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Recently, imposing the O(1, 1) symmetry on the circle reduction of the classical effective action of string

theory, we have found all NS-NS couplings of type II superstring theories at order . In this paper we use
the cosmological reduction on the couplings and show that, up to one-dimensional field redefinitions and
total derivative terms, they are invariant under the O(9,9) transformations.
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I. INTRODUCTION

A theory of gravity in a spacetime manifold with/without
a boundary that is consistent with the rules of quantum
mechanics is string theory. This theory includes the finite
number of massless modes and the tower of infinite number
of massive modes of the string excitations. At low energies,
however, the massive modes are integrated out to produce
an effective theory that includes only the massless fields.
The effective action has a double expansions. The genus
expansion includes the classical tree level, i.e., Segr + OSesr,
a tower of quantum loop-level corrections, and the stringy
expansion that is an expansion in terms of higher derivative
couplings at each loop level. The classical effective action
has the following higher derivative or o' expansion:

Serr = Za/msm =S+ a’51 + a’2S2 + a/383 4+,
m=0

OS¢ = »_ ™08, = 08, + a'08,
m=0
+a’2882+a’38S3+-~. (1)

The leading order bulk action S, includes the Hilbert-
Einstein term and the boundary action JS, includes the
Hawking-Gibbons term [1,2]. These actions and their
appropriate higher derivative extensions should be found
by specific techniques in the string theory. Since the
effective action includes the couplings at all orders of
derivative, one complication in finding the couplings in the
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string theory is the freedom of the field redefinitions that
include the higher derivatives of fields [3]. As a result, the
effective action in the string theory can appear in many
different equivalent schemes.

One of the most exciting discoveries in perturbative
string theory is 7 duality [4,5] that appears when one
compactifies theory on a torus, e.g., the compactification of
the full bosonic string theory on tours 7 is invariant under
0(d, d, Z) transformations. After integrating out the mas-
sive modes, however, the T duality should appears as
symmetry in the effective actions. It has been shown in
[6,7] that the dimensional reduction of the classical
effective actions of the bosonic and heterotic string
theories on a torus T¢ are in fact invariant under
O(d, d, R) transformations.

When one reduces the effective action on a circle, the
invariance of the reduced action under the Z, subgroup of
the O(1, 1, R) group constrains greatly the couplings in the
effective action. In fact there is only one 7-dual multiplet in
the effective action of the bosonic string theory, and there
are two T-dual multiplets in the effective action of type II
superstring theories at the leading order of o, one for NS-
NS couplings and one for R-R couplings [8]. By the 7-dual
multiplet we means the set of couplings in the effective
action which are related into each others under the Z,
transformations after reducing them on the circle. The Z,
transformations or T7T-duality transformations are the
Buscher rules [9,10] and some higher derivative corrections
at each order of « that depend on the scheme that one uses
for the gauge invariant couplings in the effective action at
that order of o [11,12]. The corrected transformations,
however, should satisfy the Z, symmetry. There is no
scheme for the higher-derivative couplings in the original
action in which the 7-duality transformations are the
standard Buscher rules [12].

Since the T-duality transformations have higher deriva-
tive corrections, the other 7-dual multiplets include cou-
plings at all orders of . In fact it has been observed in [13]
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that the couplings in the effective action of the bosonic
string theory at order o« are related by the 7T-duality
transformations to the couplings at order a’>. They belong
to one T-dual multiplet. If one extends the calculations in
[13] to the order o3, then one would find that the couplings
at order o and o are related to some of the couplings at
order a®. They belong to the same 7-dual multiplet.
However, there are couplings at this order that are not
connected to the couplings at order o, o by the T-duality
transformations. They belong to another 7-dual multiplet.
In other words, if one finds the couplings in the bosonic
string theory at order > by S-matrix method, one would
find they have two factors a, a, i.e., S3 = a;S} + a,S3.
One factor should be the same as the one appears in the
couplings at order o, o 2 and another one is proportional to
{(3). These two factors should appear in the 7-duality
transformations as well. At the order a™*, the couplings in
the bosonic theory should have three factors a;, a,, as, i.e.,
S, = a;S} + a,S7 + a3S3. One is the same as the factor in
o ,a”, one is proportional to {(3), and another is an
independent factor. Similar patterns should appear for
the higher orders of o. Schematically, the bulk action
(1) has the following expansion in terms of the 7-dual
multiplets:

