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Recently, imposing theOð1; 1Þ symmetry on the circle reduction of the classical effective action of string
theory, we have found all NS-NS couplings of type II superstring theories at order α03. In this paper we use
the cosmological reduction on the couplings and show that, up to one-dimensional field redefinitions and
total derivative terms, they are invariant under the Oð9; 9Þ transformations.
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I. INTRODUCTION

A theory of gravity in a spacetime manifold with/without
a boundary that is consistent with the rules of quantum
mechanics is string theory. This theory includes the finite
number of massless modes and the tower of infinite number
of massive modes of the string excitations. At low energies,
however, the massive modes are integrated out to produce
an effective theory that includes only the massless fields.
The effective action has a double expansions. The genus
expansion includes the classical tree level, i.e., Seff þ ∂Seff ,
a tower of quantum loop-level corrections, and the stringy
expansion that is an expansion in terms of higher derivative
couplings at each loop level. The classical effective action
has the following higher derivative or α0 expansion:

Seff ¼
X∞
m¼0

α0mSm ¼ S0 þ α0S1 þ α02S2 þ α03S3 þ � � � ;

∂Seff ¼
X∞
m¼0

α0m∂Sm ¼ ∂S0 þ α0∂S1

þ α02∂S2 þ α03∂S3 þ � � � : ð1Þ

The leading order bulk action S0 includes the Hilbert-
Einstein term and the boundary action ∂S0 includes the
Hawking-Gibbons term [1,2]. These actions and their
appropriate higher derivative extensions should be found
by specific techniques in the string theory. Since the
effective action includes the couplings at all orders of
derivative, one complication in finding the couplings in the

string theory is the freedom of the field redefinitions that
include the higher derivatives of fields [3]. As a result, the
effective action in the string theory can appear in many
different equivalent schemes.
One of the most exciting discoveries in perturbative

string theory is T duality [4,5] that appears when one
compactifies theory on a torus, e.g., the compactification of
the full bosonic string theory on tours Td is invariant under
Oðd; d; ZÞ transformations. After integrating out the mas-
sive modes, however, the T duality should appears as
symmetry in the effective actions. It has been shown in
[6,7] that the dimensional reduction of the classical
effective actions of the bosonic and heterotic string
theories on a torus Td are in fact invariant under
Oðd; d; RÞ transformations.
When one reduces the effective action on a circle, the

invariance of the reduced action under the Z2 subgroup of
the Oð1; 1; RÞ group constrains greatly the couplings in the
effective action. In fact there is only one T-dual multiplet in
the effective action of the bosonic string theory, and there
are two T-dual multiplets in the effective action of type II
superstring theories at the leading order of α0, one for NS-
NS couplings and one for R-R couplings [8]. By the T-dual
multiplet we means the set of couplings in the effective
action which are related into each others under the Z2

transformations after reducing them on the circle. The Z2

transformations or T-duality transformations are the
Buscher rules [9,10] and some higher derivative corrections
at each order of α0 that depend on the scheme that one uses
for the gauge invariant couplings in the effective action at
that order of α0 [11,12]. The corrected transformations,
however, should satisfy the Z2 symmetry. There is no
scheme for the higher-derivative couplings in the original
action in which the T-duality transformations are the
standard Buscher rules [12].
Since the T-duality transformations have higher deriva-

tive corrections, the other T-dual multiplets include cou-
plings at all orders of α0. In fact it has been observed in [13]
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that the couplings in the effective action of the bosonic
string theory at order α0 are related by the T-duality
transformations to the couplings at order α02. They belong
to one T-dual multiplet. If one extends the calculations in
[13] to the order α03, then one would find that the couplings
at order α0 and α02 are related to some of the couplings at
order α03. They belong to the same T-dual multiplet.
However, there are couplings at this order that are not
connected to the couplings at order α0; α02 by the T-duality
transformations. They belong to another T-dual multiplet.
In other words, if one finds the couplings in the bosonic
string theory at order α03 by S-matrix method, one would
find they have two factors a1, a2, i.e., S3 ¼ a1S1

3 þ a2S2
3.

