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A B S T R A C T   

To deal with evaluating small failure probabilities, AK–SESC: a novel approach integrating an active learning 
Kriging meta-model (AK-MCS) and the SESC, a sequential space conversion method, is suggested. The efficiency 
of the proposed approach relies on the advantages of the AK-MCS and its updating feature to evaluate the actual 
performance function and the superiority of SESC in estimating small failure probabilities. Although there are 
effective methods for small probabilities, the beauty of this approach is that it is derived from the probability 
integral with no simplifications while providing results of high accuracy. 

Different problems were solved to study the AK–SESC applicability. The main effort of this method is reducing 
the function call numbers of the original SESC while reaching the same accuracy as Monte Carlo Simulation 
(MCS). The reliability analysis results were compared with the main reliability methods of the Importance 
Sampling (IS), Subset Simulation (SubSim), Line Sampling (LS), First and also Second-Order Reliability Method 
(FORM and SORM). The solved problems indicate that the proposed approach provides accurate answers with 
much fewer function calls than SESC. So, it can be a promising method for reliability analyses involving 
nonlinear or high-dimensional performance functions with small failure probabilities.   

1. Introduction 

In structural engineering, random features inherent to computa-
tional models inevitably induce uncertainties in other parameters. The 
characterization and propagation of uncertainties across computational 
models to learn reliability has been essential aspects of structural design. 
In recent decades, structural reliability analysis has developed in the 
form of a rational instrument to analyze engineering system design 
under uncertainties [1]. In this field, some interesting investigations on 
the reliability assessment of corroded pipelines made of high-strength 
steel [2, 3], and also fuzzy reliability analysis of nanocomposite zinc 
oxide beams considering buckling failure mode [4] were recently con-
ducted. In another research to estimate the probabilistic features of 
different fiber-reinforced polymers used in confined concrete, several 
distributions were studied [5]. Not only does it make safety estimations 
of structural systems, but it may also be employed to make likelihood 
estimations of rare events in other contexts [6, 7]. As a result, the 
structural reliability theory has a broader range of purposes than its 
originally planned application range. The determination of the failure 

likelihood integral is an essential part of reliability analysis. However, 
this is commonly a challenging task because of many random variables 
and large nonlinearity in real-life problems. In recent several decades, 
this challenge has led to the development and improvement of several 
estimation techniques concerning structural reliability. 

Several approaches, e.g., the first-order reliability method (FORM) 
[8] and second-order reliability method (SORM) [9], apply limit state 
function expansion at the most probable point (MPP) or the design point 
through Taylor expansion, ignoring higher-order terms for the purpose 
of approximating the failure likelihood. Thus, it is required to obtain a 
derivative-grounded iterative search procedure for locating MPP. 
Despite the rationally precise solutions of such techniques to a number 
of real-life problems, the numerical difficulty and inaccuracy of MPP 
searching may appear for an implicit nonlinear limit state function. Also, 
moment-grounded approaches can be classified in this category [10, 
11]. 

The crude Monte Carlo simulation (MCS) is the most robust and 
accurate technique and produces random samples on the grounds of the 
statistical random variables and estimates the failure probability (Pf ) of 
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a system using the law of large numbers [12]. However, due to its high 
computational costs, MCS cannot be claimed to be the most competent 
method for time-consuming problems (such as finite element ones) and 
the likelihood estimation of rare events [13]. 

Despite several improved MCS variants, including the modified 
importance sampling (MIS) method [14], subset simulation (SS) [15], 
line sampling method (LS) [16, 17], weighted average simulation 
method [18, 19], asymptotic sampling [20, 21], and thermodynamic 
integration and parallel tempering (TIPT)[22], for further enhancing 
efficiency, such techniques may require significantly high computa-
tional costs to yield rationally-accurate results, particularly for the 
assessment of time-consuming models, e.g., a finite element model. 
Furthermore, it should be pointed out that some of such approaches 
have limited applicability, such as small-sized situations. Thus, it was 
required to develop techniques to make failure probability estimates by 
a smaller number of calls to costly performance functions. Sampling 
approaches grounded on variance reduction may yield as accurate 
estimation as MCS but by a dramatically lower number of limit state 
functions [23]. However, a large number of limit state function assess-
ments are still required to ensure that the probability estimates of failure 
are expectedly accurate. 

To further reduce the number of costly assessments of limit state 
functions, metamodel-based approaches are developed for failure 
probability estimation. In such approaches, the meta-model undergoes 
training for replacing the real time-consuming limit state function. Next, 
the metal model can be employed to make a failure probability estimate 
in place of the real implicit limit state function. The response surface 
method [24], support vector machines [25], neural networks [26], and 
Kriging [2729] are extensively employed as metamodel-based tech-
niques for reliability. 

Kriging has been of increasing interest in light of advantages over the 
other meta-model approaches to estimate failure probability. Such ad-
vantages stem from the appropriate characteristics of a Gaussian pro-
cess. [29] suggested that the basic variant of Kriging is built via some 
training samples. Therefore, accuracy in Kriging is strongly dependent 
on the training sample-derived information. Kriging would have insuf-
ficient prediction accuracy when few samples are employed to diminish 
the computation cost. On the other hand, using a great number of 
samples would ensure sufficient accuracy in the prediction; however, 
this would add to the computation cost, particularly concerning models 
with heavy computations. As a result, researchers argued that 
combining Kriging and active learning strategies would bring a trade-off 
between prediction accuracy and computational efficiency. 