Seff = ZanTn = (ZoTO + a1T1 + a2T2 + Cl3T3 +--,
n=0

2)

where ag, a;, - - - are some coefficients that cannot be fixed
by the T duality. They should be fixed by the S-matrix
calculations, e.g., ag = 1, a; = 1, a3 = {(3). In the type I
superstring theory, a; = 0, and there are 7-dual multiplets
that include the R-R couplings. The T-dual mutiplets in the
bosonic string theory are

To = Sy,

T, =dS, +a?S, + oS} + a*S) +a"St + -,
Ty = oS5+ o*S; + a°S3 + o°Sg + oS5 + - -,
Ty = oS} + oS3 + oS} + oS3 + o883 + - -,

(3)

There are no parameters in these multiplets. If the space-
time manifold has no boundary in which the total derivative
terms can be ignored, then each multiplet should be
invariant under the 7-duality transformations after reducing
it on the circle. In principle, this constraint may fix all
couplings in each T-dual multiplet. The couplings in the
multiplet T, at orders o and &'? in a particular scheme have
been found in [12,13]. The couplings in the multiplet 7', at
order & have been also found in [14,15].

When the spacetime has a boundary, however, one
should keep the total derivative terms before and after
reduction and use the Stokes’s theorem to transfer them to
the boundary. They dictate that the invariance under the
T-duality transformations requires some couplings on the
boundary as well [16]. Hence, the bulk 7-dual multiplets
should be accompanied with appropriate boundary cou-
plings to be fully invariant under the 7 duality.
Schematically, the boundary action (1) should have the
following expansion in terms of the boundary 7-dual
multiplets:

8Seff = Z anﬁTn = aoaTO + alaTl
n=0

+ ClzaTz + a33T3 + -, (4)

where ag, a;, - - - are the same coefficients that appear in the
bulk 7-dual multiplets (2). The boundary mutiplets are

OTy = 0S,.

OT, =d' 0S| + %08, + a?0S} + a*0S} + a*0SL + - - -,
OT, = aP0S3 + a*0ST + aP0S2 + a%0S2 + 7083 + - -,
OT; = a*0S3 + a”0SE + a®0S} + o083 + o30S} + - - -,

(5)

The combination of bulk and boundary multiplets, i.e.,
T; + OT;, are then invariant under the T-duality trans-
formations. In other words, neither the bulk multiplets nor
the boundary multiplets are invariant separately under the
T-duality transformations. Their anomalies cancel each
other. There are, however, boundary couplings that are
invariant under the 7-duality transformations without
anomaly. Some of them are related to the anomalous
boundary multiplets by imposing the principle of the least
action in the presence of the boundary with appropriate
boundary values for the massless fields. Using these
constraints, the boundary coupling in the multiplet 0T
has been found in [16,17]. The boundary couplings in the
multiplet 0T at order ¢ in a particular scheme have been
found in [17].

When one uses the cosmological reduction on the
classical effective action, the resulting one-dimensional
effective action should have O(d,d,R) symmetry [6,7].
This symmetry has been first observed for the leading order
bulk couplings in [18-20] and for the couplings at order o
in a specific scheme in [21]. The T-duality transformations
or O(d,d,R) transformations in this case also receive
higher derivative corrections. The corrected transforma-
tions satisfy the O(d, d, R) symmetry [21]. In this case also
there is no scheme for the original couplings in which the
T-duality transformation are the standard O(d, d, R) trans-
formations of the leading order. Unlike the circle reduction,
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some of the couplings in the original action disappear upon
the reduction [22]. Hence, this symmetry is not appropriate
for fixing the couplings in the original action. However, this
symmetry is useful for classifying the couplings in the one-
dimensional effective action at all orders of o [22,23].
Using the most general corrections for the T-duality
transformations, including the transformations for the lapse
function, and using integration by part, it has been shown in
[22,23] that the cosmological reduction of the bulk action
(1) at order o and higher can be written in a scheme in
which only the first time derivative of the generalized
metric & appears. Trace of odd number of the first
derivative of S is zero. It has been shown in [23] that

the couplings that include tr(S?) can be removed by the
lapse function transformation. Then the one-dimensional
bulk action can be written in a specific scheme as the
following expansion [22,23]:

S = S§ + / dte™® (o ¢ otr(S*) + a2c; tr(S°)

+ a?[egotr(SY) + c4’1(tr($'4))2]
+ & esotr(S") + e5,tr(S)(SH] + ), (6)

where the coefficient ¢, ,, depends on the specific theory;
e.g., 3 is nonzero for the bosonic string theory, whereas
this number is zero for the superstring theory.

