
Numerical Algorithms
https://doi.org/10.1007/s11075-021-01097-7

ORIGINAL PAPER

Block GPBi-CGmethod for solving nonsymmetric
linear systems with multiple right-hand sides
and its convergence analysis

A. Taherian1 ·F. Toutounian1,2

Received: 23 September 2019 / Accepted: 8 March 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
In this paper, the block generalized product-type bi-conjugate gradient (GPBi-CG)
method for solving large, sparse nonsymmetric linear systems of equations with mul-
tiple right-hand sides is proposed. The new algorithm is based on the block BiCG
process. We analyze the convergence behavior of this method and present a bound for
the residual norm of block GPBi-CG according to the residual norm of Bl-GMRES
method. In addition, we prove that convergence is guaranteed when A is positive real.
The numerical experiments show the efficiency of the new method and confirm the
theoretical results.

Keywords Multiple right-hand sides · Block Krylov subspace · Block BiCG ·
Block GPBi-CG · Convergence analysis · Block GMRES

Mathematics Subject Classification (2010) 65F10

1 Introduction

We consider the solution of large linear systems with multiple right-hand sides of the
form

AX = B, (1.1)

� F. Toutounian
toutouni@math.um.ac.ir

A. Taherian
a taherian@mail.um.ac.ir

1 Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University
of Mashhad, Mashhad, Iran

2 The Center of Excellence on Modeling and Control Systems, Ferdowsi University of Mashhad,
Mashhad, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-021-01097-7&domain=pdf
http://orcid.org/0000-0003-4805-7850
mailto: toutouni@math.um.ac.ir
mailto: a_taherian@mail.um.ac.ir

Numerical Algorithms

where A is an n × n nonsingular matrix, and B = [b(1), . . . , b(s)], X =
[x(1), . . . , x(s)] are rectangular n × s matrices. In practice, s is of moderate size with
s � n. Many applications such as electromagnetic scattering problem and structural
mechanics problems require the solution of linear systems with multiple right-hand
sides (1.1).

To solve (1.1), the block Krylov subspace methods often show better convergence
behavior than the corresponding Krylov subspace methods for systems with a single
right-hand side. For symmetric and positive definite problems, the block conjugate
gradient (Bl-CG) algorithm [15] and its variants [14] are useful for solving the linear
system (1.1). For nonsymmetric problems, the block BCG method [15] and a stabi-
lized version of BiCG [17], the block GMRES [16], the block BiCGSTAB algorithm
[9], the block Lanczos method [8], the block quasi minimum residual (Bl-QMR)
algorithm [5], the block LSQR method [11], the block LSMR method [22], and the
block CMRH method [1, 2] have been developed. Frommer et al. [6, 7] have con-
tributed several results to the theory of block Krylov subspace methods for linear
systems and for matrix functions. These results hold for general block inner products,
and thus in particular for the classical block methods and the so-called global meth-
ods. In [13], the authors extended well-known GMRES/Arnoldi convergence results
to the block case using the framework of [6, 7].

Considering the structure of residual polynomials in the CGS [19] and BiCGSTAB
[23] methods, Zhang [24] derived generalized product-type method based on BiCG
(GPBi-CG) without enlarging both computation and storage cost. In this paper, we
present a block GPBi-CG (Bl-GPBiCG) algorithm for solving non-symmetric linear
systems with multiple right-hand sides. As the block BiCGSTAB algorithm [9], the
use of matrix-valued orthogonal polynomials will allow us to derive the Bl-GPBiCG
algorithm. In addition, we derive the bounds for the residual norm of Bl-GPBiCG
iterations.