One factor should be the same as the one appears in the
couplings at order α0; α02, and another one is proportional to
ζð3Þ. These two factors should appear in the T-duality
transformations as well. At the order α04, the couplings in
the bosonic theory should have three factors a1, a2, a3, i.e.,
S4 ¼ a1S1

4 þ a2S2
4 þ a3S3

4. One is the same as the factor in
α0; α02, one is proportional to ζð3Þ, and another is an
independent factor. Similar patterns should appear for
the higher orders of α0. Schematically, the bulk action
(1) has the following expansion in terms of the T-dual
multiplets:

Seff ¼
X∞
n¼0

anTn ¼ a0T0 þ a1T1 þ a2T2 þ a3T3 þ � � � ;

ð2Þ

where a0; a1; � � � are some coefficients that cannot be fixed
by the T duality. They should be fixed by the S-matrix
calculations, e.g., a0 ¼ 1, a1 ¼ 1, a3 ¼ ζð3Þ. In the type II
superstring theory, a1 ¼ 0, and there are T-dual multiplets
that include the R-R couplings. The T-dual mutiplets in the
bosonic string theory are

T0 ¼ S0;

T1 ¼ α0S1 þ α02S2 þ α03S1
3 þ α04S1

4 þ α05S1
5 þ � � � ;

T2 ¼ α03S2
3 þ α04S2

4 þ α05S2
5 þ α06S2

6 þ α07S2
7 þ � � � ;

T3 ¼ α04S3
4 þ α05S3

5 þ α06S3
6 þ α07S3

7 þ α08S3
8 þ � � � ;

..

.
: ð3Þ

There are no parameters in these multiplets. If the space-
time manifold has no boundary in which the total derivative
terms can be ignored, then each multiplet should be
invariant under the T-duality transformations after reducing
it on the circle. In principle, this constraint may fix all
couplings in each T-dual multiplet. The couplings in the
multiplet T1 at orders α0 and α02 in a particular scheme have
been found in [12,13]. The couplings in the multiplet T2 at
order α03 have been also found in [14,15].

When the spacetime has a boundary, however, one
should keep the total derivative terms before and after
reduction and use the Stokes’s theorem to transfer them to
the boundary. They dictate that the invariance under the
T-duality transformations requires some couplings on the
boundary as well [16]. Hence, the bulk T-dual multiplets
should be accompanied with appropriate boundary cou-
plings to be fully invariant under the T duality.
Schematically, the boundary action (1) should have the
following expansion in terms of the boundary T-dual
multiplets:

∂Seff ¼
X∞
n¼0

an∂Tn ¼ a0∂T0 þ a1∂T1

þ a2∂T2 þ a3∂T3 þ � � � ; ð4Þ

where a0; a1; � � � are the same coefficients that appear in the
bulk T-dual multiplets (2). The boundary mutiplets are

∂T0 ¼ ∂S0;

∂T1 ¼ α0∂S1 þ α02∂S2 þ α03∂S1
3 þ α04∂S1

4 þ α05∂S1
5 þ � � � ;

∂T2 ¼ α03∂S2
3 þ α04∂S2

4 þ α05∂S2
5 þ α06∂S2

6 þ α07∂S2
7 þ � � � ;

∂T3 ¼ α04∂S3
4 þ α05∂S3

5 þ α06∂S3
6 þ α07∂S3

7 þ α08∂S3
8 þ � � � ;

..

.
: ð5Þ

The combination of bulk and boundary multiplets, i.e.,
Ti þ ∂Ti, are then invariant under the T-duality trans-
formations. In other words, neither the bulk multiplets nor
the boundary multiplets are invariant separately under the
T-duality transformations. Their anomalies cancel each
other. There are, however, boundary couplings that are
invariant under the T-duality transformations without
anomaly. Some of them are related to the anomalous
boundary multiplets by imposing the principle of the least
action in the presence of the boundary with appropriate
boundary values for the massless fields. Using these
constraints, the boundary coupling in the multiplet ∂T0

has been found in [16,17]. The boundary couplings in the
multiplet ∂T1 at order α0 in a particular scheme have been
found in [17].
When one uses the cosmological reduction on the

classical effective action, the resulting one-dimensional
effective action should have Oðd; d; RÞ symmetry [6,7].
This symmetry has been first observed for the leading order
bulk couplings in [18–20] and for the couplings at order α0
in a specific scheme in [21]. The T-duality transformations
or Oðd; d; RÞ transformations in this case also receive
higher derivative corrections. The corrected transforma-
tions satisfy theOðd; d; RÞ symmetry [21]. In this case also
there is no scheme for the original couplings in which the
T-duality transformation are the standard Oðd; d; RÞ trans-
formations of the leading order. Unlike the circle reduction,
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some of the couplings in the original action disappear upon
the reduction [22]. Hence, this symmetry is not appropriate
for fixing the couplings in the original action. However, this
symmetry is useful for classifying the couplings in the one-
dimensional effective action at all orders of α0 [22,23].
Using the most general corrections for the T-duality

