
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 971 (2021) 115533
www.elsevier.com/locate/nuclphysb

Vacuum stability vs. positivity in real singlet scalar 

extension of the standard model

Parsa Ghorbani a,b,c,∗

a Physics Department, Faculty of Science, Ferdowsi University of Mashhad, Iran
b Dipartimento di Fisica dell’Università di Pisa, Italy

c INFN, Sezione di Pisa, Italy

Received 15 May 2021; received in revised form 7 August 2021; accepted 1 September 2021
Available online 6 September 2021

Editor: Stephan Stieberger

Abstract

We assume a generic real singlet scalar extension of the Standard Model living in the vacuum (v, w) at 
the electroweak scale with v = 246 GeV and w being respectively the Higgs and the singlet scalar vacuum 
expectation values. By requiring absolute vacuum stability for the vacuum (v, w), the positivity condition 
and the perturbativity up to the Planck scale, we show that the viable space of parameters in the model is 
strongly constrained for various singlet scalar vacuum expectation values w = 0.1, 1, 10, 100 TeV. Also, it 
turns out that the singlet scalar mass can be from a few GeV up to less than TeV.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The stability of the vacuum in the Standard Model (SM) was first utilized as an implement 
to put a bound on the Higgs mass and the mass of fermions in the SM framework [1]. After the 
discovery of the Higgs particle by ATLAS and CMS experiments at the LHC in 2012, the value 
of the Higgs mass is determined accurately to be around 125 GeV [2,3]. The mass of the top 
quark (as the heaviest quark) was already known to be about 176 GeV [4]. Having the Higgs 
and the top quark masses in hand, and knowing the value of the Higgs vacuum expectation value 
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(VEV) to be v = 246 GeV, the status of the vacuum stability in the SM becomes lucid; the SM 
vacuum starts to be metastable at energy scale around 1010 GeV [5–7].1 This happens because 
in the SM, the top quark has a large negative contribution in the renormalization group equations 
(RGE) for the Higgs quartic coupling λh, so that the Higgs quartic coupling becomes negative at 
higher energy scales which makes the vacuum with v �= 0 metastable.

There is a consensus in the literature that in the presence of more scalars, the vacuum can 
become stable up to the Planck scale. For instance, the vacuum stability in extensions of the SM 
by adding an extra real scalar with Z2 symmetry is studied in [8,9], employing a complex scalar 
to address the vacuum stability in [10,11], using scalars in scale invariant extension of the SM 
in [12,13], investigation of the di-Higgs production in singlet scalar model in [14], studying the 
vacuum stability of 2HDM at the electroweak (EW) scale in [15], and stabilizing the vacuum by 
Higgs–inflaton mixing in [16].

The point that we want to emphasize in this paper is the importance of the positivity condition 
(i.e. the requirement of having a positive definite potential in all scales), when studying the 
vacuum stability in a given model. At the EW scale, say at the scale O(mt), the free parameters 
of an extended SM model must be chosen in a way to respect the positivity condition. However, 
when solving the RGEs there is no guarantee that the positivity condition will be satisfied in 
higher energy scales. This should be considered alongside the possible change of the vacuum 
structure at higher scales.

In the case of the SM, the vacuum stability and the positivity are delicately related. The po-
tential in the SM is given by VSM = −μ2

hh
2/2 + λhh

4/4 for which if λh > 0 the theory develops 
a non-zero VEV for the Higgs scalar. If λh < 0 the Higgs VEV can only be vanishing. Due to 
the large negative contribution of the heavy top quark in the RGE for λh, the Higgs quartic cou-
pling becomes negative at the scale 1010 and thereafter the Higgs non-zero VEV is no longer 
a minimum of the theory. Therefore, in the SM the sign of the quartic coupling λh changes the 
structure of the vacuum and deals with the vacuum stability. At the same time, the sign of the 
Higgs quartic coupling confirms or violates the positivity of the potential. If λh < 0 the theory 
is no longer well defined before thinking about the vacuum structure of the model. Therefore, in 
the case of the SM, the quartic coupling λh plays a dual role as a tuner for the vacuum stability 
and the positivity of the model.

When more scalars are added in the theory, the vacuum stability and the positivity condition 
should be investigated separately. Both conditions even if consistent at the EW scale, may be-
come inconsistent at higher scales. It means that choosing a set of random couplings that satisfies 
the positivity condition up to the Planck scale does not necessarily lead to the absolute vacuum 
stability up to the same energy scale. This resembles the situation where randomly choosing 
a set of couplings in the theory in order to have simultaneously small Higgs mass and small 
cosmological constant is not very probable [17].