To find the cosmological reduction of the corresponding
boundary action in (1), one has to take into account the one-
dimensional total derivative terms and the 7-duality trans-
formations or the field redefinitions that have been used in
[22,23]. However, it has been observed in [17] that if one
adds the total derivative term resulting from the cosmo-
logical reduction of the leading order action to the
boundary by using the Stokes’s theorem, it cancels the
cosmological reduction of the Hawking-Gibbons term, i.e.,
Si = 0. Since the cosmological reduction of the boundary
term at the leading order of o' is zero, we expect it should
be zero at all higher orders of o as well, i.e.,

I8¢ = 0. ()

This may be used for conforming the boundary couplings
in the effective action (1) at each order of o that can be
found by the Z, symmetry. Since the cosmological reduc-
tion of the leading order action is zero, then for studying the
cosmological reduction of the boundary action at order «/,
one does not need the field redefinitions used in the bulk
action. It has been shown in [17] that if one adds the total
derivative terms at order o' to the reduction of the boundary
couplings at order ¢, they become zero, which is consistent
with the above conjecture.

The cosmological bulk action (6) may also be used for
confirming the bulk couplings in the effective action (1)

that can be found by the Z, symmetry. The NS-NS
couplings in the effective action of type II superstring
theory at order a* have been found in [14,15] by imposing
the Z, symmetry on the effective action. In fact it has been
shown in [24] that there are 872 independent couplings at
this order. The Z, symmetry is imposed on these couplings
in a particular scheme. Interestingly, all parameters are
fixed up to an overall factor in [14]. In that scheme there are
445 nonzero couplings that include derivatives of dilaton. A
field redefinition has been used in [15] to write them in
terms of 251 couplings in which the dilaton appears only as
the overall factor e~2¢. In this paper we are going to show
that the cosmological reduction of the couplings in [14] or
in [15] can be written in the form of the cosmological action
(6) at order o’>. The gravitational sector of these couplings
which have been found a long time ago by the S matrix and
sigma model calculations [25-28], has been shown in [29]
that satisfies the 0(9,9) symmetry.

The outline of the paper is as follows: in Sec. II, we
review the observation that the cosmological reduction of
the leading order bulk and boundary actions are invariant
under the O(d,d) transformations. In Sec. III, we first
reduce the bulk NS-NS couplings at order &> that have
been found in [15] to find its corresponding one-dimen-
sional bulk action. We add to it all one-dimensional total
derivative terms and all possible field redefinitions with
arbitrary coefficients to write the action in a scheme which
has all the arbitrary parameters of the field redefinitions and
the total derivative terms. We then impose the constraint on
the parameters that the cosmological action has no deriva-
tive of the one-dimensional dilaton, no second and higher
derivatives on metric and the B field, and we impose the
constraint that the couplings involving the first derivative of
metric which are not consistent with the O(9,9) symmetry
to be zero. Moreover, we impose the condition that the
terms that have contribution to the O(9, 9)-invariant struc-
ture tr(S?) to be zero. We have found that in fact there is a
solution for the parameters for such conditions. After
imposing the resulting relations between the parameters,
we find the action in the scheme that can be written
explicitly as the /> order terms of (6).

II. COSMOLOGICAL REDUCTION AT THE
LEADING ORDER

In this section, we review the cosmological reduction of
the leading order bulk and boundary actions. These actions
are given as

So—i-aSO:—’f—z [/de —Ge™2 <R+4Vﬂ¢vl‘¢—1—12H2)

+2/dD‘10 |g|e‘2‘/’K], (8)
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where G is determinant of the bulk metric G,, and the
boundary is specified by the functions x* = x*(c#). In the
boundary action, g is determinant of the induced metric on
the boundary

Ox* Ox¥

9iv :w@@w- )

The extrinsic curvature of boundary, i.e., K, is defined as
K,, = V,n,—n,a, where n* is the unite vector orthogonal
to the boundary that is outward going (inward going) if the
boundary is spacelike (timelike), and a, = n’V n, is
acceleration. It satisfies the relation n*a, = 0. The extrinsic
curvature is symmetric and satisfies n*K,, = 0.