An active learning strategy is exploited Kriging–based approaches to 
sequentially select training samples to refine the Kriging model and 
obtain the pre-specified accuracy in approximation. The combination of 
active learning strategies brings almost informative training samples 
within the Kriging model to substantially enhance the prediction accu-
racy. Hence, the use of the minimum number of training samples leads to 
a rapid iteration convergence rate in constructing the Kriging model. In 
general, learning functions determine the success of such active learning 
procedures in Kriging-grounded techniques. The expected feasibility 
function (EFF) [30], U-learning function [31], H-learning function[32], 
and the least improvement function (LIF) [33] are extensively employed 
as learning functions in failure probability estimation. 

Pioneer studies [3436] demonstrated the U-learning function to 
require a high cost for easy implementation. Also, they suggested that 
training sample selection in the U-learning is performed at the maximum 
misjudge likelihood for updating the Kriging model. The integration of 
the active learning Kriging and MCS technique, known as AK-MCS [31], 
can lead to a considerable decline in the computational cost for failure 
probability cost compared to the MCS method accuracy. For failure 
probability estimation, AK-MCS builds a Kriging model of the real limit 
state function in an iterative process within the pool of MCS samples via 
a learning function to meet the convergent criterion. Then, the 
well-trained Kriging model is employed to detect failure samples in the 

MCS-generated sample pool. Eventually, the failure samples are 
exploited to make a failure probability estimate. 

For the efficiency improvement of AK-MCS failure probability esti-
mation, it can be coupled with a sampling technique grounded on 
variation reduction, which commonly saves more time as compared to 
AK-MCS due to the substantially smaller sample pool than the one in 
MCS. The AK-IS [34], AK-SS [37], and AK integration with stochastic 
sampling and density approximation (AK-SSD) [38] fall into this class of 
strategies. AK-IS constructs a Kriging model in an iterative process 
within the IS PDF-generated sample pool, which is of greater efficiency 
as compared to AK-MCS; however, it solely suits problems with one MPP 
or a single dominated MPP. 

Nevertheless, two brand new methods named ALK-EMO-IS [39] and 
ALK-MAIS-TCR [40], have significantly dealt with the mentioned 
drawback, and in another study, to reduce the time of building the 
Kriging model in the combination of IS, ALK-KDE-IS was proposed [41]. 
The method of AK-SS iteratively constructs a Kriging model within the 
MCS sample pool to meet the convergent criterion. Next, SubSim is 
employed to perform failure probability estimation via the Kriging 
model rather than the actual limit state function. Also, AK-SSD in-
tegrates AK and SubSim in order to make an IS PDF approximation 
before utilizing IS for failure probability estimation on the ground of the 
Kriging model. 

SASM [42], the Subset Active Subspace Method, is recently pro-
posed. This procedure uses a hybrid of the subset simulation and the 
kriging method to predict the high dimensional reliability problems with 
a rare failure event. 

MLS [43], a Metamodel Line Sampling approach, and Meta-IS [44], a 
surrogate model-based importance sampling method, integrate the 
importance sampling with active learning Kriging methods used in 
comparison in some of the solved problems in this study. These methods 
aim to reduce the computational cost of the reliability analysis. 

Generally, efficiency in AK-coupled numerical simulations of failure 
probability estimation could be basically improved by learning function 
improvement and the construction alternation of the candidate sample 
pool. In the latter strategy, another SS-AK integration is employed to 
make failure probability estimates [45]. This approach utilizes SubSim 
for translating small failure probability estimates into some greater 
conditional failure probabilities of suitable intermediate failure events. 
Next, it iteratively builds the Kriging model of the actual limit state 
function within the SubSim sample pool to obtain the entire conditional 
failure probabilities via the trained Kriging model. Then, one can esti-
mate the failure probability by multiplying the conditional failure 
probabilities. 

SubSim is a more capable variance reduction–grounded sampling 
approach than other reliability techniques due to the use of a decent idea 
for the probability estimation of rare events. Thus, many studies were 
conducted on SubSim [22]. Through intermediate failure event intro-
duction, SubSim uses small values of Pf as a product of greater condi-
tional probabilities and employs a smaller number of function calls than 
the basic MSC variant to solve problems [46]. However, SubSim is too 
dependable on the geometry of the performance function that may 
mislead the samples towards the wrong failure region. 

To address this issue, SESC, a sequential space conversion reliability 
method, is newly introduced to solve misleading and some other chal-
lenging performance functions, which are not easy for famous reliability 
methods. This method is inspired by SubSim but in a completely 
different procedure represented the upcoming sections. Using meta- 
models increases the computational time of analysis but highly reduces the 
function evaluation of analyses. In this paper, integration of SESC and 
active learning Kriging is proposed to considerably reduce the number of 
function calls of the SESC approach while maintaining high precision 
reliability results. The rest sections of this study comprise a background 
of the used and inspired methods in Section 2, a comprehensive 
demonstration of the proposed method in Section 3, numerical exam-
ples, and the conclusion in Sections 4 and 5, respectively. 
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2. Background 

2.1. Description of SubSim 

SubSim [37, 47] refers to an adaptive Markov Chain Monte Carlo 
(MCMC) [48] method for the efficient calculation of small failure 
probabilities (i.e., of rare events). Let F be the ultimate failure event and 
F1, F2. . . Fm denote a sequence of intermediate failure events, for which 
F1⊃ F2⊃…⊃ Fm = F. Based on the failure event definition in the analysis 
of reliability, Fi = {G(x) ≤ Gi}, in which Gi represents the corre-
sponding failure threshold (G1 > G2 > … > Gm = 0), as illustrated in 
Fig. 1. 

