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Abstract

The aim of this paper is to propose a semiparametric method for the estimation of the copula param-

eters based on a nonlinear quantile regression model. The estimation of the dependence parameter has

been selected as the value that minimizes the distance between one of the pseudo samples and the inverse

of the quantile regression. A simulation study is performed to measure the performance of this method.

The simulation results are compared to the maximum pseudo-likelihood (MPL) method and minimum

pseudo-Hellinger distance (MPHD) method for well-known bivariate copula models. These results show

that the proposed method based on the copula quantile regression model has a good performance in

small sample sizes.
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1 Introduction

The copulas describe the dependence between random vector components. Unlike marginal and joint

distributions that are clearly observable, the copula of a random vector is a hidden dependence structure
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that connects the joint distribution with its margins. The copula parameter captures the inherent de-

pendence between the marginal variables and it can be estimated by either parametric or semiparametric

methods. Maximum likelihood estimation (MLE), which is used to estimate the parameter of any type

of model, is the most effective method. It can also be applied to copula, but the problem becomes com-

plicated as the number of parameters and dimension of copula increases, because the parameters of the

margins and copula are estimated simultaneously. Therefore, MLE is highly affected by misspecification

of marginal distributions.

Inference functions for margins (IFM) method is another method for estimating the copula parameter

introduced by Joe (2005). In this method, similar to MLE method, the margins of the copula are

important, because the parameter estimation is dependent on the choice of the marginal distributions.

In IFM method, the parameters are estimated in two stages. In the first stage, parameters of margins

are estimated and then the parameters of copula will be evaluated given the values from the first step.

Genest et al. (1995) introduce a semiparametric method, known as maximum pseudo likelihood

(MPL) estimation, similar to MLE. The only difference between this method and MLE is that the data

must be converted to pseudo observations. The consistency and asymptotic normality of this method is

established in their paper. They established that this method is efficient for independent copula. The

results of an extensive simulation studied by kim at al. (2007) show that MLE and IFM methods

are non-robust against misspecification of the marginal distributions, and that MPL estimation method

performs better than ML and IFM methods, overall.

The minimum distance (MD) method attains one of the most attractive alternatives to the MLE

method, because the non-parametric estimator of MD has nice robustness properties. The MD method

for copulas has attracted only a little attention in contrast to the MPL and IFM methods. Tsukahara

(2005) explores the empirical asymptotic behaviour of CvM and KS distances between the hypothesised

and empirical copula in a simulation study. He finds that the MPL estimator should be preferred to the

MD estimator. Weiß (2011) presented a comprehensive Monte Carlo simulation study on the performance

of minimum distance and maximum likelihood estimators for bivariate parametric copulas. Mohammadi

et al. (2020) introduced a new minimum distance estimator based on Hellinger distance and their

simulation results showed that the minimum pseudo Hellinger distance method has good performance in

small sample size and weak dependency.

The authors present a quantile regression-based semiparametric technique for estimating the copula

parameter. They use a technique called ”Minimum Pseudo Copula Quantile Regression” (MPCQR)

to estimate the minimum distance between one of the pseudo samples and the inverse of the quantile

regression. The purpose of this paper is to provide a comprehensive simulation study of its performance

for bivariate copulas.

As is common in the literature, we focus on the bivariate case. The rest of the paper is arranged

as follows. In Section 2, the preliminaries for copulas and MPL method are described. The minimum

pseudo Hellinger distance method is provided in Section 3. In Section 4, the parameter estimation using

copula quantile regression is introduced. The simulation results are provided to compare the MPL,

MPHD, and MPCQR methods in Section 5.

2 Preliminaries

Some definitions related to a copula function will be briefly reviewed. Sklar (1959) was the primary to

display the fundamental concept of the copula. Let (X,Y ) be a continuous random variable with joint

cumulative distribution function (cdf) F , then copula C corresponding to F defined as:

F (x, y) = C(FX(x), FY (y)), (x, y) ∈ R2, (1)

where FX and FY are the marginal distributions of X and Y , respectively. A bivariate copula function

C is a cumulative distribution function of random vector (U, V ), defined on the unit square [0, 1]2, with
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Table 1: Some well-known bivariate copulas