When fields depend only on time, using the gauge
symmetries it is possible to write the metric, B field, and
dilaton as

(T 8 (3

1

where the lapse function n(#) can also be fixed to n = 1.
The cosmological reduction of the bulk action then
becomes

2 ol o0 3. ..
c —_Z -®\_B.BY -=G..GY
S§ K/dte L ij 4G,JG
-GG, - cp2+GlfGU}, (11)

where GV = G*G''G,. Using the following total deriva-
tive term

d o i
/dl‘z[e d)G]Gij]
= /dte“l’[—GUGijd) - GijG,’j + GijGij] (12)
one can write S§ as
-® i 1. i
=—= [ dte BB]+4G G —

ﬂ —®;ij

K/dtdt[ GG} (13)
The total derivative term can be transferred to the boundary
by using the Stokes’s theorem.

On the other hand, the cosmologlcal boundary is
specified by x' = ¢/, and x° =t is independent of o¢'.
Hence, \/|gle ¢ = ¢~®. The unit vector to the boundary is
fixed, i.e., n =0, and the reduction of the trace of the
extrinsic curvature becomes

1 ...
I(C :EG”G” (14)
Therefore, the reduction of the boundary term is canceled
with the total derivative term in the bulk action, i.e.,
:——/dt “I’[ B, B”+4G Gl —
0S§ = 0. (15)

Similar cancellation between the reduction of boundary

action and the total derivative terms in the bulk action has

been observed for the couplings at order o in [17].
Using the generalized metric &

G -G B
=7 BG-! s (16)

G- BG™'B
where 7 is the metric of the O(d, d) group which in the
nondiagonal form is

n= (? é) (17)

one can write the bulk action as

S§ = —/dte‘q’[

which is invariant under the global O(d, d, R) transforma-
tions because the one-dimensional dilaton is invariant and
the generalized metric transforms as

#-#] 0y

S - QTSQ, (19)

where Q belongs to the O(d, d, R) group, i.e., QTnQ = 5.
Note that tr(S) = 0. Hence the reduction of the extrinsic
curvature (14) can not be written in O(9, 9) invariant form.
So it was necessary that this term was canceled with the
total derivative term in the bulk action. In other words, there
is no way to write the boundary action in O(d, d) invariant
form unless it is zero.

III. COSMOLOGICAL REDUCTION AT ORDER o

The NS-NS couplings in the bulk effective action of type
11 superstring theory at order o> have been found in [14,15]
by imposing the Z, symmetry on the minimal gauge
invariant couplings. In the particular scheme used in
[15], the dilaton appears only as the overall factor e 20,
and the metric and B field appear in the Riemann curvature,
H and the first covariant derivative of H, i.e.,

S =2 [ 4"/l L(G.B) + . (20)
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where dots represent the R-R and fermion fields in which
we are not interested, and ¢ is an overall factor that cannot
be fixed by the T-duality constraint. The gravitational
sector is

L3(G) = 2Ra€nga/}yﬁRﬂ”eCR(sce~u + Ryp“RPPRY Ry
1)

The couplings in this sector are exactly the couplings that
have been found by the S matrix and sigma-model
calculations [25-28] provided that one chooses the overall
parameter to be ¢ = —¢(3)/2°. There are 249 couplings
that involve H. They appear in eight structures. There are
two couplings with structure H' 8 ie.,

1 H Hy H
L?s 48 H a(ng“ﬂJ’Hﬂsﬂ rgﬂHéeaHeCl owH
9 H, o H 22
3 HaéeHaﬂy H/j€/4 Hy('?H&HHecl nox /uK' ( )

There is one coupling with structure RHC, i.e.,

9 ,
L = gHa5€H“/}VHﬁ“'”HyC”H&eHgé«’Rﬂma. (23)
There are seven couplings with structure R*H*, i.e.,
7
L§2H4 _ 5Ha(seHaﬁyHﬁeuHée“nRyeggReeM 4oy (24)

where dots refer to the other six couplings in this structure.
There are 22 couplings with structure R3H?, i.e.,
|