As a result, one can represent the failure probability by multiplying 
P(F1) by some conditional probabilities as: 

PF = P(Fm) = P(Fm|Fm− 1)P(Fm− 1) = … = P(F1)
∏m− 1

i=1
P(Fi+1|Fi) (1) 

Let {x(1)
k : k = 1,…,N1} denote independent samples of an identical 

distribution (i.i.d.) that are simulated based on the probability density 
PDF q(x). Also, IF1 (x

(1)
k ) stands for the indicator function. Thus, P(F1) is 

calculated using direct MCS: 

P1 = P(F1) =
1
N

∑N1

k=1
IF1

(
x(1)

k
)

(2) 

To calculate conditional probabilities P(Fi+1|Fi) (i = 1,…,m − 1), the 
samples of (i + 1)th subset are produced by samples in i th subset, which 
are in the failure region Fi as: 

Xi : G(x) < Gi, i = 1,…,m − 1 (3) 

The selection of failure thresholds Gi (i = 1, 2, . . .,m) is typically 
performed to allow for equal partial failure probabilities p0 of each 
subset [8]. Considering the samples in Fi, the target distribution π(x|Fi)

is employed to generate conditional samples. Also, Eq. (2) is utilized to 
evaluate P(Fi+1|Fi): 

π(x|Fi) = q(x)IFi (x)/P(Fi) (4)  

Pi+1 = P(Fi+1|Fi) =
1

Ni+1

∑Ni+1

k=1
IFi+1

(
x(i+1)

k

)
(5) 

The present study employed a modified Metropolis algorithm variant 
[15] in MCMC simulation to produce conditional samples. SubSim 
continues as:  

(1) Produce N1 i.i.d samples (x(1)k : k = 1, 2, . . .,N1) based on the 

PDF q(x); x(1)k : k = 1, 2, . . .,N1.

(2) Calculate N1 responses: {G(x(1)k ) : k = 1, 2, . . .,N1}. The failure 
threshold G1 is chosen as quantity N1p0 of G(x) in ascending 
order, in which p0 = P1 = P(F1) is an already-assigned suffi-
cient value;  

(3) Begin with p0Ni samples in the failure region Fi (i= 1,…,m − 1)
and produce other conditional samples (Ni+1 − p0Ni) based on 
q(x|Fi);  

(4) Likewise, calculate G(x) : {G(x(i+1)
k ) : k = 1,2,…, Ni+1 } to obtain 

responses Ni+1 . Determine the failure threshold Gi+1 as quantity 
Ni+1p0 of G(x) in ascending order. Then, P(Fi+1|Fi) = p0 and 
P(Fi+1) = pi+1

0 .  
(5) Iterate the above steps to meet the criterion G(x(m)

p0Ni+1
) < 0. 

Then, Gm is set to zero, and P(Fm|Fm− 1) and PF are computed. As 
suggested in [15], the coefficient of variation (CV) of P1 =

P(F1) is δ1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − P1/P1N1

√
, whereas the CV of Pi for subset 

i (i = 2, . . .,m) is calculated as: 

δi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Pi

PiNi
(1 + γi),

√

i = 2,…,m (6)  

γi = 2
∑Ni/Nci − 1

k=1

(

1 −
kNci

Ni

)

ρi(k) (7)   

where ρi(k) represents the correlation coefficient. Also, one can estimate 
the CV of PF as: 

δPF(SS) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
δ2

i

√

(8) 

Remember that the MCS-obtained CV of PF is δPF(MCS) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − PF)/(PFNMCS)

√
. At a very small PFvalue, δPF(sS) is considerably lower 

than δPF(MCS) for an equivalent size of samples. 

2.2. Basic theory of kriging 

Kriging has been of great interest in the construction of meta-model 
models in recent years. For k sample points, xi ∈ Rn, and k responses 
Y = [G(x1),…,G(xk)]

T, in which n denotes the dimension of xi. As a 
strong meta-model of interpolation, Kriging considers the deterministic 
response G(x) to be a random function realization, which involves a 
centered stochastic process and a regression procedure [49, 50]. 

Ĝ(x) = F(x, β) + z(x) = fT(x)β + z(x) (9)  

in which F(x, β) denotes the deterministic term of a regression model 
representing the Kriging trend and yielding a response estimate in the 
form of the mean. fT(x) = {f1(x), ..., fk(x)}stands for the primary poly-
nomial function vector, whereas βT = {β1, ..., βk} denote the regression 
coefficient vector. Also, z(x) is a zero-mean stationary Gaussian process 
and covariance between two points that are defined as: 

COV
(
Z(xi),Z

(
xj
))

= σ2
z Rθ

(
xi, xj

)
(10)  

in which σ2
z represents the process variance of Z(x), while Rθ denotes the 

Gaussian correlation function with its set of parameters corresponding 
to the number of random variables θT = {θ1, θ2..., θn}. Several models 
exist for defining the correlation function in Kriging, which performs the 
smoothness management of the model. Then, the anisotropic Gaussian 
function is employed as: 

Fig. 1. Subset simulation [45].  
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Rθ
(
xi, xj

)
=

∏n

k=1
exp

[
− θk

(
x(k)i − x(k)j

)2]
(11) 