In general with more scalars the vacuum structure of the model gets more complicated; as the 
number of vacua grows rapidly with the number of scalars (see [18] for two-scalar example). The 
positivity condition which is obtained from the quartic part of the potential, can be very involved 
in general with more scalars [19], unless some symmetry is applied.

1 In the early universe at high temperatures, the vacuum may have different structures from (0, 0) to (v, w), and phase 
transitions may occur from one vacuum to another. When the universe cools down to T = 0 the Higgs VEV is fixed to 
be v = 246 GeV as we observe today. Throughout this work we consider different scales at T = 0. If a theory is stable 
up to a given energy scale e.g. the Planck scale, the vacuum must be unchanged up to that scale.
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The perturbativity of the theory is another constraint which must be taken into account when 
running the parameters of the model to higher scales. The theory is perturbative until when by 
solving the REG’s, one of the couplings encounter a Landau pole at a given scale. The main 
question is how consistent the vacuum stability constraint, the positivity condition and the per-
turbativity are in a multi-scalar theory from the electroweak up to the Planck scale.

In this article, as the first step to answer the question posed above, we extend the SM with 
a generic real scalar potential including also the scalar cubic term and linear scalar-Higgs inter-
action. We will study the scale evolution of the only vacuum of the model i.e. (v, w) at the EW 
scale, and will argue the absolute vacuum stability up to the Planck scale. By absolute vacuum 
stability we mean that the potential possesses only one single minimum for whole range of the 
energy scale here from the EW up to the Planck. This will be confronted with the scale evo-
lution of the positivity condition as well as the perturbativity up to the Planck scale. Using the 
aforementioned constraints we put strong bound on free parameters of the model. For simplic-
ity we use the term SPP conditions when we consider the stability, positivity and perturbativity 
conditions altogether.

The rest of the paper is arranged as the following. In section 2 we introduce the model giving 
the details of the vacuum solution (v, w) and the positivity condition. In section 3 we will discuss 
the RGEs, and will present our numerical analysis in section 4. We will bring a summery of the 
results in section 5.

2. Vacua in singlet scalar model

The vacuum stability in the real singlet scalar extension of the SM with Z2 symmetry has 
been studied in [9]. The presence of the Z2 symmetry simplifies the model considerably. For 
such model provided that the positivity condition is taken into account, if the vacuum solution 
(v, w) is a minimum at a given scale �, it remains the global minimum in all scales because 
(v, w) and other extremum solutions of the Z2 symmetric model i.e. (0, 0), (v, 0) and (0, w)

cannot be minimum at the same time (see [20] on vacuum structure of the Z2 symmetric singlet 
scalar model).

Here we consider instead a generic real scalar extension of the SM without the Z2 symmetry,

V (h, s) = −1

2
μ2

hh
2 + 1

4
λhh

4 − 1

2
μ2

s s
2 + 1

3
κss

3 + 1

4
λss

4 + 1

2
κhsh

2s + 1

4
λhsh

2s2 . (1)

The positivity condition on the quartic part of the potential above is the same as the Z2 symmetric 
potential and is given by λh > 0, λs > 0 and

λhs > 0 ∨
(
λhs < 0 ∧ λ2

hs ≤ λhλs

)
. (2)

The vacuum solutions for the potential in Eq. (1) can only have the structures (0, 0), (0, w) or 
(v, w); the VEV solution (v, 0) is not allowed. Despite the Z2 symmetric model (i.e. the potential 
in Eq. (1) with κhs = κs = 0), all three extremum solutions can be local minimum at the same 
time even if we take into account the positivity condition. For the Z2 symmetric model after the 
electroweak symmetry breaking the possible minima at the EW scale are either (v, w) or (v, 0), 
but for the generic potential in Eq. (1) the only vacuum solution at the EW scale is inevitably 
(v, w) which is given by,

v =
√

μ2
h − κhsw − λhsw2

√ , w = p + ξ
1/3
− + ξ

1/3
+ , (3)
λh
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where

ξ± = q ±
√

q2 + (
r − p2

)3
,

q = b3 + 9a(6κhsμ
2
ha − bc)

216a3 , p = b

6a
, r = c

6a
,

a = λ2
hs − λhλs, b = 2κsλh − 3κhsλhs, c = κ2

hs − 2λhsμ
2
h + 2λhμ

2
s .