transformations, including the transformations for the lapse
function, and using integration by part, it has been shown in
[22,23] that the cosmological reduction of the bulk action
(1) at order α0 and higher can be written in a scheme in
which only the first time derivative of the generalized
metric S appears. Trace of odd number of the first
derivative of S is zero. It has been shown in [23] that
the couplings that include trð _S2Þ can be removed by the
lapse function transformation. Then the one-dimensional
bulk action can be written in a specific scheme as the
following expansion [22,23]:

Sc
eff ¼ Sc

0 þ
Z

dte−Φðα0c2;0trð _S4Þ þ α02c3;0trð _S6Þ

þ α03½c4;0trð _S8Þ þ c4;1ðtrð _S4ÞÞ2�
þ α04½c5;0trð _S10Þ þ c5;1trð _S6Þtrð _S4Þ� þ � � �Þ; ð6Þ

where the coefficient cm;n depends on the specific theory;
e.g., c2;0 is nonzero for the bosonic string theory, whereas
this number is zero for the superstring theory.
To find the cosmological reduction of the corresponding

boundary action in (1), one has to take into account the one-
dimensional total derivative terms and the T-duality trans-
formations or the field redefinitions that have been used in
[22,23]. However, it has been observed in [17] that if one
adds the total derivative term resulting from the cosmo-
logical reduction of the leading order action to the
boundary by using the Stokes’s theorem, it cancels the
cosmological reduction of the Hawking-Gibbons term, i.e.,
Sc
0 ¼ 0. Since the cosmological reduction of the boundary

term at the leading order of α0 is zero, we expect it should
be zero at all higher orders of α0 as well, i.e.,

∂Sc
eff ¼ 0: ð7Þ

This may be used for conforming the boundary couplings
in the effective action (1) at each order of α0 that can be
found by the Z2 symmetry. Since the cosmological reduc-
tion of the leading order action is zero, then for studying the
cosmological reduction of the boundary action at order α0,
one does not need the field redefinitions used in the bulk
action. It has been shown in [17] that if one adds the total
derivative terms at order α0 to the reduction of the boundary
couplings at order α0, they become zero, which is consistent
with the above conjecture.
The cosmological bulk action (6) may also be used for

confirming the bulk couplings in the effective action (1)

that can be found by the Z2 symmetry. The NS-NS
couplings in the effective action of type II superstring
theory at order α03 have been found in [14,15] by imposing
the Z2 symmetry on the effective action. In fact it has been
shown in [24] that there are 872 independent couplings at
this order. The Z2 symmetry is imposed on these couplings
in a particular scheme. Interestingly, all parameters are
fixed up to an overall factor in [14]. In that scheme there are
445 nonzero couplings that include derivatives of dilaton. A
field redefinition has been used in [15] to write them in
terms of 251 couplings in which the dilaton appears only as
the overall factor e−2ϕ. In this paper we are going to show
that the cosmological reduction of the couplings in [14] or
in [15] can be written in the form of the cosmological action
(6) at order α03. The gravitational sector of these couplings
which have been found a long time ago by the S matrix and
sigma model calculations [25–28], has been shown in [29]
that satisfies the Oð9; 9Þ symmetry.
The outline of the paper is as follows: in Sec. II, we

review the observation that the cosmological reduction of
the leading order bulk and boundary actions are invariant
under the Oðd; dÞ transformations. In Sec. III, we first
reduce the bulk NS-NS couplings at order α03 that have
been found in [15] to find its corresponding one-dimen-
sional bulk action. We add to it all one-dimensional total
derivative terms and all possible field redefinitions with
arbitrary coefficients to write the action in a scheme which
has all the arbitrary parameters of the field redefinitions and
the total derivative terms. We then impose the constraint on
the parameters that the cosmological action has no deriva-
tive of the one-dimensional dilaton, no second and higher
derivatives on metric and the B field, and we impose the
constraint that the couplings involving the first derivative of
metric which are not consistent with the Oð9; 9Þ symmetry
to be zero. Moreover, we impose the condition that the
terms that have contribution to the Oð9; 9Þ-invariant struc-
ture trð _S2Þ to be zero. We have found that in fact there is a
solution for the parameters for such conditions. After
imposing the resulting relations between the parameters,
we find the action in the scheme that can be written
explicitly as the α03 order terms of (6).