One can represent the design of experiments (DoE) points as x = [x(1),

x(2), ..., x(p)], in which vector x(i) ∈ Rn stands for test i. Then, one can 
express the responses as Y(i) = G(x(i)) ∈ R. Also, one may calculate 
scalar β and process variance σ2

z as: 

β̂ =
(
1T Rθ

− 11
)− 11T Rθ

− 1Y (12)  

σ̂ z
2
=

1
p

(
Y − 1β̂

)T
Rθ

− 1
(

Y − 1β̂
)

(13)  

in which the matrix of correlation the DoE point pairs is obtained by Rθ i,j 

= Rθ(x(i),x(j)), and 1 is a unit vector of length p. Eqs. (12 13) are based on 
the correlation parameter θi, which could be found using maximum 
likelihood estimation (MLE): 

θ = argmin
θ
(detRθ)

1
p σ̂2

z (14) 

Best linear unbiased prediction (BLUP) Ĝ(x) may be calculated at an 
unknown point x as: 

Ĝ(X) = β + r(X)Rθ
− 1
(

Y − 1β̂
)

(15)  

in which r(X) = {Rθ(X,X(i))}i=1,...,pcorrelates X and p observed points. 

The Kriging variance σ̂
Ĝ

2 is obtained as the minimum mean squared 

error (MSE) between G(x) and predicted response Ĝ(x) as: 

σ2
Ĝ
(x) = σ2

z

[
1+ u(x)T ( 1T Rθ

− 11
)− 1u(x) − r(x)T

Rθ
− 1r(x)

]
(16)  

in which u(x) is; 

u(x) = 1T Rθ
− 1r(x) − 1 (17) 

The predicted Kriging response Ĝ(x) at point x has a normal 
distribution: 

Ĝ(x) ∼ N
(

Ĝ(x), σ2
Ĝ(X)

)
(18)  

2.3. AK-based on U-learning function 

Given that several studies have been conducted on Kriging and the U- 
learning function, the present study avoids replicating pioneer studies. 
[31, 32, 34, 51] provided detailed descriptions of Kriging and the 
U-learning function. The present work solely introduces their kernels. 

The posterior distribution of the Kriging model gK(x) (where the 
subscript “K′′stands for “Kriging”) at point x is gK(x) ∼ N(μ ĝ (x), σ2

ĝ
(x)), 

in which μ ĝ (x) denotes the mean of the Kriging prediction, while σ2
ĝ
(x)

indicates the variance of the Kriging prediction. In practice, the mean 
prediction μ ĝ (x) is considered to be the value of the Kriging prediction at 

x, whereas the variance of the prediction σ2
ĝ
(x) indicates the prediction 

uncertainty. 
To build a Kriging model of adequate accuracy for the strategy of the 

intermediate limit state g(x) = bk(k = 1, 2,⋯,m) via the minimum 
number of training samples, it is required to adopt an active learning 
strategy to select new training samples with the maximum impact on the 
quality of prediction for the step-by-step refining of the Kriging model. 
The U-learning function is employed to select informative training 
samples: 

U(x) =

⃒
⃒
⃒μĝ(x) − bk

⃒
⃒
⃒

σĝ (x)
(19) 

The basis of the U-learning function is the fact that failure probability 
estimation only requires the sign of the limit state function. It suggests 
an index of misjudging risk for the sign of g(x). A lower U(x) represents 
significantly larger uncertainty of the sign of g(x). Hence, for refining the 
Kriging model, the best new training point xnew is selected as: 

xnew = argmin
x∈Sk

[U(x)] (20)  

in which Sk is the candidate sample pool of intermediate failure event k, 
and a U(x) equal to 2 suggests 1 − Φ(− 2) = 97.7% confidence in 
judging the sign of g(x). Therefore, a discontinuation Kriging updating 
criterion is defined as: 

min
x∈Sk

[U(x)] ≥ 2 (21)  

2.4. SESC 

SubSim is the primary estimation approach of small failure proba-
bilities (i.e., rare events) [46]. It conveys the samples from the origin 
toward the failure domain of the maximum probability, estimating small 
probabilities through several failure domains on the ground of the per-
formance function geometry and MCMC. Nevertheless, given that it 
assumes performance function geometry tracking to move the MCMC 
samples toward the failure region of the maximum probability, SubSim 
cannot be generally employed for solving reliability problems. It may be 
accurate enough solely concerning particular problems to which this 
assumption applies. Therefore, to tackle this drawback, many studies 
[47] recently conducted detailed examinations. 

As a result, sequential space conversion (SESC) was recently intro-
duced for solving complicated and high-dimensional problems con-
cerning rare events[52]. Although the formulation of SubSim is 
grounded on Bayes’ theorem, the SESC formulation is obtained by the 
control variate method. In this approach, an estimate of rapid inaccurate 
failure probability is made. Then, the estimation is improved by the 
refining of the terms. A set of scaled limit state functions analogous to 
the original variant but with larger failure probabilities is built to be 
exploited as control variables. Finally, the MCMC samples are directed 
toward the essential region of failure. Thus, in contrast to SubSim, SESC 
does not operate based on the geometry of a performance function 
positioned distant from the limit state surface. 

Reducing the function calls in SESC, the present work recommends 
its integration with active learning Kriging. The suggested procedure is 
described in the next section. 