(4)

From Eq. (4) real solutions for v and w requires q2 > (p2 − r)1/3 for the reality of w and 
μ2

h > 0, λhs ≤ −κ2
hs/4μ2

h for the reality of v. The parameters μ2
h and μ2

s can be fixed by the 
stationary conditions for (v, w) at a given scale μ = �,

μ2
h = λhv

2 + λhsw
2 + κhsw

μ2
s = λsw

2 + λhsv
2 + κsw + κhsv

2

2w

(5)

where the Higgs VEV is fixed at v = 246 GeV at the EW scale, and for the scalar VEV we 
take benchmark values w = 100 GeV and w = 1, 10, 100 TeV at the EW scale. Note that we 
choose the free parameters of the model to be λh, λs, λhs, κh, κhs; we do not use a mixing angle 
as a new free parameter, instead we directly deal with the various (v, w) inputs from scratch and 
investigate the properties of the model based on the chosen vacuum.

3. Renormalization group equations

The Hessian matrix at a given scale μ = � in the scale-dependent vacuum (v, w) is given by,

H(v,w;�) =
(

3λhv
2 + λhsw

2 + κhsw − μ2
h 2λhsvw + κhsv

2λhsvw + κhsv 3λsw
2 + λhsv

2 + 2κsw − μ2
s

)
(6)

where we have dropped in the matrix the scale-dependence of the couplings and the VEVs. 
Taking into account the stationary condition on the vacuum (v, w) in Eq. (5) the mass eigenvalues 
are,

m2± = v2λh + w2λs − v2

4w
κhs + w

2
κs ± v

2
×√

v2

w2 (κhs+4wλh)+w2

v2 (κs+2wλs)+2κhsw (λs−8λhs)+4w
(
κsλh−4wλ2

hs+2wλhλs
)−4κ2

hs

(7)

where m− and m+ can be either the Higgs or the scalar mass. In section 4, we will consider 
both possibilities ms < mH and ms > mH at the EW scale. Although we set the initial inputs of 
the free parameters such that (v, w) is the absolute minimum at the EW scale, but running the 
couplings in higher energy scales, the vacuum (0, 0) or (0, w) may become coexistent minima 
of the theory even deeper than the (v, w), which results in the instability of the vacuum at higher 
scales. To keep the (v, w) to be the absolute minimum at higher scales, we need to know the 
mass spectrum of other possible vacua in higher scales. The mass matrix for the vacuum (0, 0)

at a given scale � read
4
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M(0,0;�) =
(−μ2

h 0
0 −μ2

s

)
(8)

and the mass matrix for the vacuum (0, w) is

M(0,w;�) =
(

w2λhs + wκhs − μ2
h 0

0 2w2λs + wκs

)
(9)

in which the stationary condition

μ2
s = w2λs + wκs (10)

for (0, w) has been used. The initial values for the parameters μ2
h and μ2

s in Eqs. (8) and (9) are 
given by Eq. (5). In order for (v, w) to stay the global minimum up to a desired scale at least 
one of the mass eigenvalues in Eqs. (8) and (9) must be negative; in this way (v, w) would be an 
absolute minimum. Already at � =O(mt ) ∼ 173 GeV, from Eq. (8) we must require μ2

h > 0 or 
μ2

s > 0 and from Eq. (9), μ2
h > w2λhs + wκhs or 2w2λs + wκs < 0 in which both parameters μ2

h
and μ2

s are fixed at � = 173 GeV from Eq. (5).
The evolution of the couplings, fields and mass parameters in the model with scale μ is given 

by the renormalization group equations (RGE). We extract the RGEs for the model given in 
Eq. (1) up to one-loop using the Mathematica package SARAH [21]. We take into account only 
the top quark Yukawa coupling and ignore the couplings for the light quarks. The β-functions 
for the gauge couplings and the Yukawa coupling are,

16π2βgi
= big

3
i

16π2βyt =
(

−17

20
g2

1 − 9

4
g2

2 − 8g2
3

)
yt + 3

2
y3
t

(11)

where b1 = 41/10, b2 = −19/6, b3 = −7. The β-functions involving the Higgs and the singlet 
scalar couplings are given by,

