPU and 4G&mdry, and Gaussian kernel is used. FurthermoeeF@M
method is used to partition the dataset in all @rpents. Besides the traditional canonical andrnentraining methods,
including standard SVDD (David M.J. Tax & Duin, 200FSVDD (Luo et al., 2010) , Inc-SVDD (Hua & Ding011)
and LibSVM with SVDD toolbox (Chang & Lin, 2011)MESVDD is compared with six ensemble-based classifivhich
are ensemble of SVDDs by bagging (Breiman, 19%8)semble of SVDDs by AdaBoost (Freund et al., 1988)dom
subspace method based ensemble of SVDDs (RSMESV{be€plygina & Tax, 2011), clustering based ensenabl
SVDDs (CESVDDs) (Krawczyk et al., 2014), selecteressemble of SVDDs (SESVDDs) (H. Xing & Wang, 201ahd
robust AdaBoost based ensemble of OCSVMs (H.-Jg XinLiu, 2020). Furthermore, as a case study, EMdBMis
applied to a large scale dataset of images obtdinedsocial networks to identify in-class and @rtimages. In this case
study, the impact of the number of clusters onptidormance of the proposed method has been igagsti.

4.1. Evaluation Metrics

To compare the training speed of the proposed rdetlith the other methods, the training time oftiethods is measured.
In addition, to evaluate the accuracy of the défgmethods, we consider the accuracy rate(ACCJjladeometric mean
(g-mean) which can be calculated using (43) and, (#$pectively. TP is the number of in-class testples that are
classified correctly while FN is the number of ilass test samples that are classified incorre8iimilarly, TN is the
number of outlier test samples that are classifimdectly and FP is the number of outlier test Sasithat are classified
incorrectly. Furthermore, to compare the testingetof the proposed method with others, the pergerdéthe number of
support vectors out of the total number of traingagnples, i.e. SV%, is considered. It is notewotthyeclare that the
decision function of SVDD-based classifiers isadtiion of support vector samples (see (31)). Tthesnumber of support
vectors affects the testing time and the requitechge space.

TN+TP
ACC= ———
FP+FN+TP+ TN (43)
TP TN
g —mean~ X

TP+FN TN+FP (44)



4.2.Parameter Tuning

Tuning SVDD parameters, i.e., the regularizatiorapeeterC and the bandwidth of the kernel function, is very uphill
for some datasets. Fig. 5 shows some artificisdgts in which tuning SVDD parameters is hard venémpossible in
some cases, because of their complex nature. Theréd compare EM-SVDD with rival methods, we theegrid search
approach to obtain the best parameters of eachoohébh each dataset. In other words, to achievédse performance of
methods for each datas€t,ands are exhaustively searched. The domain€ aihds depend on the complexity of the
training data. Furthermore, the variable k whichtools the number of clusters in the proposed netihalso exhaustively
searched in such a way that the number of cluisdyig enough to correctly describe the complexstietls. However, with
a large number of clusters, a proper value, i.larger value, should be selected 4do prevent overfitting.
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Figure 5: Artificial datasets - The black points:target samples. The hollow points: outlier samples.

4.3.Comparison of EM-SVDD with Other Methods on Artificial Datasets

In this experiment, a 10-fold cross validation &fprmed to compare EM-SVDD with the other method<CrossOver,
Spiral and Ring artificial datasets. Some detdilsud these datasets are provided in Table 1. Tablews the results of
comparisons according to the average values oluatiah metrics on artificial datasets. The resillisstrate that the
proposed method outperforms other compared methiodense datasets. The worst result of EM-SVDDrgsdo the
Spiral dataset which is sparse. The reason iguhatg of kernel parameteris hard for sparse datasets and so, leads to a
performance reduction. One of the weaknesses o8V in comparison with EM-SVDD is that the humbédrfinal
support vectors is about the half of the trainiamples. In addition, LIBSVM has the least trainfimge among compared
methods but not considering the distribution odatds to a low accuracy. FSVDD is comparabik &M-SVDD from
the point of support vector samples percentageh®mther hand, it is a weak method from the paoirihe training time
and the accuracy rate of SVDD. Fig. 6 and Figlugitate the comparison of accuracy rates and stigpctors percentage
of the methods.