3. Proposed method 

In the analysis of reliability, one can derive failure probability by 
computing the integral: 

Pf = Pg(x)≤0 =

∫

Ω

q(x)dx (22)  

in which Ω is the failure domain (g(x) ≤ 0), x = [x1, . . ., xn] is the 
vector of the system input variables under uncertainty, and q (x) rep-
resents the joint probability density function. The performance function 
g(x), which is also referred to as the limit state function, implies a failure 
for g(x) ≤ 0 and safety for g(x) > 0. 

The non-use of crude MCS in the analysis of reliability due to the 
assumptions of other reliability techniques leads to inaccurate and 
incorrect probability estimates. Thus, one can rewrite Pf as: 

Pf = Pf ,in + ε (23)  

in which Pf ,in denotes the imprecise probability result of a reliability 
method while ε stands for the estimation error. Eq. (23) can be solved 
using CV for probability error estimation via a small sample size 
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simulation [23, 53]. 
A reliability problem with a complicated LSF can be solved using an 

instrumental PDF function h(x) representing the CV of the original PDF 
function (q) [54]: 

Pf =

∫

Ω

h(x)dx +
∫

Ω

(q(x) − h(x))dx (24) 

A similar h(x) to q(x) with an m-fold higher standard deviation 
produces a more significant number of samples within the failure region 
as compared to q(x). Therefore, the probability of a rare event rises by m 

times. 
As a result, it is possible to easily make an inaccurate Pf estimate as: 

Pf ,in =

∫

Ω

h(x)dx (25) 

Also, the estimation error ε is computed by integrating the difference 
between the two PDFs within the failure domain: 

ε =

∫

Ω

(q(x) − h(x))dx (26) 

Fig. 2 illustrates a schematic of the proposed procedure in a one- 
dimensional setting. This procedure can be claimed to be a high- 
versatility variant of the well-known IS approach. It allows for utiliz-
ing advanced variance reduction methods for the solving of problems. 
Furthermore, one may estimate the first probability term through an 
efficient technique (such as inaccurate analytical ones), and the error 
term could be approximated by performing simulations within the 
importance failure domain [23]. For analysis, the present study adopted 
the linear CV and the regression parameter of α as [13]: 

Pf = α
∫

Ω

h(x)dx +
∫

Ω

(q(x) − αh(x))dx

= αPf ,in +

∫

Ω

(q(x) − αh(x))dx
(27) 

After approximating the inaccurate probability Pf ,in, the importance 
failure region is found, and one can accordingly estimate the second 
term in the equation by using sampling. 

For high-dimensional problems, space conversion is recommended 
as it offers a general method for solving these problems. This approach 
decomposes the integral problem in Eq. (27) into two different problems 
within separate spaces (i.e., original and augmented). Then, these two 
particular problems are mapped into a new equivalent standard normal 
space Z, the process of which resembles FORM but yields an entirely 
different result; two distinct LSFs will exist in the Z-space. The mapping 
of the LSFs leads to the mathematical reformulation of Eq. (27) by space 
conversion as: 

Pf = αPf ,in +

∫

Ω

(
Ig(z) − απĝ(z)

)
φ(z)dz (28)  

in which I ĝ (z) and π ĝ (z) represent the indicator functions of the primary 
and scaled failure domains in the Z-space, respectively. Also, φ(z) rep-
resents the standard normal PDF.So, an integral problem with a failure 
domain and two PDFs is transformed into a problem with two LSFs and a 
PDF within the standard normal space by space conversion. 

To simplify Eq. (28), one can calibrate α so that the second term 
becomes zero. Thus, it is possible to rewrite the failure probability as: 

Pf = α.Pf ,in (29)  

in which α =

∫
Ig(z) φ(z) dz

∫
π

ĝ
(z) φ(z) dz

. Then, one can employ an instrumental quasi- 

optimal function φ∗(z) = φ(z) /Pf ,in for the estimation of α as: 

α = Eφ∗

(
Ig(z)

)/
Eφ∗

(
πĝ (z)

)
(30) 

The use of a conventional component-wise MCMC may yield 
Eφ∗ (π ĝ (z)) =

∫
π ĝ (z) φ(z) dz= 1 when producing the entire samples 

within the failure domain ĝ. Therefore, based on Eq. (29), one can 
represent Pf as: 

Pf = Eφ∗

(
Ig≤0(z)

)
.Pf ,in (31) 

Concerning the use of the presented space conversion approach, CV 
properly estimates Pf when g = 0 and ĝ = 0 are close; however, for a 
large m, g = 0 and ĝ = 0 are not close, the estimation of α = Eφ∗ (Ig(z))
requires a large sample size. 

Therefore, it is suggested that one should reduce the estimate vari-
ance by using a reducing vector m = {m1, m2, m3, …, mn}, where 
m1 > m2 > m3 > … > mn for the iterative design of scaled LSFs between 
ĝ1 = 0 and g = 0. Next, for σi = miσf within LSF conversion, a sequential 
CV approach is adopted to solve the problem. Hence, the basic LSF lies 
next to some scaled LSFs close to the basic LSF but have failure proba-
bilities. Also, the failure probability is estimated as: 

Pf = Pĝ1
f ⋅Pĝ2

f ⋅...⋅Pĝn− 1
f ⋅Pĝn

f

=
∏n

i=1
⋅Pĝi

f

(32) 

Assuming ĝ1 = 0 to be the initial LSF with the largest failure prob-
ability, MCS is employed to approximate the inaccurate probability 

Pf ,in = Pĝ1
f as: 