II. COSMOLOGICAL REDUCTION AT THE
LEADING ORDER

In this section, we review the cosmological reduction of
the leading order bulk and boundary actions. These actions
are given as

S0þ∂S0¼−
2

κ2

�Z
dDx

ffiffiffiffiffiffiffi
−G

p
e−2ϕ

�
Rþ4∇μϕ∇μϕ−

1

12
H2

�

þ2

Z
dD−1σ

ffiffiffiffiffi
jgj

p
e−2ϕK

�
; ð8Þ
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where G is determinant of the bulk metric Gμν and the
boundary is specified by the functions xμ ¼ xμðσμ̃Þ. In the
boundary action, g is determinant of the induced metric on
the boundary

gμ̃ ν̃ ¼
∂xμ
∂σμ̃

∂xν
∂σν̃ Gμν: ð9Þ

The extrinsic curvature of boundary, i.e., Kμν, is defined as
Kμν ¼ ∇μnν − nμaμ where nμ is the unite vector orthogonal
to the boundary that is outward going (inward going) if the
boundary is spacelike (timelike), and aν ¼ nρ∇ρnν is
acceleration. It satisfies the relation nμaμ ¼ 0. The extrinsic
curvature is symmetric and satisfies nμKμν ¼ 0.
When fields depend only on time, using the gauge

symmetries it is possible to write the metric, B field, and
dilaton as

Gμν ¼
�−n2ðtÞ 0

0 GijðtÞ

�
; Bμν ¼

�
0 0

0 BijðtÞ
�
;

2ϕ ¼ Φþ 1

2
log detðGijÞ; ð10Þ

where the lapse function nðtÞ can also be fixed to n ¼ 1.
The cosmological reduction of the bulk action then
becomes

Sc
0 ¼ −

2

κ

Z
dte−Φ

�
1

4
_Bij

_Bij −
3

4
_Gij

_Gij

− Gij _Gij
_Φ − _Φ2 þ GijG̈ij

�
; ð11Þ

where _Gij ≡GikGil _Gkl. Using the following total deriva-
tive term

Z
dt

d
dt

½e−ΦGij _Gij�

¼
Z

dte−Φ½−Gij _Gij
_Φ − _Gij _Gij þGijG̈ij� ð12Þ

one can write Sc
0 as

Sc
0 ¼ −

2

κ2

Z
dte−Φ

�
1

4
_Bij

_Bij þ 1

4
_Gij

_Gij − _Φ2

�

−
2

κ

Z
dt

d
dt

½e−ΦGij _Gij�: ð13Þ

The total derivative term can be transferred to the boundary
by using the Stokes’s theorem.
On the other hand, the cosmological boundary is

specified by xi ¼ σi, and x0 ¼ t is independent of σi.
Hence,

ffiffiffiffiffijgjp
e−2ϕ ¼ e−Φ. The unit vector to the boundary is

fixed, i.e., _n ¼ 0, and the reduction of the trace of the
extrinsic curvature becomes

Kc ¼ 1

2
Gij _Gij: ð14Þ

Therefore, the reduction of the boundary term is canceled
with the total derivative term in the bulk action, i.e.,

Sc
0 ¼ −

2

κ2

Z
dte−Φ

�
1

4
_Bij

_Bij þ 1

4
_Gij

_Gij − _Φ2

�
;

∂Sc
0 ¼ 0: ð15Þ

Similar cancellation between the reduction of boundary
action and the total derivative terms in the bulk action has
been observed for the couplings at order α0 in [17].
Using the generalized metric S

S ≡ η

�
G−1 −G−1B

BG−1 G − BG−1B

�
; ð16Þ

where η is the metric of the Oðd; dÞ group which in the
nondiagonal form is

η ¼
�
0 1

1 0

�
; ð17Þ

one can write the bulk action as

Sc
0 ¼ −

2

κ2

Z
dte−Φ

�
−
1

8
trð _S2Þ − _Φ2

�
; ð18Þ

which is invariant under the global Oðd; d; RÞ transforma-
tions because the one-dimensional dilaton is invariant and
the generalized metric transforms as

S → ΩTSΩ; ð19Þ

where Ω belongs to the Oðd; d; RÞ group, i.e., ΩTηΩ ¼ η.
Note that trð _SÞ ¼ 0. Hence the reduction of the extrinsic
curvature (14) can not be written in Oð9; 9Þ invariant form.
So it was necessary that this term was canceled with the
total derivative term in the bulk action. In other words, there
is no way to write the boundary action in Oðd; dÞ invariant
form unless it is zero.