16π2βλh =
(

27

200
g4

1 + 9

20
g2

1g2
2 + 9

8
g4

2

)
+

(
−9

5
g2

1 − 9g2
2 + 12y2

t

)
λh + 1

2
λ2

hs

+ 24λ2
h − 6y4

t

16π2βλs = 2λ2
hs + 18λ2

s

16π2βλhs =
(

− 9

10
g2

1 − 9

2
g2

2 + 6λs + 12λh + 6y2
t

)
λhs + 4λ2

hs

16π2βκs = 6κhsλhs + 18λhκs

16π2βκhs =
(

− 9

10
g2

1 − 9

2
g2

2 + 4λhs + 12λh + 6y2
t

)
κhs + 2κsλhs

(12)

and the γ -functions for the VEVs and the mass parameters read,

16π2γv =
(

9

20
g2

1 + 9

4
g2

2 − 3y2
t

)
v

16π2γw = 0

16π2γμ2
h
=

(
− 9

10
g2

1 − 9

2
g2

2 + 12λh + 6y2
t

)
μ2

h − 2κ2
hs + λhsμ

2
s

16π2γ 2 = 4μ2λ + 6λ μ2 − 4κ2 − 4κ2

(13)
μs h hs s s hs s
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where the β-functions for a coupling X, and the γ -functions (anomalous dimensions) for VEV 
or mass parameter Y , are defined as,

βX = μ
dX

dμ
γY = −μ

Y

dY

dμ
. (14)

Solving the RGEs in Eqs. (11), (12) and (13), the evolution of the couplings and the VEVs 
will be known, so we can check the status of the stability, the positivity and the perturbativity 
all together at any desired scale. In the next section we will discuss the RGE solutions and the 
allowed parameters inputs that we can use at the EW scale.

4. Vacuum stability, positivity and perturbativity

In this section we numerically solve the RG equations presented in section 3. We always 
require that the vacuum (v, w) defined in the EW scale O(mt ) ∼ 173 GeV, remains the absolute 
global minimum for higher scales up to the Planck scale, hence pushing the stability up to the 
Planck scale. Furthermore, we impose the positivity condition in Eq. (2) (which is an scale-
dependent condition evolving with the couplings) to hold from the EW scale up to the Planck 
scale. We also discard the input values for the parameters which lead to a Landau pole in the 
scales lower than the Planck scale.

From the LHC experiments, the Higgs mass and the Higgs VEV are known: v = 246 GeV and 
mH = 125 GeV. We will also fix the singlet scalar VEV by different mass scale benchmarks w =
0.1, 1, 2, 10, 100 TeV. In Eq. (7) one of the mass eigenvalues is attributed to the Higgs mass. We 
investigate both cases m+ ≡ ms > mH ≡ m− and m− ≡ ms < mH ≡ m+. Among the parameters 
of the model as seen in section 2, μ2

h and μ2
s are omitted by two stationary conditions for (v, w). 

Doing so we are left with the free independent parameters being λh, λs, λhs, κs and κhs. The input 
values for the free parameters at O(mt) scale should be chosen such that the vacuum (v, w) be 
the absolute global minimum. Any set of input for the free parameters will give an input for μ2

h
and μ2

s from Eq. (5). Using these values in Eqs. (8) and (9) at least one of the mass eigenvalues 
in M(0, 0) and in M(0, w) must be negative. Moreover, at the EW scale the input values chosen 
for the free parameters should be bounded by the positivity condition in Eq. (2), the positivity 
of the radicand in the mass expressions in Eq. (13), and the positivity of the mass eigenvalue 
m− in Eq. (7). Also depending on taking mH ≡ m+ ∼ 125 GeV or mH ≡ m− ∼ 125 GeV, the 
free parameters are bounded differently. The initial values for the set of parameters satisfying the 
aforementioned constrained are presented in Table 1 for ms > mH , and in Table 2 for ms < mH

with the benchmarks w = 0.1, 1, 10, 100 TeV. In both tables the range of the allowed singlet 
scale mass is shown. All the parameters λh, λs, λhs are scanned in the interval (−1, 1).

The dimensionful parameters κs and κhs are constrained by the SPP conditions. However, as a 
full scanning of the whole 6-dimensional parameter space is difficult, we have taken a benchmark 
scale O (GeV) for κs and κhs to study the behavior of the dimensionless parameters when solving 
RGE’s subject to the SPP conditions.