Pf ,in = Pĝ1
f =

∫

πĝ1≤0(z) φ(z) dz= Eφ

(

πĝ1
(z)

)

(33) 

To avoid a Monte Carlo simulation and the assessment of the entire 
population on performance function, the present work recommends 
using AK-MCS [31] as it separates positive performance function pre-
dictions from negative ones for the Monte Carlo population. The sign at 
each point is derived in light of the Kriging predictions on the ground of 
some assessed points. Hence, the first stage is the production of a Monte 

Fig. 2. h(x) as the CV of q(x) in a one-dimensional setting [53].  
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Carlo population S. It involves NMCS sample points of input variables 
within the design space via the Monte Carlo technique as xMCS = {x1,x2,

...,xnMCS}. The sampling procedure is performed based on the PDF of the 
problem random variables. Also, it is not necessary to compute the 
performance function at this stage. 

Then, there should be an initial DoE to carry out Kriging, which in-
volves randomly selecting N0 points from the population to be assessed 
on the performance function and employed as the initial DoE for the 
Kriging model. It is preferable to define a small initial DoE and add the 
point solely with the most considerable improvement contribution to the 
meta-model in a stepwise manner. Then, the DACE toolbox is utilized to 
construct the Kriging model [55]. A Gaussian correlation model is 
selected for computing Kriging predictions of the entire population. 
Also, the regression model is selected to be fixed; this represents ordi-
nary Kriging. 

To identify the best next training point x∗and assess its performance 
function, it must implement a learning function. Thus, the U-learning 
function is chosen. For each of the points within the population, the 
Kriging variance σ̂

Ĝ
2is to be obtained by Eq. (16). Also, Eq. (19) is 

applied to estimate the U-learning function for bk = 0. Since solely the 
sign of the limit state function is of importance within a Monte Carlo 
simulation, the learning function is aimed at the identification of highly 
uncertain points on their signs. These hazardous points may contain a 
large Kriging variance, suggesting significant uncertainty or closeness to 
the limit state or such attributes. U represents a reliability index on the 
misjudging risk of the sign of response predictions. Then, Eq. (20) is 
applied to identify the best training sample with the smallest value of U. 

As mentioned, min
x∈Sk

[U(x)] ≥ 2 is the first discontinuation criterion to 

find the best next point x∗. The learning process continues to perform, 
and the true performance function of the best point x∗that was identified 
in the previous step is assessment until the discontinuation criterion is 
met. Next, the best point is added to the DoE to be exploited to estimate a 
new Kriging model. Once the discontinuation criterion is met, the 
learning process stops, and the Kriging model is sufficiently accurate. 
Then, to ensure the sufficient largeness of the Monte Carlo population in 
the first step for obtaining a small CoV in the Kriging failure probability 
prediction, the following criterion is to be met: 

C.O.V
P̂f

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − P̂f

P̂f nMCS

√

< 0.05 (34) 

In which P̂f =
N

Ĝ≤0
NMCS

. When this criterion is not met, the sample count 
of the population needs to be raised using the newly generated samples 
of another MCS population, likewise the first step. The active learning 
Kriging model is constructed once the entire criteria have been met. 
Next, for performance function evaluation, the updated Kriging-derived 
training points are applied to h(x) as the initial set of training samples 
rather than producing MCS sample points on the ground of a new PDF 
h(x). Despite the substantial decline in the sample size due to the 
replacement of q(x) with h(x), the use of AK-MCS training samples in-
duces even a sharper reduction in the number of performance function 
assessments. 

4. Numerical examples 

To assess the robustness and efficiency of the proposed method and 
to verify the results, four benchmark problems with implicit perfor-
mance functions, which are widely used in the literature, are solved. The 
obtained results are compared to those of some other common reliability 
procedures. The efficiency of different reliability methods is compared 
in terms of Ncall which is the number of function evaluation, and ef . ef is 
considered the percentage error of the problem failure probability in 
comparison with those of MCS as the reference value. 

4.1. Example I 

The first example is a high dimension paraboloid problem with 
standard normal variables: 

g(X) = α + γ
∑D

i=2
X2

i − X1 (35)  

the geometrical features of the limit state function are defined by the 
constant parameters of α, γ and D. This example was solved with the 
setting of the Nf to 50 and the dimension of the problem (D) assumed to 
be 10. The reliability analysis results are shown in Table 1. The reference 
value of MCS is 7.74 ×10− 4 with a number of 518,360 function calls. 

The reliability results demonstrated in Table 1 show that the most 
accurate method is AK-SESC, and the least one is MLS with the relative 
error of 0.65% and 2.58%, respectively. Even though the function calls 
of the MLS are 44.4% of the ones in AK-SESC, the precision of the pro-
posed method is 25% more than the MLS approach. SubSim method with 
the huge number of function calls still has a 2.06% relative failure 
probability error compared with the reference value of MCS. LS in-
dicates a small error but its requirement to 41,893 Ncall cannot be 
negligible. In the case of reducing the SESC function calls, which is the 
aim of this paper, the results show that the AK-SESC method reaches the 
64.6% of Ncall required by SESC with a reduction of 63.1% in relative 
error. Fig. 3 

4.2. Example II 

In this section, a performance function with a very small failure 
probability is studied. The PDF of two random variables X1 and X2 are 
normally distributed, and the performance function is defined as: 

g(X) = X1X2 − 146.14 (36) 

The corresponding performance function is illustrated in Fig. 4, and 
the Statistical Properties of the random input variables are shown in 
Table 2. 