TABLE 1
The number of in-class and outlier samples in artitial datasets
CrossOvel Spiral Ring
In-Class samples 300( 500( 1000(
Outliers # 10C 10C 10C
TABLE 2
The performance of EM-SVDD in comparison with othermethods on artificial datasets
Datasets Measurements Methods
SvDD! FSVDD  LIBSVM proposed methot
SV(%) 3.3¢ 11.4¢ 31.17 0.8¢
CrossOver  Training Time (s) 1.07 27.1C 0.41 1.5
ACC 10C 80.2( 80.82 95.3¢
SV(%) - 4.5¢ 40.0¢ 6.42
Spiral Training Time (s) - 23.5¢ 1.12 18.4¢
ACC - 81.2¢ 77.9¢ 84.1¢
SV(%) - 3.47 50.02 3.65
Ring Training Time (s) - 45.37 5.5C 11.4:
ACC - 66.7: 62.9¢ 88.12

1SVDD method is unable to be performed on datasigtsmore than 300sample
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Figure 6: Comparison of the accuracy rate of the wposed  Figure 7: Comparison of the percentage of supporectors
method with online and canonical methods. of the proposed method with online and canonical ntleods.

4.4.Comparison of EM-SVDD with Rival Methods on UCI Datsets

In this section, first, EM-SVDD performance is caangd with standard SVDD, FSVDD and LibSVM with SVDalbox

on 10 UCI datasets. After that, the accuracy of &¥BD is compared with its six related methods, udahg ensemble

of SVDDs by bagging, ensemble of SVDDs by AdaBogandom subspace method based ensemble of SVDDs
(RSMESVDDs), clustering based ensemble of SVDDsSWZBDSs), selective ensemble of SVDDs (SESVDDs), and
robust AdaBoost based ensemble of OCSVMs (H.-Jg Xiriiu, 2020).

4.4.1. Comparison of EM-SVDD with SVDD, FSVDD and LIBSVM

In this experiment, a 10-fold cross validation &fprmed to compare EM-SVDD with traditional SVDBSVDD and
LIBSVM on the 10 well-known datasets from UCI MaghiLearning Dataset Repository. Table 3 providesesdetails
about selected datasets. Furthermore, the pereenfa®)Vs, training times and accuracy rates arsemted in Table 4 to
compare EM-SVDD with the three mentioned methodsmall and medium datasets. Both classes of edaelsetare
considered as the target class, respectively. Bngntable, it can be concluded that EM-SVDD is petitive with existing
classifiers. In comparison with other methods,gteposed method achieved good time and accuraaitgés small and
medium datasets. It is obvious that only LIBSVMigerior to EM-SVDD in terms of training time, btg percentage of
the support vectors is high. Thus, it is not a gadkdievement for LIBSVM. Fig. 8 illustrates the a@xcy rate comparison
of the methods. The results indicate that EM-SVEH3 hImost better accuracy rate than FSVDD and LISWig. 9
clearly shows that the percentage of the suppetbve of EM-SVDD is generally less than all othesthods.

TABLE 3
UCI Datasets information
Size Datase Classt Sample? Feature #

Sona 2 20€ 60

Small Liver 2 34& 6
lonospher 2 351 34

Pime 2 76¢ 8

Germait 2 100(¢ 24

Medium Splice 2 100( 60
Clouc 2 204¢ 10

Footbal 2 428¢ 13

Large Spambas 2 4601 58
Mushroon 2 812¢ 112

The results on large datasets are summarized ifahk 5 and indicate a performance reduction. HMeSVDD has a
much better accuracy than LIBSVM and FSVDD, exdeglushrooms dataset which is not likely dense. Trhaing
time of LIBSVM is better than EM-SVDD while providj a large number of support vectors and low acgurBhe main
reason that leads to the increase of training iintlee time complexity of the FCM. Also, the perfance can be affected
by noisy and outlier data. Despite comparable aaurates, the training time of EM-SVDD is loweathFSVDD. The
results of accuracy rates and support vector p&agen are summarized in Fig. 10 and Fig. 11.