III. COSMOLOGICAL REDUCTION AT ORDER α03

The NS-NS couplings in the bulk effective action of type
II superstring theory at order α03 have been found in [14,15]
by imposing the Z2 symmetry on the minimal gauge
invariant couplings. In the particular scheme used in
[15], the dilaton appears only as the overall factor e−2ϕ,
and the metric and B field appear in the Riemann curvature,
H and the first covariant derivative of H, i.e.,

S3 ¼ −
2c
κ2

Z
d10x

ffiffiffiffiffiffi
−g

p ½e−2ϕL3ðG;BÞ þ � � ��; ð20Þ

MOHAMMAD R. GAROUSI PHYS. REV. D 104, 066013 (2021)

066013-4



where dots represent the R-R and fermion fields in which
we are not interested, and c is an overall factor that cannot
be fixed by the T-duality constraint. The gravitational
sector is

L3ðGÞ ¼ 2Rα
ϵ
γ
εRαβγδRβ

μ
ϵ
ζRδζεμ þ Rαβ

ϵεRαβγδRγ
μ
ϵ
ζRδζεμ:

ð21Þ

The couplings in this sector are exactly the couplings that
have been found by the S matrix and sigma-model
calculations [25–28] provided that one chooses the overall
parameter to be c ¼ −ζð3Þ=26. There are 249 couplings
that involve H. They appear in eight structures. There are
two couplings with structure H8, i.e.,

LH8

3 ¼ 1

48
Hα

δϵHαβγHβ
εμHγ

ζηHδε
θHϵζ

ιHθικHμη
κ

−
9

128
Hα

δϵHαβγHβ
εμHγ

ζηHδε
θHϵζ

ιHηθκHμι
κ: ð22Þ

There is one coupling with structure RH6, i.e.,

LRH6

3 ¼ 9

8
Hα

δϵHαβγHβ
εμHγ

ζηHδε
θHϵζ

ιRμιηθ: ð23Þ

There are seven couplings with structure R2H4, i.e.,

LR2H4

3 ¼ 7

2
Hα

δϵHαβγHβ
εμHδ

ζηRγ
θ
εζRϵθμη þ � � � ; ð24Þ

where dots refer to the other six couplings in this structure.
There are 22 couplings with structure R3H2, i.e.,

LR3H2

3 ¼ −
15

2
HαβγHδϵ εRαδ

μζRβμϵ
ηRγηεζ þ � � � : ð25Þ

There are 77 couplings with the structure ð∇HÞ2H4, i.e.,

Lð∂HÞ2H4

3 ¼ 5

8
Hα

δϵHαβγHβ
εμHδε

ζ∇ϵHγ
ηθ∇ζHμηθ þ � � � :

ð26Þ

There are 106 couplings with the structure Rð∇HÞ2H2, i.e.,

LRð∂HÞ2H2

3 ¼ 457

48
Hα

δϵHαβγRεζμη∇δHβ
εμ∇ϵHγ

ζη þ � � � :
ð27Þ

There are 22 couplings with the structure R2ð∇HÞ2, i.e.,

LR2ð∂HÞ2
3 ¼ −

5

24
RϵμεζRϵεμζ∇δHαβγ∇δHαβγ þ � � � : ð28Þ

And finally, there are 12 couplings with the structure
ð∇HÞ4:

Lð∂HÞ4
3 ¼ 1

8
∇δHαβγ∇ϵHγ

μζ∇εHδμζ∇εHαβ
ϵ þ � � � : ð29Þ

We refer the interested readers to [15] for the explicit form
of all couplings.
To find the cosmological reduction of these couplings we

first find the cosmological reduction of the Riemann
curvature, H and ∇H. They are

Rijkl ¼ −
1

4
_Gil

_Gjk þ
1

4
_Gik

_Gjl; Ri0jk ¼ 0; Ri0j0 ¼
1

4
_Gik

_Gk
j −

1

2
G̈ij;

Hijk ¼ 0; Hij0 ¼ _Bij; ∇0Hijk ¼ 0; ∇kHij0 ¼ 0;

∇lHijk ¼ −
1

2
_Bjk

_Gil þ
1

2
_Bik

_Gjl −
1

2
_Bij

_Gkl; ∇0Hij0 ¼ −
1

2
_Bj

k _Bik −
1

2
_Bi

k _Gjk þ B̈ij: ð30Þ

Using the above reductions, one finds the following reduction for the Lagrangians LH8