The paper is organized as follows. In Section 2, we shortly review the Bl-BiCG
method and show the connection between this method and the matrix-valued poly-
nomials. In Section 3, we first briefly review the GPBiCG method. Then, we present
the Bl-GPBiCG algorithm and compare the memory requirements and computational
costs of Bl-GPBiCG with those of Bl-BiCGSTAB and Bl-BiCG. In Section 4, an
upper bound for residual norm of Bl-GPBiCG algorithm according to the residual
norm of Bl-GMRES is presented. Also, we obtained some results about convergence
behavior of Bl-GPBiCG residual norm when matrix A is positive real. In Section 5,
some numerical examples are presented to show the efficiency of the method and to con-
firm the theoretical results. Finally, we make some concluding remarks in Section 6.

Throughout this paper, we use the following notations. For two n × s matri-
ces X and Y , we define the following inner product: 〈X, Y 〉F = tr(XT Y), where
tr(Z) denotes the trace of the square matrix Z. The associated norm is the Frobe-
nius norm denoted by ‖ . ‖F . We will use the notation 〈., .〉2 for the usual inner
product in R

n and the related norm will be denoted by ‖ . ‖2. For a matrix
V ∈ R

n×s , the block Krylov subspace Kk(A, V) is defined by Kk(A, V) =

Numerical Algorithms

span{V, AV, A2V, . . . , Ak−1V }. Finally, 0s , Is , and 0l×s will denote the zero, the
identity, and zero matrices in Rs×s , Rs×s , and Rl×s , respectively.

2 Matrix-valued polynomials and block BiCG algorithm

2.1 Block BiCGmethod

In this section, we remind the block BiCG (Bl-BiCG) algorithm which was first
proposed by O’Leary [15] for solving the problem (1.1). Let X0 ∈ R

n×s be an ini-
tial matrix for the solution of system (1.1) with the residual R0 = B − AX0 and
let R̃0 be an arbitrary n × s matrix. The Bl-BiCG algorithm constructs two block
bases P0, . . . , Pk and P̃0, . . . , P̃k of the block Krylov subspaces Kk+1(A, R0) and
Kk+1(A

T , R̃0),respectively. The algorithm can be summarized as follows [15].

Algorithm 1 breaks down if the matrices P̃ T
k APk or R̃T

k Rk are singular. The
matrix residuals and matrix directions generated by Algorithm 1 satisfy the following
properties.

Proposition 1 [15] If no breakdown occurs, the matrices computed by the Bl-BiCG
algorithm satisfy the following relations:

(1) R̃T
i Rj = 0 and P̃ T

i APj = 0 for i < j .
(2) span{P0, . . . , Pk} =span{R0, . . . , A

kR0} = Kk+1(A, R0).
(3) span{P̃0, . . . , P̃k} =span{R̃0, . . . , A

T k
R̃0} = Kk+1(A

T , R̃0).
(4) Rk − R0 ∈ Kk(A, R0) and the columns of Rk are orthogonal to Kk(A

T , R̃0).

In the sequel, we assume that no breakdown occurs in the Bl-BiCG algorithm.
In the next section, we use matrix-valued polynomials to give an expression of the

Numerical Algorithms

matrices computed by Bl-BiCG. This will be useful for defining the block GPBi-CG
algorithm.

2.2 Matrix-valued polynomials and Bl-BiCGmethod

Let P be a matrix-valued polynomial of degree k defined by

P(t) =
k∑

i=0

t i�i, �i ∈ R
s×s , t ∈ R. (2.1)

As in [8, 9], we use the notation ◦ for the product

P(A) ◦ Y =
k∑

i=0

AiY�i, (2.2)

where Y is an n×s matrix. With these definitions, we have the following propositions.

Proposition 2 [8, 9] Let P and Q be two matrix-valued polynomials and let Y and
� be two matrices of dimensions n × s and s × s, respectively. Then we have

(PQ)(A) ◦ Y = Q(A) ◦ (P(A) ◦ Y),

(P(A) ◦ Y)� = (P�)(A) ◦ Y,

(P + Q)(A) ◦ Y = P(A) ◦ Y + Q(A) ◦ Y .