TABLE 4
The performance of EM-SVDD in comparison with the other methods on bothlasses of small and medium UCI Datase

Methods
Datasets Measurements SVDD FSVDD LIBSVM proposed methot
Class Class ¢ Class Class ¢ Class : Class ¢ Class Class ¢
= SV(%) 55.3¢ 66.¢ 83.92 74.07 20.3] 42.0% 18.4¢ 14.0¢
g Training Time(s) 0.0Z 0.02 2.91 0.32 0 0 0.0z 0.01
83 Training ACC(%) 49.2¢ 58.1¢ 47 29.3] 49.5¢ 48.€ 54.1¢ 48.€
Testing ACC(%) 80.21 75.4¢ 79.01 51.2] 75.32 5C 64.1¢ 58.0:
SV (%) 41.6] 40.32 39.0¢ 18.0¢ 50.7¢ 50.82 33.0¢ 68.1¢
§ Training Time(s) 0.0% 0.04 0.11 0.4¢ 0 0 0.0 0.1
_ 3 Training ACC(%) 10C 10C 60.9¢ 55.5¢ 67.2¢ 70.82 10C 10C
< Testing ACC(%) 10C 10C 58.82 88.2¢ 62.9¢ 51.1¢ 10C 10C
(% Z SV (%) 4.4¢ 47.7¢ 24.7¢ 77.8¢ 0.4¢ 53.1 16.3¢ 70.23
s Training Time(s) 0.02 0.02 0.4f 0.7¢ 0.01 0 0.01 0.02
é Training ACC(%) 10C 10C 54.8: 31.6i 70.8¢ 51.3¢ 88.01 90.5]
o Testing ACC(%) 10C 10C 30.4: 23.0¢ 47.8% 38.4¢ 10C 10C
SV (%) 52.4 28.01 32.3i 31.4: 50.8: 40.3% 49.7¢ 30.8i
E Training Time(s) 0.0¢ 0.1< 1.7¢ 3.91 0.01 0.0Z 0.0t 0.31
[ Training ACC(%) 10C 10C 85.0¢ 75.91 8C 69.9: 68.71 78.9¢
Testing ACC(%) 10C 10C 74.01 75.5: 45.21 54.5: 62.07 79.2¢
c SV (%) 28.8] - 63.5¢ 72.3: 99.8¢ 9C 48.81 46.8¢
g Training Time(s) 0.4% - 63.04 5.52 0.1 0.0% 0.1 0.0t
@ Training ACC(%) 10C - 98.3i 44.4: 69.€ 52.7i 10C 88.7¢
© Testing ACC(%) 10C - 98.5¢ 34.4¢ 53.52 65.52 10C 89.6¢
c © SV (%) 42.6" 43.7% 37.9¢ 32.2¢ 34.2i 33.7i 20.6: 15.6¢
3 L Training Time(s) 0.2£ 0.3¢€ 3.4f 3.1t 0.02 0.02 0.1t 0.1t
8 & Training ACC(%) 10C 10C 43.21 44.4: 70.41 50.8¢ 86.0: 51.4¢
= Testing ACC(%) 10C 10C 43.4¢ 48.61 62.4¢ 56.41 93.4¢ 61.5¢
SV(%) 1.72 1.9¢ 4.21 3.47 20.0¢ 10.23 8.71 37.7:
kS Training Time(s) 0.51 0.27 1.3¢ 0.91 0.07 0.07 0.z 1.3¢
8 Training ACC(%) 10C 10C 90.0¢ 91.9¢ 70.2i 80.0¢ 98.¢ 92.¢
Testing ACC(%) 10C 10C 90.1¢ 91.7¢ 83.41 82.4: 99.0: 64.7¢
TABLE 5
The performance of EM-SVDD in comparison with the ¢her methods on both classes of large UCI datasets
Dataset:
Datasets Methods FSVDD LIBSVM proposed metho
Class : Class @ Class ! Class @ Class : Class &
= SV (%) 11.67 10.17 10.13 23.21 31.7 20.2¢
e Training Time(s) 19.1 40.2¢ 0.1¢ 0.47 0.5¢ 1.3¢
3 Training ACC(%) 78.6¢ 92.3¢ 50.17 50.0¢ 94.0: 83.5¢
& Testing ACC(%) 80.3¢ 93.7¢ 35.5 32.8¢ 93.0¢ 84.5¢
ﬁ SV (%) 27.8¢ 28.9¢ 40.21 33.1¢ 46.0¢ 16.8¢
o g Training time(s) 169.6¢ 113.0¢ 0.3 0.€ 2.91 2.¢
E g Training ACC(%) 52.5¢ 55.7: 42.5¢ 49.9¢ 78.91 65.2¢
%) Testing ACC(%) 50.72 54. 43.9¢ 48.9¢ 78.0¢ 58.7¢
g SV (%) 26.41 14.1¢ 31.1¢ 42.2¢ 18.4¢ 21.3¢
8 Training Time(s) 269.0¢ 46.3¢ 1.1t 1.02 0.2¢ 0.3<
; Training ACC(%) 69.€ 96.9¢ 36.91 74.0¢ 65.2 62.1¢
2 Testing ACC(%) 69.6 96.94 38 75.77 65.56 64.8

