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From shift invariant to Gabor- type invariant spaces
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Abstract: The theory of shift invariant subspaces on locally compact abelian groups has been extremely grown in last two
decades. Let G be a locally compact abelian group with a closed, discrete and cocompact subgroup Γ. A closed subspace V
of L2(G) is said to be shift invariant if it is invariant under shifts by elements of Γ. The omission of some conditions (discrete
and cocompact) on Γ generalizes shift invariant spaces to translation invariant spaces. In this paper we briefly review this
generalization. We also prove similar results on modulation invariant spaces which lead to characterization of Gabor- type
invariant spaces.
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Introduction
For a locally compact abelian (LCA) groupG, a closed subgroup Γ ofG is called uniform lattice if it is discrete and cocompact
(i.e. the quotient group G/Γ is compact). A closed subspace V of L2(G) is said to be shift invariant if TγV ⊆ V for all
γ ∈ Γ, where Tγ is the shift operator defined as Tγ : L2(G) −→ L2(G), Tγf(x) = f(x − γ). A closed subspace W of
L2(G) is defined to be modulation invariant with respect to Λ (Λ- modulation invariant) if it is invariant under modulations by
elements of a closed subgroup Λ (which is not necessarily discrete or cocompact) of the dual group Ĝ. Our goal in this paper
is to review the history of concept of shift invariant spaces which is studied in the last two decades. By a similar approach we
define modulation invariant spaces and characterize these spaces in terms of range functions. We have organized the article
as follows. The rest of this section is devoted to stating some required preliminaries on LCA groups and shift invariant spaces
which were studied in [7]. Section 2 consists of two generalizations of shift invariant spaces. Following an idea of [3], using
two transformations of L2(G) into a vector valued space, we find a correspondence between translation invariant spaces of
L2(G) and multiplicatively invariant subspaces of the vector valued space, which yields the desired characterization. Finally
in section 3, we characterize modulation invariant and Gabor- type invariant spaces in terms of range functions.

Assume that G is a second countable LCA group, Γ is a uniform lattice in G, and Ω is a fundamental domain for Γ∗ in
Ĝ with a measure dξ on it. In the following proposition which is [7, Proposition 2.1], it is shown that L2(G) is isometrically
isomorphic to the space L2(Ω, l2(Γ∗)) of square integrable functions from Ω to l2(Γ∗).

Proposition 1. The mapping T : L2(G) −→ L2(Ω, l2(Γ∗)), defined by T f(ξ) = (f̂(ξη))η∈Γ∗ is an isometric isomorphism,
between Hilbert spaces L2(G) and L2(Ω, l2(Γ∗)).

A range function is a mapping
J : Ω → {closed subspaces of l2(Γ∗)}.

J is called measurable if the associated orthogonal projections P (ω) : l2(Γ∗) → J(ω) are measurable i.e. ω 7→< P (ω)a, b >
is measurable for each a, b ∈ l2(Γ∗). The main result of this section is the following characterization theorem in L2(G)([7,
Theorem 3.1]. The following theorem characterizes shift invariant spaces in terms of range functions. Note that in this case
the subgroup Γ is closed, discrete and cocompact.

Theorem 1. Suppose G is a second countable LCA group, Γ is a uniform lattice in G, and Ω is a fundamental domain for
Γ∗ in Ĝ. A closed subspace V ⊆ L2(G) is shift invariant (with respect to the uniform lattice Γ) if and only if V = {f ∈
L2(G), T f(ω) ∈ J(ω) for a.e ω ∈ Ω}, where J is a measurable range function and T is the mapping as in Proposition
1. The correspondence between V and J is one to one under the convention that the range functions are identified if they are
equal a.e. Moreover, if V = S(A) for some countable set A ⊆ L2(G) then

J(ω) = span{T φ(ω); φ ∈ A}. (1)
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Main results
The goal of this section is to study generalizations of shift invariant spaces to translation invariant spaces(the case that Γ is not
discrete or cocompact). To this end, we first consider vector valued spaces and multiplicatively invariant subspaces, and we
show that there is a one to one correspondence between translation invariant spaces on L2(G) and multiplicatively invariant
spaces on the vector valued space.