As shown in [9], by using matrix-valued polynomials, the residual RBl−BiCG
k and

matrix direction P Bl−BiCG
k can be expressed as follows:

RBl−BiCG
k = Rk(A) ◦ R0, P Bl−BiCG

k = Pk(A) ◦ R0. (2.3)

These matrix polynomials are also related by the recurrence formulas:

Rk+1(t) = Rk(t) − tPk(t)αk, (2.4)

Pk+1(t) = Rk+1(t) + Pk(t)βk, (2.5)

withR0(t) = P0(t) = Is for t ∈ R, αk and βk are s × s matrices defined in Bl-BiCG
algorithm.

As in [8, 9], let C and C(1) be functionals defined on the set of matrix-valued
polynomials with coefficients in Rs×s and given by

C(P) = R̃T
0 (P(A) ◦ R0), (2.6)

C(1)(P) = C(tP), (2.7)

whereP is a matrix-valued polynomial. With these definitions, we have the following
proposition:

Proposition 3 [8, 9] The functional C defined above satisfies the following proper-
ties:

C(P + Q) = C(P) + C(Q),

C(P�) = C(P)�, � ∈ R
s×s .

Numerical Algorithms

The same relations are also satisfied by C(1).

The next proposition shows that the matrix-valued polynomials Rk and Pk

belong to the family of formal orthogonal polynomials with respect to C and C(1),
respectively.

Proposition 4 [8, 9] Let (Rk) and (Pk), (k ≥ 1) be the sequences of matrix-valued
polynomials defined by the relations (2.4) and (2.5), respectively. If Ti is an arbitrary
matrix-valued polynomial of degree i, i = 0, 1, . . . , k−1, then we have the following
orthogonality properties:

C(RkTi) = 0, for i < k, (2.8)

C(1)(PkTi) = 0, for i < k. (2.9)

Now, using these matrix-valued polynomials we are ready to explain block GPBi-
CG algorithm.

3 The block GPBi-CG algorithm

In this section, we first present a brief of the GPBi-CG method [24] for solving the
nonsingular system Ax = b. Let x0 and r0 = b − Ax0 denote the initial guess
and the corresponding initial residual, respectively. Then, the residual vector rBiCG

k

generated by BiCG is expressed by rBiCG
k = Rk(A)r0, where Rk(t) is the residual

polynomial of BiCG. It is a multiple of the so-called Bi-Lanczos polynomial [20],
which satisfies the recurrence relation

R0(t) = 1, R1(t) = (1 − α0t)R0(t),

Rk+1(t) = (1 + βk−1

αk−1
αk − αkt)Rk(t) − βk−1

αk−1
αkRk−1(t), k = 1, 2, ...

for certain coefficients αk and βk−1. The residual vector rk of the GPBi-CG method
is expressed as Hk(A)rBiCG

k by combining BiCG with an auxiliary polynomialHk(t)

of degree k. The polynomial Hk(t) is chosen to speed up and stabilize convergence,
while satisfying the three-term recurrence relations [24]:

H0(t) := 1, H1(t) := (1 − ζ0t)H0(t),

Hk+1(t) := (1 + ηk − ζkt)Hk(t) − ηkHk−1(t), k = 1, 2,

Also, the two-term recurrence relation for Hk is defined as

H0(t) := 1, G0(t) = 1, (3.1)

Hk+1(t) := Hk(t) − ζktGk(t), (3.2)

Gk+1(t) := Hk+1(t) + ζk

ηk+1

ζk+1
Gk(t), k = 1, 2, (3.3)

The recurrence coefficients ηk and ξk are computed to minimize the term

min
ηk,ξk

‖rk‖2 = min
ηk,ξk

‖Hk(A)rBiCG
k ‖2 = min

ηk,ξk

‖Hk(A)Rk(A)r0‖2. (3.4)

Numerical Algorithms

In many applications, the GPBi-CG method is indeed more efficient and robust than
the BiCGSTAB method. In addition, GPBi-CG has smoother convergence behavior
than BiCGSTAB. However, the total computational time can be higher than that of
the BiCGSTAB method due to the solution of the minimization problem (3.4).