Copula C(u, v; θ) Parameter Space Kendall’s tau

Clayton (u−θ + v−θ − 1)−1/θ θ ∈ (−1,+∞)− {0} θ
θ+2

Gumbel exp
{
−
[
(− lnu)θ + (− ln v)θ

]1/θ}
θ ∈ [1,+∞) θ−1

θ

Frank ∗ −1
θ log

{
1 + (e−uθ−1)(e−vθ−1)

e−θ−1

}
θ ∈ (−∞,+∞)− {0} 1 + 4

θ (D1(θ)− 1)

Gaussian † Φ2(Φ
−1(u),Φ−1(v); θ) θ ∈ [−1,+1] 2

πarcsin(θ)

T ‡ t2,ν(t
−1
ν (u), t−1

ν (v); θ) θ ∈ [−1,+1], ν > 1 2
πarcsin(θ)

uniform marginal distributions as U = FX(X) and V = FY (Y ).

The authors shall write C(u, v; θ) for a family of copulas indexed by the parameter θ. If C(u, v; θ) is

an absolutely continuous copula distribution on [0, 1]2, then its density function is c(u, v; θ) = ∂2C(u,v;θ)
∂u∂v

.

As a result, the relationship between the copula density function (c) and the joint density function (f)

of (X,Y ) according to equation (1) can be represented as

f(x, y) = c(FX(x), FY (y); θ)fX(x)fY (y), (x, y) ∈ R2, (2)

where fX and fY are the marginal density functions of X and Y , respectively.

Table 1 presents summary information of some well-known bivariate copulas such as the parameter

space and Kendall’s tau (τ) of them. In this table, Clayton, Gumbel, and Frank copulas belong to

the class of Archimedean copulas and Gaussian and T copulas belong to the class of Elliptical copulas.

The copula-based Kendall’s tau association for continuous variables X and Y with copula C is given by

τ = 4
∫
[0,1]2

C(u, v)dC(u, v)− 1.

2.1 Semiparametric maximum likelihood estimation

In view of (2), the log-likelihood function takes the form

L(θ) =
n∑

i=1

log
(
c(F (x), G(y); θ)

)
+

n∑
i=1

log
(
f(x)

)
+

n∑
i=1

log
(
g(y)

)
.

Hence the MLE of θ, which is denoted by θ̂ML, is the global maximizer of L(θ) and
√
n(θ̂ML−θ) converges

to a Gaussian distribution with zero mean, where θ is the true value. Since it is assumed that the model

is correctly specified and hence L(θ) is the correct log-likelihood, it follows that the MLE enjoys some

optimality properties and so, it is the preferred first option. If the model is not correctly specified so

that L(θ) is not the correct log-likelihood, then the maximizer of L(θ) is not the MLE and hence it may

lose its preferred status.

In MPL method, the marginal distributions have unknown functional forms. Estimation of marginal

distributions are estimated non parametrically by their sample empirical distributions. Then, θ is esti-

mated by the maximizer of the pseudo log-likelihood as

θ̂MPL = argmax
θ

n∑
i=1

log
(
c(Ũi, Ṽi; θ)

)
, (3)

where Ũi = nF̂X(xi)/(n + 1), Ṽi = nF̂Y (yi)/(n + 1) for i = 1, · · · , n, are the pseudo observations and

F̂X and F̂Y are the empirical cumulative distribution function of the observation Xi and Yi, respectively.

∗Dk(θ) =
k
θk

∫ θ
0

tk

et−1
dt.

†Φ−1 is the inverse of the standardized univariate Gaussian distribution and Φ2 is the standardized bivariate Gaussian

distribution with correlation parameter θ.
‡t−1

ν is the inverse of the standardized univariate Student’s t distribution with ν degree of freedom and t2,ν is the standardized

bivariate Student’s t distribution with correlation coefficient θ and ν degree of freedom.
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The authors shall refer to (3) as the maximum pseudo likelihood (MPL) estimator of θ. Genest et al.

(1995) and Tsukahara (2005) showed that θ̂MPL is consistent estimator. This non-linear optimization

problem can easily be solved by Statistical programming language R or Mathematica.

3 Minimum Hellinger distance estimation

Initially, Chernoff (1952) proposed the Alpha-Divergence, which is a generalization of the KL divergence.