Let (Ω,m) be a σ- finite measure space and H be a separable Hilbert space. A range function is a mapping J : Ω −→
{ closed subspaces of H }. We write PJ(ω) for the orthogonal projections of H onto J(ω). A range function J is measurable
if the mapping ω 7→ ⟨PJ(ω)(a), b⟩ is measurable for all a, b ∈ H. Consider the space L2(Ω,H) of all measurable functions
ϕ from Ω to H such that ∥ϕ∥22 =

∫
Ω
∥ϕ(ω)∥2Hdm(ω) < ∞ with the inner product ⟨ϕ, ψ⟩ =

∫
Ω
⟨ϕ(ω), ψ(ω)⟩Hdm(ω). It can

be shown that L2(Ω,H) is isometrically isomorphic to L2(Ω)⊗H, where ⊗ denotes the tensor product of Hilbert spaces. A
subset D of L∞(Ω) is said to be a determinig set for L1(Ω), if for any f ∈ L1(Ω),

∫
Ω
fgdm = 0 for all g ∈ D implies that

f = 0. A closed subspace W of L2(Ω,H) is called multiplicatively invariant with respect to a determining set D, if for each
ϕ ∈ W and g ∈ D, one has gϕ ∈ W . Bownik and Ross in [3, Theorem 2.4], showed that there is a correspondence between
multiplicatively invariant spaces and measurable range functions as follows.

Proposition 2. Suppose that L2(Ω) is separable, so that L2(Ω,H) is also separable. Then for a closed subspace W of
L2(Ω,H) and a determining set D for L1(Ω) the following are equivalent.
(1) W is multiplicatively invariant with respect to D.
(2) W is multiplicatively invariant with respect to L∞(Ω).
(3) There exists a measurable range function J such that

W = {ϕ ∈ L2(Ω,H) : ϕ(ω) ∈ J(ω) , a.e. ω ∈ Ω}.

Identifying range functions which are equivalent almost everywhere, the correspondence between D- multiplicatively invariant
spaces and measurable range functions is one to one and onto.

Now assume that G is a second countable LCA group and Γ is a closed cocompact subgroup of G. Assume that Γ∗ is
the annihilator of Γ in Ĝ. Also suppose that Ω is a measurable section for the quotient Ĝ/Γ∗ and C is a measurable section
for the quotient G/Γ. For γ ∈ Γ we denote by Xγ the associated character on Ĝ, i.e. Xγ(χ) = χ(γ) for χ ∈ Ĝ. One
can see that the set D = {Xγ |Ω : γ ∈ Γ} is a determining set for L1(Ω). A closed subspace V ⊆ L2(G) is called Γ-
translation invariant space, if TγV ⊆ V for all γ ∈ Γ. We say that V is generated by a countable subset A of L2(G), when
V = SΓ(A) = span{Tγf : f ∈ A, γ ∈ Γ}. Using Proposition 1, one can characterize translation invariant spaces in terms of
range functions. The following theorem which is proved in [3, Theorem 3.8], characterizes translation invariant spaces in the
case that Γ is a closed and cocompact subgroup( not necessarily discrete). Notice that the condition Γ is discrete is not used in
the proof of Proposition 1.

Theorem 2. Let V ⊆ L2(G) be a closed subspace and T be as in Proposition 1. Then the following are equivalent.
(1) V is a Γ- translation invariant space.
(2) T (V ) is a multiplicatively invariant subspace of L2(Ω, l2(Γ∗)) with respect to the determining set D = {Xγ |Ω : γ ∈ Γ}.
(3) There exists a measurable range function J : Ω −→ {closed subspaces of l2(Γ∗)} such that

V = {f ∈ L2(G) : T (f)(ω) ∈ J(ω), for a.e. ω ∈ Ω}.

Identifying range functions which are equivalent almost everywhere, the correspondence between Γ- translation invariant
spaces and measurable range functions is one to one and onto.

Now we omit the condition Γ is cocompact from the definition of translation invariant spaces. Assume G is a second
countable LCA group and Γ is an arbitrary closed subgroup of G which is necessarily discrete or cocompact. A closed
subspace V ⊆ L2(G) is called Γ- generalized translation invariant space, if TγV ⊆ V for all γ ∈ Γ. In the rest of this section,
following ideas of [1] to characterize generalized translation invariant spaces in terms of range functions.