According to the two-term recurrence relations (3.1)–(3.3), Zhang [24] could
derive the GPBi-CG algorithm which is as follows:

Now, we define block GPBi-CG (Bl-GPBiCG) method that is a generalization
of the single right-hand side GPBi-CG algorithm. This algorithm is smoother than
Bl-BiCGSTAB method.

The Bl-GPBiCG algorithm generates the iterates whose residual matrices are as
follows:

Rk = (HkRk)(A) ◦ R0
= (Hk(A)Rk(A)) ◦ R0,

(3.5)

where Hk is an accelerating scalar polynomial which is computed as the following
recurrence:

H0(t) = 1, G0(t) = ζ0,

Hk(t) = Hk−1(t) − tGk−1(t), (3.6)

Gk(t) = ζkHk(t) + ηkGk−1(t), k = 1, 2,

The scalar parameters ζk and ηk will be determined by a local residual minimization
condition. Now, we attempt to compute Rk+1 = (Hk+1Rk+1)(A) ◦ R0. Using the

Numerical Algorithms

same derivation technique in the GPBi-CG [24], we can get the following recurrence
relations:

Hk+1Rk+1 = HkRk+1 − ηktGk−1Rk+1 − ζktHkRk+1

= HkRk − tHkPkαk − tGkRk+1, (3.7)

HkRk+1 = HkRk − tHkPkαk, (3.8)

tGkRk+2 = HkRk+1 − Hk+1Rk+1 − tHkPk+1αk+1

+tHk+1Pk+1αk+1, (3.9)

Hk+1Pk+1 = Hk+1Rk+1 + HkPkβk − tGkPkβk, (3.10)

tHkPk+1 = tHkRk+1 + tHkPkβk, (3.11)

tGkPk = ζktHkPk + ηk(Hk−1Rk − HkRk + tGk−1Pk−1βk−1), (3.12)

GkRk+1 = ζkHkRk + ηkGk−1Rk − tGkPkαk . (3.13)

By using the auxiliary iterates

Tk = (HkRk+1)(A) ◦ R0, Yk = A(Gk−1Rk+1)(A) ◦ R0,

Pk = (HkPk)(A) ◦ R0, (3.14)

Wk = A(HkPk+1)(A) ◦ R0, Uk = A(GkPk)(A) ◦ R0,

Zk = (GkRk+1)(A) ◦ R0, (3.15)

and the recurrence relations (3.7)–(3.13), we obtain iterative sequences of the Bl-
GPBiCG as follows:

Rk+1 = Tk − ηkYk − ζkATk

= Rk − APkαk − AZk, (3.16)

Tk = Rk − APkαk, (3.17)

Yk+1 = Tk − Rk+1 − Wkαk+1 + APk+1αk+1, (3.18)

Pk+1 = Rk+1 + (Pk − Uk)βk, (3.19)

Wk = ATk + APkβk, (3.20)

Uk = ζkAPk + ηk(Tk−1 − Rk + Uk−1βk−1), (3.21)

Zk = ζkRk + ηkZk−1 − Ukαk . (3.22)

From (3.16), we have the formula to update the approximate solution Xk+1:

Xk+1 = Xk + Pkαk + Zk . (3.23)

Now, we consider the computation of the s × s matrix coefficients αk and βk which
are needed in recurrence. Using Propositions 3, 4 and the relations (3.8), (3.11), and
the fact that Hk is a scalar polynomial of degree k, we have

C(HkRk) = C(1)(HkPk)αk, (3.24)

and
C(1)(HkRk+1) = −C(1)(HkPk)βk . (3.25)

Using the definitions of the functionals C and C(1), these relations can be rewritten as
follows:

(R̃T
0 APk)αk = R̃T

0 Rk, (3.26)

Numerical Algorithms

and

(R̃T
0 APk)βk = −R̃T

0 ATk . (3.27)

Therefore, the s × s matrix coefficients αk and βk can be computed by solving two
s × s linear systems with the same coefficient matrix (R̃T

0 APk). In addition, we can
easily show that the matrix coefficient βk can be computed by

βk = −αk(R̃
T
0 Rk)

−1(R̃T
0 Rk+1)/ζk .