3 :

LH8

3 ¼ 13ðTrðM4ÞÞ2=64þ 61TrðM8Þ=128; ð31Þ

where the 9 × 9 matrices M ¼ G−1 _B and L ¼ G−1 _G. The reduction of the Lagrangian L3ðGÞ is the following

L3ðGÞ ¼ ðTrðL4ÞÞ2=64þ 5TrðL8Þ=128þ � � � ; ð32Þ

where dots represent terms that have G̈, TrðL2Þ, TrðLÞ or TrðL3Þ. The reduction of all other Lagrangians are
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LRH6

3 ¼ 9TrðL2M6Þ=16þ 9TrðLM2LM4Þ=16 − 9TrðLM3LM3Þ=32þ 9TrðL2M2ÞTrðM4Þ=16þ � � � ;
LR2H4

3 ¼ 19TrðL2M2Þ2=64þ 45TrðL2M2L2M2Þ=64 − 15TrðL2M2LMLMÞ=16
þ 17TrðL2M3L2MÞ=32þ 7TrðL2MLM2LMÞ=16 − 5TrðL3M2LM2Þ=32
− 7TrðL3M3LMÞ=16þ 17TrðL4M4Þ=32 − 11TrðL2M2ÞTrðLMLMÞ=32þ TrðL4ÞTrðM4Þ=128þ � � � ;

LR3H2

3 ¼ −81TrðL3ML3MÞ=64 − 89TrðL2M2ÞTrðL4Þ=128þ 147TrðL4ML2MÞ=64
− 99TrðL5MLMÞ=64þ 23TrðL6M2Þ=32þ 75TrðL4ÞTrðLMLMÞ=256þ � � � ;

Lð∂HÞ2H4

3 ¼ 2257TrðL2M6Þ=192 − 509TrðLM2LM4Þ=64þ 91TrðLMLMÞTrðM4Þ=96
þ 169TrðLM5LMÞ=192þ 33TrðL2M2ÞTrðM4Þ=64 − 389TrðLM3LM3Þ=192þ � � � ;

LRð∂HÞ2H2

3 ¼ 3ðTrðL2M2ÞÞ2=8 − 23TrðLMLMLMLMÞ=48þ 1969TrðL2M2LMLMÞ=192
þ 933TrðL2M3L2MÞ=64 − 473TrðL2MLM2LMÞ=96 − 1757TrðL3M2LM2Þ=192
− 17TrðL3M3LMÞ=2þ 1391TrðL4M4Þ=192 − 1385TrðL2M2ÞTrðLMLMÞ=384
− 229ðTrðLMLMÞÞ2=96þ 383TrðL2M2L2M2Þ=96 − 311TrðL4ÞTrðM4Þ=128þ � � � ;

LR2ð∂HÞ2
3 ¼ 17TrðL3ML3MÞ=16 − TrðL2M2ÞTrðL4Þ=16þ 29TrðL4ML2MÞ=16

þ 57TrðL5MLMÞ=64þ 3TrðL6M2Þ=4þ 27TrðL4ÞTrðLMLMÞ=256þ � � � ;
Lð∂HÞ4
3 ¼ 3ðTrðL2M2ÞÞ2=64þ 3TrðL2M2L2M2Þ=64 − 113TrðLMLMLMLMÞ=192

þ 163TrðL2M3L2MÞ=48 − 865TrðL2MLM2LMÞ=96 − 1247TrðL3M2LM2Þ=192
− 41TrðL3M3LMÞ=64þ 2383TrðL4M4Þ=192þ 1439TrðL2M2ÞTrðLMLMÞ=384
þ 113ðTrðLMLMÞÞ2=96 − 2485TrðL2M2LMLMÞ=192 − 277TrðL4ÞTrðM4Þ=128þ � � � ; ð33Þ

where dots represent terms which have G̈, B̈, TrðL2Þ, TrðM2Þ, TrðLÞ, or TrðL3Þ. As it has been argued in [22], using the
field redefinitions and total derivative terms, the couplings involving these structures can be converted to the other couplings
which have no such structures. Before showing how this works, let us add all the above reductions to find the cosmological
reduction of the Lagrangian L3ðG;BÞ, i.e.,