372 15 0 € e
L§ " = —?HlﬂyH(S RaﬁﬂgR/)’Mé‘nR}’ﬂfé‘ +ee (25)

There are 77 couplings with the structure (VH)?H*, i.e.,

or 5
LgHH) "= gHa(sSH(lﬂyH/)’E”HéegveHrﬂngHWﬂ’ T

(26)
There are 106 couplings with the structure R(VH)?H?, i.e.,

L?(E)H)ZHZ _ ﬂHaéeHaﬂyR

48 séﬂnvéHﬂsﬂveH},gﬂ R

(27)
There are 22 couplings with the structure R*(VH)?, i.e.,

REOH)? _

L3 = —ﬁReﬂé{RefﬂC VsH 5, VOHP? + - (28)

And finally, there are 12 couplings with the structure
(VH)*:

OH)* 1 apy € €
L = VP H PV Hiy Vo oy - (29)

We refer the interested readers to [15] for the explicit form
of all couplings.

To find the cosmological reduction of these couplings we
first find the cosmological reduction of the Riemann
curvature, H and VH. They are

1. . 1. . 1. . 1.
Riju = _ZGilij + ZGiijlv Ripjr =0, Rjpjo = ZGikaj - QG,’J»
Hij = 0; Hijo = Bij’ VoHj =0, ViH;j =0,
1. . 1. . 1. . 1. .. 1. . .
ViH,j = _EBjkGil + EBiijl - EBiijh VoH,jo = —EBjkBik - EBiijk + B (30)
Using the above reductions, one finds the following reduction for the Lagrangians L% ®:
L7 = 13(Tr(M*))2/64 + 61Tr(M®) /128, (31)

where the 9 x 9 matrices M = G™'B and L = G~'G. The reduction of the Lagrangian L;(G) is the following

Ly(G) = (Tr(L*))?/64 + STr(L¥)/128 + - - -, (32)

where dots represent terms that have G, Tr(L?), Tr(L) or Tr(L?). The reduction of all other Lagrangians are
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LR = 9Tr(L*M®)/16 4 9Tr(LM>LM*)/16 — 9Tr(LM>LM?) /32 + 9Tr(L*M?)Tr(M*) /16 + - - -,
LEH — 19Tr(L2M?)? /64 + 45Tr(L*M>L*M?) /64 — 15Tr(L*M2LMLM)/16

+ 17Te(L2MPL>M) /32 4 TTr(L*>MLM?*LM) /16 — STr(L>M?LM?)/32

—TTe(L*M3LM) /16 + 17Te(L*M*)/32 — 11Tr(L*M?)Tr(LMLM) /32 + Tr(L*)Tr(M*)/128 + - - -,
= —81Tr(L?ML>M) /64 — 89Tr(L2M?)Tr(L*)/128 + 147Tr(L*ML*M) /64

—99Tr(LSMLM) /64 4 23Tr(LOM?)/32 + T5Tr(L*)Tr(LMLM) /256 + - - -,
L — 20STTr(L2M®) /192 — S09Tr(LM>LM*)/64 + 91Tr(LMLM)Tt(M*)/96

+169Tr(LM>LM) /192 + 33Tr(L>M?*)Tr(M*) /64 — 389Tr(LM>LM?3)/192 + - - -,

2

R3H?
L3

LROIPH _ 3(Te(12M?))?/8 — 23Tr(LMLMLMLM)/48 + 1969Tr(L*M?LMLM) /192
+933Tr(L*M>L*M) /64 — 473Tr(L?MLM*LM) /96 — 1757 Tr(L*M*LM?)/192
— 17Tr(L*MPLM) /2 4+ 1391Tr(L*M*) /192 — 1385Tr(L*M?)Tr(LMLM) /384
—229(Tr(LMLM))?/96 + 383Tr(L*M>L>M?)/96 — 311 Tr(L*)Tr(M*) /128 + - - -,
= 17Tr(L*ML3M) /16 — Tr(L*M?)Tr(L*)/16 + 29Tr(L*ML>*M)/16
+ 57Tr(LSMLM) /64 + 3Tr(LM?) /4 + 27Tr(L*)Tr(LMLM) /256 + - - -,

RX(OH)?