4.4.2. Comparison of EM-SVDD with Six Related Methods

In this section, the accuracy of the proposed iflasss compared with five ensemble-based SVDDssifers, i.e.,
ensemble of SVDDs by bagging, ensemble of SVDDAdgBoost, random subspace method based ensem®\énids
(RSMESVDDs), clustering based ensemble of SVDDsZEDs) and selective ensemble of SVDDs (SESVDD%), a
one ensemble-based OCSVM classifier, entitled rohdaBoost based ensemble of OCSVMs (RAEOOCSVMg)this
aim, we apply all methods on four UCI datasetsednh dataset, the samples of one class are coeidsiin-class data
and so the samples of the other class are outharthermore, for each dataset, the training setristructed by randomly
choosing 70% samples from the in-class data, whédesting set consists of the rest 30% sampléwedh-class data and
the whole outliers. Table 6 represents some dethdsit the number of in-class and outlier samplesch selected dataset.
Table 7 provides the average g-mean together éin torresponding standard deviations of all tkghmods after tuning
their parameters on the four datasets (see (H. &ikdang, 2017) and (H.-J. Xing & Liu, 2020)). Uslyalthe goal of the
ensemble methods is to improve the accuracy dfltissifier. Thus, their base classifiers utilizaast all training samples.
However, the goal of EM-SVDD is to speed up thessification on large datasets. Therefore, everg lwdassifier is
trained on a partition of the training dataset #reh the results of them are aggregated. Therefoeeaccuracy of EM-



SVDD can be lower than the other ensemble methtalsever, the results indicate that the proposedhatebutperforms
the other ensemble-based methods on Liver and ®atasets. In addition, EM-SVDD shows higher acdasagn German
dataset, compared to Bagging, AdaBoost and RSMESVMDB worth to mention that EM-SVDD outperform€8VM
classifier on all datasets. The P-values obtain@d paired T-tests which are reported in Tablerffiom that the accuracy
improvements of EM-SVDD are significant. Moreovite reported standard deviation values show tieptoposed
method is more stable than the other five SVDDsifass on all the four datasets.

Figure 8: Comparison of the accuracy rate of the mposed
method with online and canonical methods on smallral
medium datasets.
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Figure 9: Comparison of support vectors percentagef the
proposed method with online and canonical methodso
small and medium datasets.
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Figure 11: Comparison of support vectors percentagof
the proposed method with online and canonical meths on
large datasets.

Figure 10: Comparison of the accuracy rate of theroposed
method with online and canonical methods on largeatasets.

TABLE 6
The number of in-class an outlier samples selectdétbm each
UCI dataset in the experiment

Datasets In-class samples# Outlier samples #
German 30C 70C
Liver 14~ 20C
Pima 26¢ 50C
Sonar 111 97
TABLE 7

The average g-mean and standard deviation of ensetelmethods on the four selected UCI datasets,
together with the F-values of paired T-tesls

Methods
Datasets — g inc AdaBoos  RSMESVDD:s __ CESVDDs SESVDD: RAEOCSVMs __ Proposed Methot
e6eil3l  [BlEL148 7358228 7019t1.14  82.12t2.09 76.41+0.08 80.210.02
German i P=6.8831e- P=2.1966e-18 P=1.7481e-04 - - -
P=2.3105e-07 o
80.44:0.96 79.06t0.86  84571.25 82.53+0.055 93.470.03
. 83.49+0.94 - 71.4%2.13 r9.06k 3450 * t
Liver D6 35750.35 P—5.330355e— bt oqodesg P=1:1050e-41  P=13608e-33 - -
77.271.95 78.611.97 80.811.99 84.73+0.005 99.78+0.003
) 79.92+1.94 o 70.50t4.52 5 2219, 2 A0 — —
Pima Pt A5 760.36 P—2.31:406e- P 640napa P=2:3317e:38  P=3.4493e-30
Sonar 91.56t1.60  89.36t2.14  79.30£3.45 90.48:3.16  92.12r161 78.46+0.067 85.13+0.04