400 samples are considered as the initial ones to build the Kriging 
model and the Nf is set to 100. The result of IS is extracted from ref. [23]. 
As shown in Table 3, FORM is not accurate enough, and SORM fails in 
finding the solution. The original SESC has almost the same number of 
function calls comparing to SubSim, but the estimation of the Pf is much 
more accurate. The AK–SESC proposed method outperforms the original 
SESC method in terms of Ncall by reduction of around 72% in function 
calls and also with a better accuracy. Fig. 5 illustrated the effect of the 
different numbers of considered initial samples on the reliability index. 

4.3. Example III 

The next example is a Metaball function: 

g(X) =
30

(
4(x1+2)2

9 +
x2

2
25

)2

+ 1
+

20
(

(x1 − 2.5)2

4 +
(x2 − 0.5)2

25

)2

+ 1
− 5 (37) 

The two random variables are considered standard normal ones. The 

Table 1 
The reliability results of example I (considering α = 0, γ = 1) [43].  

Method Pf  Ncall  ef (%)

MCS 7.74 ×10− 4  518,360 – 

SubSim 7.58 ×10− 4  105  2.06 

LS 7.67 ×10− 4  41,893 0.90 

MLS 7.94 ×10− 4  1201 2.58 

SESC 7.82 ×10− 4  4186 1.03 

AK-SESC 7.79 ×10− 4  2705 0.65  
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Metaball functions can be used to create problems where the topological 
structure of the domain of failure varies. The performance function of 
this example is depicted in Fig. 6. 

As mentioned in ref. [52], the geometry of this performance function 
misleads MCMC samples to an incorrect failure region of the metaball, so 
SubSim fails to reach the result. The results demonstrated in Table 4 
indicate that the proposed method solved the problem with fewer 
function calls but still with high accuracy. Comparing to SESC, the 
AK-SESC approach has 18.7% fewer function calls. It is noteworthy that 
the suggested method just needs 100 initial samples. The results of 
example III with a different number of initial samples are shown in 
Fig. 7. 

4.4. Example IV 

A parallel system, including a high nonlinear performance function, 

Fig. 3. Flowchart of the proposed AK-SESC method.  

Fig. 4. Performance function of example II.  

Table 2 
Statistical properties of example II.  

Variable Distribution Mean Standard Deviation 

X1  Normal 7.80644× 104  1.17097× 104  

X2  Normal 1.04× 10− 2  1.56× 10− 3   

Table 3 
The reliability results of example II.  

Method Pf  B  Ncall  

MCS 1.34× 10− 7  5.14 3× 108  

IS 1.41× 10− 7  5.14 7.0× 103  

FORM 2.86× 10− 8  5.43 200 

SORM Failed Failed – 
SubSim 5.55× 10− 8  5.31 13,841 

LS 8.21× 10− 8  5.24 100 

SESC 1.29× 10− 7  5.15 13,717 

AK-SESC 1.32× 10− 7  5.15 3869  
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is investigated in this problem [44]: 

g(X)= min{
exp

(
− x2

1

10

)

+
(x1

5

)4
− x2 + 4

− x1x2 − 12.5

(38) 

The two independent random variables have standard normal 
distributions. 

Same as the other examples, the reference value to compare the 
reliability analysis answers is the failure probability of the problem, 
evaluated by MCS. According to the results shown in Table. 5, the failure 
probability accuracy obtained by SubSim, is far from the reference 
value. 

Although the precision and function calls of the Meta-IS and SESC 
methods do not have significant differences, the Meta-IS reveals better 
reliability answers which are comprising 17% less Ncall ,and 1.37 better 
accuracy. 

By investigating the values depicted in Table. 5 compared with the 
MCS results, the AK-SESC indicates a more accurate failure of proba-
bility with less number of function calls among the other approaches. 
The proposed method with the 2408 number of function calls is only 5.7 
×10− 4 % of the required ones by MCS with just 2.01% accuracy relative 
error which is a considerable result. The AK-SESC method with Nf set to 
180 and 250 initial samples need 32.17% and 18.10% fewer function 
calls comparing to SESC and Meta-IS, respectively. 

4.5. Example V 

This example is a high-dimensional reliability problem with D in-
dependent log-normal random variables to evaluate the efficiency of the 
proposed method to solve a reliability problem with 50 dimensions. The 
considered performance function is as follows [44]: 

g(X) =
(

D+ασ
̅̅̅̅
D

√ )
−
∑D

i=1
xi (39)  

where the α parameter is set to 3. The mean and standard deviation of 
the variables are units mean values and σ= 0.2 respectively. The ob-

Fig. 5. The results of Example II with a different number of initial samples.  

Fig. 6. Performance function of example III.  

Table 4 
The reliability results of example III.  

Method Pf  Ncall  ef (%)

MCS 1.55 ×10− 5  107 – 

SubSim Failed – – 
SESC 1.50 ×10− 5  7321 3.23 

AK-SESC 1.59 ×10− 5  5954 2.58  

Fig. 7. The results of example III with a different number of initial samples.  

Table 5 
The reliability results of example IV.  

Method Pf  Ncall  ef (%)

MCS 9.48 ×10− 7  4.2 ×108  – 

SubSim 6.55 ×10− 7  7 ×105  30.91 

Meta-IS 9.17 ×10− 7  2940 3.27 

SESC 9.04 ×10− 7  3550 4.64 

AK-SESC 9.67 ×10− 7  2408 2.01  

Table 6 
The reliability results of example V.  