Finally, we compute the scalar parameters ηk and ζk by minimizing the following
two-dimension problem:

f (ζ, η) =‖ Rk+1 ‖F =‖ Tk − ηkYk − ζkATk ‖F . (3.28)

Putting all these relations together, the Bl-GPBiCG algorithm can be summarized as
follows:

We end this section by giving an analysis of the computational cost and memory
requirement of the Bl-GPBiCG algorithm. For solving the linear system (1.1), the
Bl-GPBiCG algorithm requires per iteration the evaluation of 2s matrix-vector prod-
ucts with A and a total of 10ns2 + 11ns + O(s3) multiplications. The storage space
required (excluding those of A, X, and B) by Bl-GPBiCG is 9ns + O(s2). In order
to compare these results with those of [9], we collected in Table 1 the major com-
putational costs (multiplications) per iteration for the Bl-BiCG, the Bl-BiCGSTAB,
and Bl-GPBiCG algorithms. As we observe, in each iteration, the bl-GPBiCG algo-
rithm is more expensive than the block BiCG and the block BiCGSTAB algorithms.
On the other hand, the parameters ζ and η, with respect to the residual polynomial
of Bl-GPBiCG, are chosen to minimize the residual Frobenius norm per iteration;

Numerical Algorithms

Table 1 Memory requirements and computational costs (multiplications)

Costs Bl-BiCG Bl-BiCGSTAB Bl-GPBiCG

Mat-Vec with A s 2s 2s

Mat-Vec with AT s – –

Multiplications 8ns2 + O(s3) 6ns2 + 4ns + O(s3) 10ns2 + 11ns + O(s3)

Memory locations 5ns + O(s2) 4ns + O(s2) 9ns + O(s2)

hence, we expect the Bl-GPBiCG algorithm converges slightly faster than Bl-
BiCGSTAB. In Section 5, the numerical experiments show that Bl-GPBiCG is better
than Bl-BiCGSTAB in terms of the number of iterations required for convergence.

4 Convergence analysis of Bl-GPBiCG

In this section, we find an upper bound for the residual norm of Bl-GPBiCG. To
obtain this bound, we define the parameters ζ̄j+1 = ζj , η̄j+1 = ηj , and matrices

Hj+1 = Hj (A)RBl−BiCG, Gj+1 = 1

ζj

Gj (A)RBl−BiCG,

for j = 0, . . . , k. Using the relations (3.6), the iterates Hj and Gj can be generated
by the following recurrence formulas:

H1 = RBl−BiCG
k , G1 = RBl−BiCG

k ,

Hj+1 = Hj − ζ̄jAGj , (4.1)

Gj+1 = Hj+1 + η̄j+1

ζ̄j+1
ζ̄jGj , j = 1, 2, ..., k.

By assuming that ζ̄j 	= 0, j = 1, ..., k + 1, we have Hj+1, Gj+1 ∈
Kj+1(A, RBl−BiCG

k). In addition, we get

Hk+1 = RBl−GPBiCG
k . (4.2)

We note that Z ∈ Kj (A, RBl−BiCG
k) means that

Z =
j−1∑

i=0

ξiA
iRBl−BiCG

k ,

where ξi ∈ R, for i = 0, . . . , j − 1. We recall that the minimal polynomial of
V ∈ R

n×s with respect to A is the nonzero monic polynomial of lowest degree such
that p(A)V = 0n×s . The degree of this polynomial is called the grade of V .