L3ðG;BÞ ¼ 23ðTrðL2M2ÞÞ2=32þ 455TrðL2M2L2M2Þ=96 − 29TrðL2M2LMLMÞ=8
þ 3553TrðL2M3L2MÞ=192þ 2365TrðL2M6Þ=192 − 27TrðL2MLM2LMÞ=2
− 1517TrðL3M2LM2Þ=96 − 613TrðL3M3LMÞ=64 − 13TrðL3ML3MÞ=64
− 97TrðL2M2ÞTrðL4Þ=128þ ðTrðL4ÞÞ2=64þ 323TrðL4M4Þ=16
þ 263TrðL4ML2MÞ=64 − 21TrðL5MLMÞ=32þ 47TrðL6M2Þ=32þ 5TrðL8Þ=128
− 473TrðLM2LM4Þ=64 − 443TrðLM3LM3Þ=192þ 169TrðLM5LMÞ=192
− 13TrðL2M2ÞTrðLMLMÞ=64þ 51TrðL4ÞTrðLMLMÞ=128 − 29ðTrðLMLMÞÞ2=24
− 205TrðLMLMLMLMÞ=192þ 69TrðL2M2ÞTrðM4Þ=64 − 587TrðL4ÞTrðM4Þ=128
þ 91TrðLMLMÞTrðM4Þ=96þ 13ðTrðM4ÞÞ2=64þ 61TrðM8Þ=128þ � � � ; ð34Þ

which has 28 structures that have no G̈, B̈, TrðL2Þ, TrðM2Þ, TrðLÞ, or TrðL3Þ. The cosmological reduction of the effective
action (20) then is

Sc
3 ¼ −

2c
κ2

Z
dt½e−ΦL3ðG;BÞ þ � � ��; ð35Þ

where L3ðG;BÞ is given in (34).
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To remove the total derivatives terms and field redefinition
freedom from (35), we add all total derivative terms at order
α03 and all field redefinitions with arbitrary coefficients to
(35). We add the following total derivative terms:

−
2c
κ2

Z
dte−ΦJ 3 ≡ −

2c
κ2

Z
dt

d
dt

ðe−ΦI3Þ; ð36Þ

where I3 is all possible terms at the seven-derivative level
with even parity that are constructed from _Φ; _B; _G;
Φ̈; B̈; G̈;…. Using the package “XACT” [30], one finds there
are 2288 such terms, i.e.,

I3 ¼ j1 _Bi
j _Bj

k _Bk
l _Gl

m _Bm
n _Bn

p _Bp
i þ � � � ; ð37Þ

where the coefficients J1;…; J2288 are 2288 arbitrary
parameters.
One can change the field variables in (10) as

Gij → Gij þ α03δGð3Þ
ij ;

Bij → Bij þ α03δBð3Þ
ij ;

Φ → Φþ α03δΦð3Þ;

n → nþ α03δnð3Þ; ð38Þ

where the matrices δGð3Þ
ij , δBð3Þ

ij and δΦð3Þ; δnð3Þ are all
possible terms at the six-derivative level constructed from
_Φ, _B, _G, Φ̈, B̈, G̈;…. The perturbations δGð3Þ

ij , δΦð3Þ, δnð3Þ

contain even-parity terms and δBð3Þ
ij contains odd-parity

terms, i.e.,

δnð3Þ ¼ n1 _Bi
j _Bj

k _Bk
l _Bl

m _Bm
n _Bn

i þ � � � ;
δΦð3Þ ¼ e1 _Bi

j _Bj
k _Bk

l _Bl
m _Bm

n _Bn
i þ � � � ;

δGð3Þ
ij ¼ d1 _Bi

k _Bk
l _Bl

m _Bm
n _Bn

p _Bpj þ � � � ;
δBð3Þ

ij ¼ f1 _Gi
k _Bkj

_Bl
m _Bm

n _Bn
p _Bpl þ � � � : ð39Þ

The coefficients n1;…; n748, e1;…; e748, d1;…; d1105, and
f1;…; f665 are arbitrary parameters. When the field
variables in Sc

3 are changed according to the above field
redefinitions, they produce some couplings at orders α06
and higher in which we are not interested in this paper.
However, when the NS-NS field variables in Sc

0 are
changed, the following couplings at order α03 are
produced:

δSc
0 ¼ −

2α03

κ2

Z
dte−Φ

�
δnð3Þ

�
−
1

4
_Bij

_Bij −
1

4
_Gij

_Gij þ _Φ2

�
þ δΦð3Þ

�
−
1

4
_Bij

_Bij −
1

4
_Gij

_Gij þ _Φ2

�
− 2 _Φ

d
dt

δΦð3Þ

þ δGð3Þ
ij

�
−
1

2
_Bk

j _Bki −
1

2
_Gk

j _Gki

�
þ 1

2
_Gij d

dt
δGð3Þ

ij þ 1

2
_Bij d

dt
δBð3Þ

ij

�
;

≡ −
2α03c
κ2

Z
dte−ΦK3; ð40Þ

where we have used the fact that the lapse function appears in the action (15) by replacing dt → dt=n [22].
Adding the total derivative terms and the field redefinition terms to the action (35), one finds new action Sc3, i.e.,

Sc3 ¼ −
2c
κ2

Z
dt½e−ΦL3ðG;B;ΦÞ þ � � ��; ð41Þ

where the Lagrangian L3ðG;B;ΦÞ is related to the Lagrangian L3ðG;BÞ as

L3 ¼ L3 þ J 3 þK3: ð42Þ

The action Sc
3 and S

c
3 are physically equivalent. They appear in different schemes. Choosing different values for the arbitrary

parameters in J 3,K3, one would find different forms of couplings for the Lagrangian L3. We choose these parameters such
that all terms that have any derivative of Φ, second and higher derivatives of G, B, and all terms that have TrðL2Þ, TrðM2Þ,
TrðLÞ or TrðL3Þ to be zero. Inserting the resulting relations between the parameters into (42), we find the following scheme
for the Lagrangian L3:
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L3 ¼ ðTrðL2M2ÞÞ2=4 − 3TrðL2M2L2M2Þ=32þ 3TrðL2M2LMLMÞ=8 − 3TrðL2M3L2MÞ=16
þ 3TrðL2M6Þ=16 − 3TrðL2MLM2LMÞ=16 − 3TrðL3M2LM2Þ=16þ 3TrðL3M3LMÞ=8
− 3TrðL3ML3MÞ=32 − TrðL2M2ÞTrðL4Þ=8þ ðTrðL4ÞÞ2=64 − 3TrðL4M4Þ=16
þ 3TrðL4ML2MÞ=16 − 3TrðL5MLMÞ=16þ 3TrðL6M2Þ=16 − 3TrðL8Þ=128
þ 3TrðLM2LM4Þ=16 − 3TrðLM3LM3Þ=32 − 3TrðLM5LMÞ=16
− TrðL2M2ÞTrðLMLMÞ=4þ TrðL4ÞTrðLMLMÞ=16þ ðTrðLMLMÞÞ2=16
− 3TrðLMLMLMLMÞ=64 − TrðL2M2ÞTrðM4Þ=8þ TrðL4ÞTrðM4Þ=32
þ TrðLMLMÞTrðM4Þ=16þ ðTrðM4ÞÞ2=64 − 3TrðM8Þ=128; ð43Þ

which has the same 28 structures as in (34) but with different coefficients. Note that, in this scheme, there is no term in L3

other than the above 28 couplings.
Now using the definition of the generalized metric in (16), one finds

trð _S4Þ ¼ 2TrðL4Þ þ 2TrðM4Þ − 8TrðL2M2Þ þ 4TrðLMLMÞ;
trð _S8Þ ¼ 8TrðL2M2L2M2Þ − 32TrðL2M2LMLMÞ þ 16TrðL2M3L2MÞ − 16TrðL2M6Þ

þ 16TrðL2MLM2LMÞ þ 16TrðL3M2LM2Þ − 32TrðL3M3LMÞ þ 8TrðL3ML3MÞ
þ 16TrðL4M4Þ − 16TrðL4ML2MÞ þ 16TrðL5MLMÞ − 16TrðL6M2Þ þ 2TrðL8Þ
− 16TrðLM2LM4Þ þ 8TrðLM3LM3Þ þ 16TrðLM5LMÞ
þ 4TrðLMLMLMLMÞ þ 2TrðM8Þ: ð44Þ

Using the above Oð9; 9Þ-invariant expressions, one can write (43) as

L3 ¼
1

256
ðtrð _S4ÞÞ2 − 3

256
trð _S8Þ; ð45Þ

which is consistent with the cosmological action (6). We have done the same calculations with couplings in [14], and found
exactly the same result. The form of the one-dimensional field redefinitions and total derivative terms, however, are different
in the two cases. The above calculations confirm the NS-NS couplings at order α03, which has been found in [14,15].
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