=

LM = 3(Tr(L2M?))? /64 + 3Te(L*M2L>M?) /64 — 113Te(LMLMLMLM)/192
+163Tr(L*M>L*M) /48 — 865Tr(L?MLM*LM) /96 — 1247Tr(L*M*LM?)/192
— M Tr(L*MPLM) /64 + 2383Tr(L*M*) /192 + 1439Tr(L>M?)Tr(LMLM) /384
+ 113(Tr(LMLM))?/96 — 2485Tr(L*M*LMLM) /192 — 277Tr(L*)Tr(M*) /128 + - - -, (33)

where dots represent terms which have G, B, Tr(L?), Tr(M?), Tr(L), or Tr(L?). As it has been argued in [22], using the
field redefinitions and total derivative terms, the couplings involving these structures can be converted to the other couplings
which have no such structures. Before showing how this works, let us add all the above reductions to find the cosmological
reduction of the Lagrangian L3(G, B), i.e.,

L5(G,B) = 23(Tr(L>*M?))?/32 + 455Tr(L*M*L*M?) /96 — 29Tr(L*M*LMLM)/8
+3553Tr(L>M3L*M) /192 + 2365Tr(L*M°®) /192 — 27Tr(L>MLM?*LM) /2
—1517Tr(L3M?>LM?)/96 — 613Tr(L*M3LM) /64 — 13Tr(L>ML>M) /64
— 97Tr(L>M?)Tr(L*)/128 + (Tr(L*))? /64 + 323Tr(L*M*)/16
+263Tr(L*ML>M) /64 — 21Tr(L’MLM) /32 + 47Tr(LOM?) /32 + 5Tr(L®) /128
— 473Tr(LM*LM*) /64 — 443Tr(LM3LM?3)/192 + 169Tr(LM>LM) /192
— 13Tr(L2M*)Tr(LMLM) /64 + 51Tr(L*)Tr(LMLM) /128 — 29(Tr(LMLM))?* /24
—205Tr(LMLMLMLM)/192 + 69Tr(L>*M?)Tr(M*)/64 — 587Tr(L*)Tr(M*)/128
+ 91Tr(LMLM)Tr(M*)/96 + 13(Tr(M*))?/64 + 61Tr(M3)/128 + - - -, (34)

which has 28 structures that have no G, B, Tr(L?), Tr(M?), Tr(L), or Tr(L?). The cosmological reduction of the effective
action (20) then is

2¢

Sé = F dt[e_‘DL3(G, B) + - '], (35)

where L3(G, B) is given in (34).
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To remove the total derivatives terms and field redefinition
freedom from (35), we add all total derivative terms at order
o and all field redefinitions with arbitrary coefficients to
(35). We add the following total derivative terms:

2c B 2c d,

—F/dte d)j:;E—? dtz(e ¢I3), (36)
where 75 is all possible terms at the seven-derivative level
with even parity that are constructed from d), B, G,
d,B,G, ... Using the package “xAcT” [30], one finds there
are 2288 such terms, i.e.,

I3 - leiijkBleImanBanpi + Y (37)

where the coefficients Jq, ..
parameters.
One can change the field variables in (10) as

., Jogg are 2288 arbitrary

G, — Gy + a*5G!)

17 ’

3op(3)

Bij g Bl] +(X/ 5Bl] N
D - O+ o503,

n—n+a>nd, (38)

where the matrices 5G§;), 531(3) and 5@, 5n® are all
possible terms at the six-derivative level constructed from
®, B, G, ®, B, G, .... The perturbations 56513-), 50G), 5n3)
3)

contain even-parity terms and SB;;

terms, 1.e.,

contains odd-parity

5n(3) = nlBiijkBlelmanBni 4+,
5q)(3) = elBiijkBlelmanBni —+ - .
6Gl(;’) = dlBikBlelmanBanpj + RS

3 ke
5Bl(]) :flGl‘kBij[ Bm BanPl+”.' (39)

The coefficients Ny, ...,M748, €1, ..., €748, dl’ . d1105, and
fis---,fess are arbitrary parameters. When the field
variables in S§ are changed according to the above field
redefinitions, they produce some couplings at orders o/
and higher in which we are not interested in this paper.