Under the assumption that all the generated coefficients ζj are not zero and the
grade μ of RBl−BiCG

k with respect to A is not less than k, the recurrence formulas
(4.1) determine the matrices

H̄k = [H1, H2, . . . , Hk] and Ḡk = [G1, G2, . . . , Gk],

Numerical Algorithms

whose “matrix columns”Hj andGj are linear independent, respectively. By defining
γj+1 = ζ̄j η̄j+1ζ̄

−1
j+1, for j = 1, 2, ..., k, the recurrence formulas (4.1) can be written

as follows:

AḠk = H̄kL̄k
̄
−1
k − ζ̄−1

k Hk+1Ē
T
k , H̄k = ḠkŪk, (4.3)

where
̄k = diag[ζ̄1Is, . . . , ζ̄kIs], ĒT
k = [0s , . . . , 0s , Is] ∈ R

s×ks ,

L̄k =

⎛

⎜⎜⎜⎜⎜⎜⎝

Is

−Is Is

−Is
. . .
. . . Is

−Is Is

⎞

⎟⎟⎟⎟⎟⎟⎠
and Ūk =

⎛

⎜⎜⎜⎜⎜⎜⎝

Is −γ2Is

Is

. . .

. . . −γkIs

Is

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.4)

Combining the two equations in (4.3), we obtain

AH̄k = H̄kS̄k − ζ̄−1
k Hk+1Ē

T
k , (4.5)

where S̄k = L̄k
̄
−1
k Ūk is an invertible tridiagonal block matrix such that

ĒT
k S̄−1

k Ē1 = ĒT
k Ū−1

k
̄kL̄
−1
k Ē1 = ζ̄kIs,

where ĒT
1 = [Is, 0s , . . . , 0s] ∈ R

s×ks . Now, to get the bound for residual
RBl−GPBiCG

k , we explain some lemmas.

Lemma 1 Assume that AH̄k = H̄kS̄k − ζ̄−1
k Hk+1Ē

T
k , with ĒT

k S̄−1
k Ē1 = ζ̄kIs . Then,

for any matrix-valued polynomial

P(t) =
k∑

i=0

t i�i, �i ∈ R
s×s , t ∈ R

of degree not exceeding k, we have

P(A) ◦ H1 = H̄kP(S̄k) ◦ E1 + Hk+1ck, (4.6)

where ck = (−1)k(ζ̄1...ζ̄k‖H1‖F)−1�k .

Proof The proof is similar to that of Lemma 3.2 in [21].

In the sequel, we assume that the matrix H̄k+1 is of full rank and H̄+
k+1 =

(H̄ T
k+1H̄k+1)

−1H̄ T
k+1. From Lemma 1, we have the following relation for Hk+1.

Lemma 2 Assume that AH̄k = H̄kS̄k − ζ̄−1
k Hk+1Ē

T
k , with ĒT

k S̄−1
k Ē1 = ζ̄kIs , and

V̄ = [Iks 0ks×s]H̄+
k+1. Then for any matrix-valued polynomial P(t) of degree not

exceeding k with P(0) = Is , we have

Hk+1 = (In − AH̄kS̄
−1
k V̄)P(A) ◦ H1. (4.7)

Proof The proof is similar to that of Lemma 3.3 in [21].

Numerical Algorithms

Using this lemma, the relation (4.3), and the definition of H1, the main result on
bounding the residual norm of Bl-GPBiCG can be stated in the following theorem.

Theorem 1 Suppose AH̄k = H̄kS̄k − ζ̄−1
k Hk+1Ē

T
k and V̄ = [Iks 0ks×s]H̄+

k+1. If
the matrix H̄k+1 is of full rank, then we have

‖RBl−GPBiCG
k ‖F ≤ ‖M̄k‖F ‖ P(A) ◦ RBl−BiCG

k ‖F , (4.8)

where P(t) is a matrix-valued polynomial of degree not exceeding k with P(0) = Is

and M̄k = In − (H̄k − Hk+1F̄
T
k)V̄ with F̄ T

k = [Is, Is, . . . , Is] ∈ R
s×ks .