The Alpha-Divergence (AD) between two probability density functions f1 and f2 of a continuous random

variable can be defined as:

ADα(f1 ∥ f2) =
1

α(α− 1)

(∫
[0,1]2

fα
1 (x) f

1−α
2 (x)dx− 1

)
, α ∈ R \ {0, 1}. (4)

The AD divergence is non-negative and true equality to zero holds if and only if f1(x) = f2(x). If α → 1,

the Kullback-Leibler divergence (KLD) can be obtained from equation (4). The well-known Hellinger

distance (HD) and Neyman (Neyman Chi-square) divergence (ND) can be obtained from equation (4)

for α = 0.5 and α = 2,

The Alpha-Divergence between copula density estimation ĉ(u, v) and true copula density c(u, v; θ)

based on pseudo observation can be obtained MPAD estimation defined as θ̂MPAD = argminθ AD(ĉ||c).
It is well known that maximizing the likelihood is equivalent to minimizing the KL divergence. So, the

minimum pseudo KL divergence (MPKLD) between copula density estimation ĉ(u, v) and true copula

density c(u, v; θ) as a special case of MPAD estimator, is equivalent to the MPL estimator.

The minimum pseudo Hellinger distance (MPHD) is given by

θ̂MPHD = argmin
θ

HD(ĉ||c) = argmin
θ

1

2

∫
[0,1]2

(
√

ĉ(u, v)−
√

c(u, v; θ))2 dudv

= argmin
θ

∫
[0,1]2

(
1−

√
c(u, v; θ)

ĉ(u, v)

)2

dCn(u, v)

= argmin
θ

1

n

n∑
i=1

(
1−

√
c(Ũi, Ṽi; θ)

ĉ(Ũi, Ṽi)

)2

, (5)

where Ũi and Ṽi for i = 1, · · · , n, are the pseudo observations. Mohammadi et al. (2020) showed

that the Hellinger distance had better performance than Neyman Divergence in almost always for some

bivariate Archimedean and Elliptical copulas. Thus, in this paper, the author only consider Hellinger dis-

tance as special cases of Alpha-Divergence based on pseudo observations to obtain the copula parameter

estimation.

In practice, instead of ĉ in equation (5), the local likelihood probit transformation estimation of

copula density (ĉ
(LLPT )
n ) will be used. Let (Ui, Vi)i=1,...,n are independent and identically distributed

observations from the bivariate copula C and the purpose is to estimate the corresponding copula density

function. Denote Φ as the standard Gaussian distribution and ϕ as its first order derivative. Then

(Si, Ti) = (Φ−1(Ui),Φ
−1(Vi)) is a random vector with Gaussian margins and copula C. According to (2),

the corresponding density function can be written as f(s, t) = c(Φ(s),Φ(t))ϕ(s)ϕ(t). Thus, an estimation

of the copula density function can be given by

ĉ(PT )
n (u, v) =

f̂n(Φ
−1(u),Φ−1(v))

ϕ(Φ−1(u))ϕ(Φ−1(v))
, (u, v) ∈ (0, 1)2. (6)

This kernel estimator has asymptotic problems at the edges of the distribution support. To remedy

this problem, local likelihood probit transformation (LLPT ) method was recently suggested by Geenens

et al. (2017). Instead of applying the standard kernel estimator, they locally fit a polynomial to the

log-density of the transformed sample. Recently, Nagler (2018) with a comprehensive simulation study

has shown that LLPT method for copula density estimation yields very good.
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4 Minimum copula quantile regression method

When the distribution function of the variables is not normal, the conditional expectation E(Y |X) does

not suffice to give full information on the conditional distribution function. In such cases, the quantile

regression is used. Copula-quantile regression, which is introduced by Bouye and Salmon (2009) is a

nonlinear form of quantile regression. They studied properties and application of this model.

To apply quantile regression, one needs to know the conditional copula distribution which is given

by CV |U (v|u) = ∂C(u,v)
∂u

. It can be proved that 0 ≤ CV |U (v|u) ≤ 1. Now, the pth quantile curve of v

conditional on u is defined by

CV |U (v|u) = p, (7)

and rearranging with respect to v the copula-quantile regression is given by

v = g(u, p; θ). (8)

If p = 0.5 is considered, the median regression is obtained. Bouye and Salmon (2009) finding and

established the expression of quantile regression for four most applicable copulas, i.e., Clayton, Frank,

Gaussian, and T copulas as

(i) Clayton copula: v = ((p−
θ

1+θ − 1)u−θ + 1)−
1
θ ;

(ii) Frank copula: v = − 1
θ
log

(
1− (1− e−θ)(1 + e−θu(p−1 − 1))−1

)
;

(iii) Gaussian copula: v = Φ
(
θΦ−1(u) +

√
1− θ2Φ−1(p)

)
;

(iv) T-copula: v = tν
(
θt−1

ν (u) +
√

(1− θ2)(1 + ν)−1(ν + t−1
ν (u)2)t−1

ν+1(p)
)
.