However, when the NS-NS field variables in S§ are
/3

s8¢ = =20 [ qreolsno (Z g i _ L a6 o0 (= Lb. 50— L6 67+ 62 — 260 L 500
N e N S e S N e A

1 1 1 d

2 dt

+5G)) (— BB =26 G’”’) +5G7 3Gy +

2d3¢
= — 2 /dl€_®}C3,

changed, the following couplings at order o are
produced:
pii 4 <p3)
Y —6B;7 |,
dr Y
(40)

where we have used the fact that the lapse function appears in the action (15) by replacing dt — dt/n [22].
Adding the total derivative terms and the field redefinition terms to the action (35), one finds new action S%, i.e.,

2¢

S5 = Kz/dt[e—%3(c;,3,cb)+--.}, (41)

where the Lagrangian £5(G, B, ®) is related to the Lagrangian £5(G, B) as

£3:L3+\73+K3. (42)

The action S§ and S§ are physically equivalent. They appear in different schemes. Choosing different values for the arbitrary
parameters in 73, K3, one would find different forms of couplings for the Lagrangian £5. We choose these parameters such
that all terms that have any derivative of @, second and higher derivatives of G, B, and all terms that have Tr(L?), Tr(M?),
Tr(L) or Tr(L?) to be zero. Inserting the resulting relations between the parameters into (42), we find the following scheme
for the Lagrangian L5:
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L3 = (Tr(L*M?))?/4 = 3Tr(L>M?*L*M?) /32 + 3Tr(L*M*LMLM) /8 — 3Tr(L>M>*L*M) /16
+ 3Tr(L*M%)/16 — 3Tr(L?MLM?LM)/16 — 3Tr(L3>M*LM?)/16 + 3Tr(L*M>LM) /8
—3Tr(L*ML3M) /32 — Tr(L*M?)Tr(L*)/8 + (Tr(L*))?/64 — 3Tr(L*M*)/ 16
+ 3Tr(L*ML*M) /16 — 3Tr(L°MLM)/16 + 3Tr(L°M?)/16 — 3Tr(L®)/128
+ 3Tr(LM*LM*)/16 — 3Tr(LM3LM?)/32 — 3Tr(LMSLM)/16
— Tr(L2M?)Tr(LMLM) /4 + Tr(L*)Tr(LMLM)/16 + (Tr(LMLM))?/16
—3Tr(LMLMLMLM)/64 — Tr(L>*M?*)Tr(M*)/8 + Tr(L*)Tr(M*)/32
+ Tr(LMLM)Tr(M*)/16 + (Tr(M*))?/64 — 3Tr(M?)/128, (43)
which has the same 28 structures as in (34) but with different coefficients. Note that, in this scheme, there is no term in £;
other than the above 28 couplings.
Now using the definition of the generalized metric in (16), one finds
tr(S*) = 2Tr(L*) + 2Tr(M*) — 8Tr(L2M?) + 4Tr(LMLM),
tr(S%) = 8Tr(L2M2L*M?) — 32Tr(L2M2LMLM) + 16Tr(L>M3L2M) — 16Tr(L2MS)
+16Tr(L2MLM?LM) + 16Tr(L*M?*LM?) — 32Tr(L*M?LM) + 8Tr(L*ML>M)
+16Tr(L*M*) = 16Tr(L*ML*M) + 16Tr(L>MLM) — 16Tr(LSM?) + 2Tr(L?)
— 16Tr(LM?LM*) + 8Tr(LM>LM?) + 16Tr(LM°LM)
+4Tr(LMLMLMLM) + 2Tr(M?). (44)

Using the above O(9,9)-invariant expressions, one can write (43) as

3

= =256

(a(8%)? (&), (45)

~ 256
which is consistent with the cosmological action (6). We have done the same calculations with couplings in [14], and found
exactly the same result. The form of the one-dimensional field redefinitions and total derivative terms, however, are different
in the two cases. The above calculations confirm the NS-NS couplings at order />, which has been found in [14,15].
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