Method Pf  Ncall  ef (%)

MCS 1.88 ×10− 3  1.3 ×106  – 

FORM 1.54 ×10− 4  166  91.81 

IS 1.97 ×10− 3  14,066 4.79 

Meta-IS 1.95 ×10− 3  1800 3.72 

SESC 1.82 ×10− 3  2145 3.19 

AK-SESC 1.93 ×10− 3  1408 2.66  
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tained reliability results are shown in Table 6. 
Despite the fact that it is a single design point reliability problem, the 

FORM estimation is not accurate. Even with the Ncall equal to 14,066, 
the failure probability obtained by IS method holds an almost reasonable 
accuracy with a 4.79% relative error. The SESC method with 2145 
function calls, around 20% more than the ones in Meta-IS, has a slightly 
better estimation of Pf . The AK-SESC proposed method has the least 
relative error of 2.66% in Table 6, comparing with the reference value of 
failure probability acquired by MCS. In the case of Ncall , using 200 
initial samples and Nf equal to 150, the suggested approach caused a 
34.4% reduction in SESC function calls. 

4.6. Example VI 

The real engineering problem to study structural reliability analysis, 
illustrated in Fig. 8, is a passive vehicle suspension. The considered 
performance function is the road-holding ability of the vehicle as 
follows: 
(

πmVA
b0kg2

)

.

(( ck

m + M
−

c
M

)2
+

c2

mM
+

ckk2

mM2

)

− 1 (40)  

where the random variables are the spring stiffness c (kg/cm), shock 
absorber damping coefficient k (kg/cm s) and tire stiffness ck (kg/cm). 
The considered constant values and the defined probabilistic features of 
the model are represented in Tables 7 and 8, respectively. 

This applied engineering problem is solved with six reliability 
methods to compare the performance of the proposed AK-SESC 
approach. In the case of AK-SESC, Nf is set to 150, and the initial 
number of samples is 610. The results of failure probability obtained 
from reliability analysis are presented in Table 9. As the results show, 
FORM, LS and SubSim are not able to detect the most important failure 
domain due to the misleading geometry of the performance function. 
However, the SESC reliability method presents suitable accuracy with 
3% function calls compared to the MCS results. Nevertheless, the pro-
posed AK-SESC achieved a better precision with about half of the SESC 
function calls, making it a promising approach to overcome the reli-
ability analysis challenge of real-world engineering problems. 

5. Conclusion 

This paper introduces the AK-SESC as a novel reliability method to 
solve the problem with a small failure probability. This method is 
inspired by SubSim with the difference that SubSim is based on the 
Bayes theorem, and the area of failure in each subset depends on the 
previous one. On the contrary, the proposed method inherits the spec-
ifications of the newly introduced SESC reliability method, including 
using a series of scaled performance functions with independent failure 
domains as the control variate of the original performance function. The 
proposed method aims to reduce function calls of the SESC approach by 
integrating with active learning Kriging. 

The reliability analysis of the examples indicates that by exploiting 
the helpful features of the U-learning function, the function calls of the 
proposed method have much decrease even to 70% comparing to SESC 
while maintaining high accuracy. However, some other famous reli-
ability methods fail to obtain the proper answer or demand numerous 
function evaluations to reach the same precision. The results also indi-
cate that when utilizing a large group of samples is not possible during a 
simulation process, which has always been a matter of concern in 
practical problems or the ones involving Finite Element Analysis, the 
AK-SESC proposed method still is able to achieve a reasonable predic-
tion of the failure probability by applying a small number of initial 
samples. 

Although the active learning process is a time-consuming procedure 
in some of the problems, this significant advantage of the proposed AK- 
SESC method makes it an advantageous reliability approach in espe-
cially practical problems with the need of constructing actual samples. 
The aim of this study was not to reduce time computational cost but the 
reduction of the problem function calls. So, then it could be helpful in 
the industries that need to build initial samples to predict the probability 
of their own product or project failure or in the problems which required 
FEM analysis which is too time-consuming. It should also be noted that 
because of the inherent limitations of Kriging for the prediction of 
complex problems in high dimensional space, application of this method 

Fig. 8. The model of passive vehicle suspension [52].  

Table 7 
The performance function constant values of example VI.  

parameters unit value 

V  m/s  10.0 
A  cm2/cycle.m  1.0 

b0  − 0.27 
m  kg.s2/cm  0.8158 

M  kg.s2/cm  3.2633 

g  cm/s2  981  

Table 8 
The probabilistic features of example VI.  

Variable Description Unit Distribution Mean Standard 
deviation 

c  spring stiffness kg/cm  Normal 424.0 10.0 
ck  tire stiffness kg/cm  Normal 1480.0 10.0 
k  damping 

coefficient 
kg/cm.s  Normal 47.0 10.0  

Table 9 
The reliability results of example VI.  

Method MCS FORM LS SubSim SESC AK-SESC 

Pf  1.47 
×10− 6  

4.38 
×10− 11  

Failed 4.91 
×10− 10  

3.13 
×10− 6  

2.05 
×10− 6  

Ncall  107  4994 – 7.5 ×104  28,617 15,048  
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for solving problems with many random variables (i.e., problems upper 
than 20 dimensions) should be considered with reservation. 

For further studies and expanding this method, it is suggested to use 
other active learning approaches and compare the reliability analysis 
results to find the best integration. 
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