P=9.7525-05 - -




4.5 Comparison of EM-SVDD with Rival Methods on an IDSDataset

To compare the accuracy of the proposed methodingtsSVDD and LIBSVM on large-scale datasets, welathem on
NSL-KDD dataset (http://nsl.cs.unb.ca/NSL-KDD/).eThamples of this dataset are divided into fivéedéht classes,
including Normal, Denial-of-Service (DoS), ProbifRyobe), Remote-To-Local (R2L) and User-to-RootRY®%hich all
have 41 features. The training and testing datiesstriptions and the obtained results are predémf€able 8 and Table
9, respectively. Furthermore, the samples of Noribas and Probe classes are used to train the detlespectively. As
an instance, in the first experiment, the first rofvTable 9, the classifiers are trained usingNMoemal samples of the
training dataset and then they are evaluated bynidbsamples of the testing dataset together wiseteof randomly
selected samples from all other classes. The sdsudlicatethat EM-SVDD provides comparable accuracies withdther
methods ones.

TABLE 8
The number of samples of each class in N-KDD training and testing dataset:
Dataset Classes
Normal DoS Probe R2L U2R
NSL-KDD Train+ 6734 45927 1165¢ 99t 52
NSL-KDD Test+ 971( 745¢ 242: 2881 67
TABLE 9

The accuracy rate comparison of EM-SVDD in comparisn with the other
methods on NSL-KDD dataset

Training class Methods

Inc-SVDD LIBSVM Proposed Methoc
Normal 90.4¢ 89.6% 92.2¢
DoS 82.7¢ 81.1¢ 80.41
Probe 87.5¢ 80.32 82.12

4.6 Case Study

500px community has offered a job to research ochina learning models which can power spam detedtiqgphotos
(“Machine Learning Engineer Summer Intern”). In@rtb illustrate the capability of the proposed moel, we apply EM-
SVDD classifier to "Carrots" dataset, a dataseaioled from 500px containing 1855 images. All imaigethis dataset are
tagged as "Carrot"; however, some of them areeivegit. The goal of the case study is to recogmiedevant images.
Therefore, each image is described by 4096 featigieg convolutional neural network, and then SEWB® is used to
classify the images. Consequently, all imagesahatccepted using the decision function of the SBNDD are detected
as in-class images. Similarly, the rejected imagesdetected as outliers. By tuning the SVDD patame€, and kernel
parameterg, the number of outlier images can be controlldwr&fore, the best values forands are obtained by a brute
force search using different parameters. The estlow that SEM-SVDD scores with g-mean equals (C#0.5 and
0=0.3). Moreover, Fig. 12 is provided to illustrakte effectiveness of the paramet€rande in the performance of the
proposed method. Fig. 12-a shows some photos ddtastoutliers using SEM-SVDD. Improper tuningCadinds leads
to incorrect detection of outlier images. Fig. 18Hows some outlier photos detected by impropenguaf C ando.

5 Conclusions
In this paper, we proposed EM-SVDD and SEM-SVDDhnods based on the EM technique to enhance therperfize
and speed up the SVDD classifier. It is well knatlvat SVDD has a low performance when it is trainsthg a large
population of training samples. Therefore, the pegal algorithms enhance the SVDD in order to béicgipe to large-
scale datasets, decrease the training time, andtairaithe classification accuracy. The main contitns can be
summarized as:
l. Using a combination of weighted SVDDs
Il. Utilizing the EM algorithm to estimate the SVDD pareters
Il Considering the size of dataset in partitioning
V. Considering data distribution in classification
V. Proposing a new probability density function for[HY
Considering the convergence of the proposed metabdSVDD ensures the optimality of SVDD weights asupport
vectors coefficients, but it suffers from the higghe complexity and noise sensitivity of the FCMthua in the partitioning
step. Thus, in the future work, to refine the perfance of the proposedethods, we can replace it by a robust clustering
method which dictates a lower overhead.



Figure 12: Spam images detected by EM-SVDD. (a) Pper tuning of C and . (b) Improper tuning of C and o.
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