It is worth noting that the Gumbel copula does not have a closed form for the copula-quantile regression

method. Therefore, its copula-quantile regression has to be found numerically.

Now, the authors define the minimum pseudo copula quantile regression (MPCQR) method as

θ̂MPCQR = argmin
θ

n∑
i=1

(
Ṽi − g(Ũi, p; θ)

)2
(9)

where Ũi and Ṽi for i = 1, · · · , n, are the pseudo observations.

5 Simulation study

A simulation study was performed to compare the MPL and MPHD estimators to the MPCQR estimator.

The aim of this simulation study is to compare the true parameter θ with the parameter estimate θ̂,

under the assumption that the copula’s parametric form is correctly selected. This aim is accomplished

by comparing the Bias and mean square error (MSE) of the three approaches of copula parameter

estimations.

The data are generated from three Archimedean copulas such as Clayton, Gumbel, and Frank and

two Elliptical copulas such as Gaussian and T (ν=2 and ν=10) copulas with Kendall’s tau 0.2, 0.4, and

0.6 that are presented in Table 1. These copulas cover different dependence structures. Gaussian and

Frank copulas exhibit symmetric and weak tail dependence in both lower and upper tails. The Clayton

copula exhibits strong left tail dependence and the Gumbel copula has strong right tail dependence. In

T copula with positive dependency and small degrees of freedom (ν < 10) tail dependency occurs in

both lower and upper tails and as the degree of freedom increases, dependency in the tail areas decreases

(see Demarta and McNeil (2005)). Moreover, 1000 Monte Carlo samples of sizes n = 30 and 150 are

generated from each type of copulas and the three estimates are computed: MPL, MPHD, and MPCQR.

Results of the simulation study are presented in Tables 2-5. These tables present the Bias and MSE

relative to the three estimators of the respective copulas for different values of sample sizes and Kendall’s

tau. The simulation procedure was performed for the positive and negative values of Kendall’s tau and
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Table 2: estimated Bias of the estimators for Archimedean copulas