After choosing a set of random input values for the parameters within the regions in Tables 1
and 2, we solve numerically the RGEs given in section 3. We repeat numerously this process by 
taking input values and solving the RGEs to cover all the allowed regions defined in Tables 1 and 
2. Although the initial values we found are suitable at scale � ∼ 173 GeV, but as running they 
vary in the higher scales and may violate one of the conditions e.g. the stability constraint, the 
positivity condition or the perturbativity. For a random set of inputs we check if all constraints 
are satisfied up to Planck scale. In the case ms > mH the viable initial values which lead to 
6
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Fig. 1. The viable region of input values for the couplings λh, λs and λhs at the electroweak scale for different singlet 
scalar VEV benchmarks w = 0.1, 1, 10, 100 TeV, respecting the absolute vacuum stability for the vacuum (v, w), the 
positivity condition and the perturbativity up to the Planck scale, with the assumptions mH = 125 GeV, v = 246 GeV 
and ms > mH . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
The allowed region for the couplings λh, λs, λhs, κs, κhs and ms for different singlet scalar VEV benchmarks 
w = 0.1, 1, 10, 100 TeV, respecting the absolute vacuum stability and positivity condition for the vacuum 
(v, w) at the electroweak scale with the assumptions mH = 125 GeV, vH = 246 GeV and ms > mH .

w 100 GeV 1 TeV 10 TeV 100 TeV

λh (0.39,0.51) (0.1,0.54) (1.9 × 10−4,0.39) (0,0.21)

λs (0.25,1) (0.015,0.032) (2.4,4.07) × 10−4 (1.03,1.13) × 10−5

λhs (−0.17,−0.02) (−0.033,0.015) (−2900,−4.53) × 10−6 (−2.37,−0.96) × 10−6

κs (−1,1) GeV (−1,1) GeV (−1,1) GeV (0.49,0.64) GeV

κhs (−1,1) GeV (−0.054,1) GeV (−1,0.097) GeV (−0.55,−0.098) GeV

ms 191-257 GeV 218-308 GeV GeV 185-334 GeV 553-574 GeV

an appropriate result are shown in Fig. 1 and the viable region of the initial values in the case 
ms < mH is shown in Fig. 3. The viable regions given in Figs. 1 and 3 are for different benchmark 
singlet scalar VEVs, w = 0.1, 1, 10, 100 TeV.
7
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Table 2
The allowed region for the couplings λh, λs, λhs, κs, κhs and ms for different singlet scalar VEV benchmarks 
w = 0.1, 1, 10, 100 TeV, respecting the absolute vacuum stability and positivity condition for the vacuum 
(v, w) at the electroweak scale with the assumptions mH = 125 GeV, vH = 246 GeV and ms < mH .

w 100 GeV 1 TeV 10 TeV 100 TeV

λh (0.02,0.24) (0.002,0.222) (0.00054,0.209) (8.5 × 10−5,0.18)

λs (0.002,0.97) (2.26 × 10−6,0.014) (2.54 × 10−6,0.00014) (3.10,11.45) × 10−7

λhs (−0.098,0.098) (−0.019,0.02) (−0.0021,0.0023) (−7.73,8.90) × 10−6

κs (−0.98,0.99) GeV (−1,0.97) GeV (−0.96,0.99) GeV (−0.25,−0.05) GeV

κhs (−1,1) GeV (−0.95,0.99) GeV (−0.96,0.98) GeV (−0.71,0.95) GeV

ms 48-119 GeV 46-118 GeV 4-123 GeV 8-109 GeV

Fig. 2. The plots show the running of the couplings λh, λs, λhs, κs, κhs up to the Planck scale for different singlet scalar 
VEV benchmarks w = 0.1, 1, 10, 100 TeV and with the constraints mH = 125 GeV, v = 246 GeV and ms > mh. The 
initial inputs for the couplings are chosen such that the vacuum (v, w) remains the absolute minimum respecting the 
positivity condition and the perturbativity up to the Plack scale. The units of κs and κhs are in GeV.

As seen in Fig. 1 for the case w = 100 GeV, there is a narrow region which can fulfill the 
desired condition up to Planck scale. But if we relax the Planck scale implement then there are 
a larger viable region for w = 100 GeV. As we increase the scalar VEV from w = 100 GeV to 
w = 100 TeV, we see in Fig. 1 that the viable initial values for the couplings λs and λs shrinks 
considerably. The coupling λs remains O(1) for all singlet scalar VEV benchmarks.