In [1, Proposition 6.4] it is shown that there exists an isometric isomorphism between L2(G) and L2(Ω, L2(C)), namely
Z : L2(G) −→ L2(Ω, L2(C)) satisfying

Z(Tγϕ) = Xγ |ΩZ(ϕ). (2)

Proposition 3. Let V ⊆ L2(G) be a closed subspace and Z be as above. Then the following are equivalent.
(1) V is a Γ- generalized translation invariant space.
(2) Z(V ) is a multiplicatively invariant subspace of L2(Ω, L2(C)) with respect to the determining set D = {Xγ |Ω : γ ∈ Γ}.
(3) There exists a measurable range function J : Ω −→ {closed subspaces of L2(C)} such that

V = {f ∈ L2(G) : Z(f)(ω) ∈ J(ω), for a.e. ω ∈ Ω}.
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Identifying range functions which are equivalent almost everywhere, the correspondence between Γ- generalized translation
invariant spaces and measurable range functions is one to one and onto.

In the sequel of this section, we investigate modulation invariant spaces and Gabor invariant spaces on locally compact
abelian groups.

Let Λ be a closed subgroup of Ĝ. Assume that Λ∗ is the annihilator of Λ in G, i.e. Λ∗ = {x ∈ G : λ(x) = 1, λ ∈ Λ}. In
addition, suppose that Π is a measurable section for the quotient G/Λ∗ and D is a measurable section for the quotient Ĝ/Λ.
For λ ∈ Λ we denote byXλ the corresponding character onG. One can see that the set D = {Xλ|Π : λ ∈ Λ} is a determining
set for L1(Π). A closed subspace W ⊆ L2(G) is called Λ- modulation invariant space, if MλW ⊆ W for all λ ∈ Λ, where
Mλ is the modulation operator defined as Mλ : L2(G) −→ L2(G), Mλf(x) = λ(x)f(x). We say that W is generated by a
countable subset A of L2(G), when W =MΛ(A) = span{Mλf : f ∈ A, λ ∈ Λ}.

Let F denote the Fourier transform and Z be the Zak transform. We define an isometric isomorphism as

Z̃ : L2(G) −→ L2(Π, L2(D)), Z̃ := Z o F . (3)

In the next theorem, we show that Z̃ turns Λ- modulation invariant spaces in L2(G) into multiplicatively invariant spaces
in L2(Π, L2(D)) and vice versa. Further we establish a characterization of Λ- modulation invariant spaces in terms of range
functions. The main idea of the proof is that the Fourier transform maps Λ- modulation invariant subspaces of L2(G) to Λ-
translation invariant subspaces of L2(Ĝ). Note that in the following theorem we assume that Λ is a closed subgroup which is
not necessarily discrete and cocompact.

Theorem 3. Let W ⊆ L2(G) be a closed subapace and Z̃ be as in (3). Then the following are equivalent.
(1) W is a Λ- modulation invariant space.
(2) Z̃(W ) is a multiplicatively invariant subspace of L2(Π, L2(D)) with respect to the determining set D = {Xλ|Π : λ ∈ Λ}.
(3) There exists a measurable range function J : Π −→ {closed subspaces of L2(D)} such that

W = {f ∈ L2(G) : Z̃(f)(x) ∈ J(x), for a.e. x ∈ Π}. (4)

Identifying range functions which are equivalent almost everywhere, the correspondence between Λ- modulation invariant
spaces and measurable range functions is one to one and onto.

Remark 1. Gabor-type invariant spaces are translation invariant spaces that have the extra condition to be also invariant
under modulations. Due to the important role of the Gabor theory in mathematical analysis and its applications, it is important
to study Gabor-type invariant spaces. Combining the results on translation invariant spaces in [1] and our results on modu-
lation invariant spaces, we can give a characterization of Gabor-type invariant subspaces of L2(G). Let W be a Gabor-type
invariant space. Transforming W into a certain vector valued space, gives a corresponding of Gabor-type invariant spaces and
multiplicatively invariant spaces. By a similar approach as in the proof of Theorem 3, we can use Proposition 2 to characterize
Gabor-type invariant subspaces of L2(G). Then the result of [5] is a special case of our result (when closed subgroups with
respect to translation and modulation are both discrete and cocompact).
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