Copula τ n = 30 n = 150

θ̂MPL θ̂MPHD θ̂MPCQR θ̂MPL θ̂MPHD θ̂MPCQR

Clayton 0.2 0.0288 -0.0180 -0.0173 0.0107 -0.0129 -0.0582

0.4 0.0624 -0.0516 -0.0425 0.0181 -0.0228 -0.1133

0.6 0.0807 -0.2256 -0.0754 0.0347 -0.1119 -0.2790

Gumbel 0.2 0.0373 -0.0219 -0.0203 0.0021 -0.0076 -0.0213

0.4 0.0460 -0.0414 -0.0322 0.0028 -0.0106 -0.0432

0.6 0.0730 -0.2323 -0.0525 0.0045 -0.1357 -0.1427

Frank 0.2 0.1222 -0.1032 -0.0961 0.0685 -0.0737 -0.0850

0.4 0.1436 -0.1247 -0.1135 0.0894 -0.0918 -0.1169

0.6 0.1588 -0.2594 -0.1232 0.1208 -0.2004 -0.2127

Table 3: estimated Bias of the estimators for Elliptical copulas

Copula τ n = 30 n = 150

θ̂MPL θ̂MPHD θ̂MPCQR θ̂MPL θ̂MPHD θ̂MPCQR

Gaussian 0.2 -0.0188 -0.0146 -0.0127 -0.0081 -0.0095 -0.0126

0.4 -0.0215 -0.0192 -0.0175 -0.0023 -0.0116 -0.0296

0.6 -0.0164 -0.0326 -0.0152 -0.0010 -0.0227 -0.0297

T (ν = 2) 0.2 -0.0230 -0.0214 -0.0181 -0.0101 -0.0124 -0.0329

0.4 -0.0158 -0.0483 -0.0101 -0.0129 -0.0162 -0.0669

0.6 -0.0148 -0.0516 -0.0126 -0.0088 -0.0326 -0.0761

T (ν = 10) 0.2 0.0065 -0.0042 -0.0038 0.0005 -0.0024 -0.0125

0.4 0.0030 -0.0384 -0.0023 0.0003 -0.0124 -0.0236

0.6 -0.0025 -0.0460 -0.0015 0.0007 -0.0194 -0.0317

Table 4: estimated MSE of the estimators for Archimedean copulas

Copula τ n = 30 n = 150

θ̂MPL θ̂MPHD θ̂MPCQR θ̂MPL θ̂MPHD θ̂MPCQR

Clayton 0.2 0.0944 0.0689 0.0514 0.0232 0.0216 0.0298

0.4 0.1092 0.0818 0.0756 0.0341 0.0525 0.0737

0.6 0.2121 0.2925 0.1824 0.0834 0.1753 0.2002

Gumbel 0.2 0.0349 0.0226 0.0217 0.0086 0.0079 0.0159

0.4 0.0486 0.0342 0.0203 0.0121 0.0216 0.0278

0.6 0.1077 0.1185 0.0954 0.0254 0.0537 0.0640

Frank 0.2 0.5950 0.5167 0.4932 0.2554 0.2611 0.2997

0.4 0.6116 0.5691 0.5135 0.2693 0.2918 0.3487

0.6 0.6642 0.6984 0.5924 0.3207 0.4379 0.5157

according to the symmetry of the obtained results, the results have been reported only for positive values

of Kendall’s tau. As the results for the sample sizes greater than 150 were in line with our expectation

that the increase in sample size will improve the parameter estimation, the corresponding results were

omitted from the tables for brevity. Also, the results show that the MPL method outperforms MPHD

and MPCQR for sample sizes greater than 150. The results for the T copula with 4 and 7 degrees of
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Table 5: estimated MSE of the estimators for Elliptical copulas

Copula τ n = 30 n = 150

θ̂MPL θ̂MPHD θ̂MPCQR θ̂MPL θ̂MPHD θ̂MPCQR

Gaussian 0.2 0.0270 0.0161 0.0116 0.0070 0.0068 0.0108

0.4 0.0220 0.0141 0.0129 0.0048 0.0062 0.0117

0.6 0.0085 0.0101 0.0068 0.0015 0.0032 0.0048

T (ν = 2) 0.2 0.0372 0.0305 0.0287 0.0122 0.0160 0.0266

0.4 0.0324 0.0276 0.0227 0.0088 0.0142 0.0217

0.6 0.0173 0.0248 0.0183 0.0035 0.0089 0.0174

T (ν = 10) 0.2 0.0275 0.0245 0.0215 0.0091 0.0115 0.0159

0.4 0.0242 0.0226 0.0201 0.0066 0.0090 0.0138

0.6 0.0096 0.0178 0.0079 0.0032 0.0076 0.0111

freedom were omitted as well as the results did not differ from those for the two other T copulas with 2

and 10 degrees of freedom.

The results given in Tables 2-5 show that estimated Bias and MSE of parameter estimation of

the Archimedean and Elliptical copulas decrease as sample size increases and parameter estimates im-

prove. The estimated Bias and MSE of parameter estimation increase with increasing Kendall’s tau for

Archimedean copulas. Also, estimated MSE of parameter estimation decrease with increasing Kendall’s

tau, whereas estimated Bias of parameter estimation has no clear trend for Elliptical copulas.

The results given in Tables 2-5 show that the MPL yields the best results for the large sample size

(n ≥ 100) and high dependency (τ ≥ 0.5). For the small sample size (n < 100), MPCQR method

outperforms MPL method. Among the MPHD and MPCQR estimators, the results show that θ̂MPCQR

is better than θ̂MPHD based on MSE in small sample size. This advantage for θ̂MPCQR is clearer in

Archimedean copulas than in Elliptical copulas. In addition to these results, the estimated bias seem to

be considerably higher for Archimedean copulas than for Elliptical copulas. Finally, it is necessary to

note that although the time required to compute the MPCQR method is longer than the MPL method,

but the MPCQR method has accurate and acceptable results for small sample size.

Discussion and Resuls

In this paper, a new method of copula parameter estimation based on quantile regression was presented

for some bivariate Archimedean and Elliptical copulas. This method was compared by MPHD and MPL

methods to obtain the copula parameter estimation based on pseudo observations. The simulation results

suggests that the minimum pseudo copula quantile regression (MPCQR) method has good performance

in small sample sizes.
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