In Fig. 3 that ms < mH however the viable region for the case w = 100 GeV is large and all 
coupling λh, λs and λhs take O(1) initial values to fulfill the SPP conditions up to Planck scale. 
8
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Fig. 3. The viable region of input values for the couplings λh, λs and λhs at the electroweak scale for different singlet 
scalar VEV benchmarks w = 0.1, 1, 10, 100 TeV, respecting the absolute vacuum stability for the vacuum (v, w), the 
positivity condition and the perturbativity up to the Planck scale, with the assumptions mH = 125 GeV, v = 246 GeV 
and ms < mH .

As we increase the singlet scalar VEV from w = 100 GeV to w = 100 TeV, the couplings λs

and λs must become smaller down to O(10−8) to satisfy the SPP conditions. Also in Fig. 2 for 
ms > mH and in Fig. 4 for ms < mH for each singlet scalar VEV benchmark w, we have also 
shown the evolution of the free parameters for a randomly chosen set of parameters within the 
regions in Figs. 1 and 3. The singlet scalar mass is also bounded by the SPP conditions. As seen 
in Tables 1 and 2 the singlet scalar mass varies from about GeV up to about 0.5 TeV.

Note that in the SM, the Higgs quartic coupling is fixed to λh = 0.129 at the EW scale, because 
the Higgs mass and the Higgs VEV are known and λh = m2

H /2v2. This is not the case when we 
extend the SM by extra scalars. As seen from Eq. (7), by fixing mH (m±), v and w and taking 
into account the positivity conditions, λh is no more restricted to take the value 0.129, but it is 
bounded as given in Tables 1 and 2. The coupling λhs is of the order O(0.1) when w = 100
GeV, therefore it has a considerable contribution in making the λhs positive at higher scales. For 
w = 1, 10, 100 TeV, the couplings λs and λhs must inevitably be very small to fulfill the SPP 
conditions. Therefore for large values of w, the initial value for λh must be larger than its initial 
value in the SM in order to stay positive up to the Planck scale as shown in Figs. 2 and 4.
9
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Fig. 4. The plots show the running of the couplings λh, λs, λhs, κs, κhs up to the Planck scale for different singlet scalar 
VEV benchmarks w = 0.1, 1, 10, 100 TeV and with the constraints mH = 125 GeV, v = 246 GeV and ms < mh. The 
initial inputs for the couplings are chosen such that the vacuum (v, w) remains the absolute minimum respecting the 
positivity condition and the perturbativity up to the Plack scale. The units of κs and κhs are in GeV.

5. Conclusion

The standard Model suffers from a vacuum metastability at high energy scale around 1010

GeV. The addition of extra scalars in the hidden sector with or without internal symmetries may 
stabilize the vacuum up to the Planck scale. However in general specially when symmetries 
are absent in the internal configuration space (more investigations needed in future works), the 
positivity condition might become strong enough to compete with the vacuum stability at a given 
energy scale. As the simplest example we have investigated a generic real singlet scalar extension 
of the Standard Model. We have imposed the positivity condition for all scales alongside the 
absolute vacuum stability and perturbativity to bound the free parameters of the model. As seen 
in Tables 1 and 2, even before looking at higher scales, the free parameters λh, λs, λhs, κs, κhs at 
the EW scale are strongly limited due respecting the absolute vacuum stability and the positivity 
for the vacuum (v, w), with v = 246 GeV and w = 0.1, 1, 10, 100 TeV being the Higgs and the 
singlet scalar vacuum expectation values respectively. The bounds on the free parameter become 
stronger if we want to keep the vacuum (v, w) to be an absolute minimum, and at the same time 
respecting the positivity condition and the perturbativity up to the Planck scale (SPP conditions). 
The result for the viable space of input values for the parameters to respect the SPP conditions is 
shown in Fig. 1 when ms < mH and in Fig. 3 when ms < mH . The upshot is that only for w = 100
GeV and ms < mH all the couplings are O(1). In other cases, increasing the singlet scale VEV 
w shrinks the viable region of the couplings down to O(10−8) except for the coupling λh which 
remains in all case O(1) up to the Planck scale.
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We observe as well that the singlet scalar mass in the presence of the SPP conditions can take 
values from O (GeV) to O (TeV). It is worth to answer this question in future works that how 
the SPP conditions act on the parameter space of a multi-scalar extension of the SM; whether the 
SPP condition on multi-scalar theories is more or less restrictive than the simple singlet scalar 
model we studied here.
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