Proof Let M̄k = In − AH̄kS̄
−1
k V̄ . By using (4.5) and the fact that

ĒT
k Ū−1

k = ĒT
k , ĒT

k
̄k = ζ̄kĒ
T
k , and ĒT

k L̄−1
k = F̄ T

k ,

we have
M̄k = In − AH̄kS̄

−1
k V̄

= In − (H̄k − ζ̄−1
k Hk+1Ē

T
k S̄−1

k)V̄

= In − (H̄k − ζ̄−1
k Hk+1Ē

T
k Ū−1

k
̄kL̄
−1
k)V̄

= In − (H̄k − Hk+1F̄
T
k)V̄ .

This together with (4.7) and (4.2) implies the desired relation (4.8)

Suppose that Pk,s is the space of matrix-valued polynomials Pk of degree not
greater than k and order s, such that Pk(0) = Is (i.e., Pk(t) = Is + ∑k

i=1 t i�i). The
k’th residual of block GMRES (Bl-GMRES) algorithm applied to the system (1.1)
can be written as follows:

RBl−GMRES
k = PBG

k (A) ◦ R0,

where the matrix-valued residual polynomial PBG
k (t) ∈ Pk,s solves the minimization

problem

min
Pk∈Pk,s

‖Pk(A) ◦ R0‖F

(see [18]). By using the matrix-valued residual polynomial of block GMRES algo-
rithm applied to the system (1.1) with X0 = XBl−BiCG

k , the relation (4.8) can be
written as follows:

‖RBl−GPBiCG
k ‖F ≤ ‖M̄k‖F ‖ PBG

k (A) ◦ RBl−BiCG
k ‖F . (4.9)

In addition, by using the residual polynomial of global GMRES [10] algorithm
(denoted by PGG

k (t)) applied to the system (1.1) with X0 = XBl−BiCG
k , we have

‖RBl−GPBiCG
k ‖F ≤ ‖M̄k‖F ‖ PBG

k (A)◦RBl−BiCG
k ‖F ≤ ‖M̄k‖F ‖ PGG

k (A)◦RBl−BiCG
k ‖F .

(4.10)

In Section 5, the numerical results are presented and the confirmation of the
theoretical results is illustrated.

Numerical Algorithms

4.1 Bounds for the positive real matrix

First, by considering the steps 7 and 12 of Algorithm 1, and defining R̄k+1 =
[R0 R1 ... Rk], where Ri , i = 0, ..., k, are Bl-BiCG residual matrices, as in
Bl-GPBiCG algorithm (the relation 4.5), for Bl-BiCG algorithm, we can get

AR̄k = R̄kT̂k − Rk+1α
−1
k ĒT

k ,

with

L̂k = L̄k, Ûk =

⎛

⎜⎜⎜⎜⎜⎜⎝

Is −β1
. .

. .
. .
Is −βk−1

Is

⎞

⎟⎟⎟⎟⎟⎟⎠
,

̂k = diag[α1, ..., αk] and T̂k = L̂k
̂
−1
k Ûk , where αi and βi , i = 1, ..., k, are s × s

matrices obtained from Bl-BiCG algorithm. In addition, we have ĒT
k T̂ −1

k Ē1 = αk .
Now, by assuming that R̄k+1 is of full rank, and considering R̄+

k+1 =
(R̄T

k+1R̄k+1)
−1R̄T

k+1, it is easy to adapt the lemmas 1 and 2 and explain the following
theorem which provides a bound for the Bl-BiCG residuals.

Theorem 2 Suppose AR̄k = R̄kT̂k − Rk+1α
−1
k ĒT

k and V̂ = [Iks 0ks×s]R̄+
k+1. If

the matrix R̄k+1 is of full rank, then we have

‖RBl−BiCG
k ‖F ≤ ‖N̄k‖F ‖ P(A) ◦ R0 ‖F , (4.11)

where P(t) is a matrix-valued polynomial of degree not exceeding k with P(0) = Is

and N̄k = ‖In − (R̄k − RkF̄
T
k)V̂ with F̄ T

k = [Is, Is, . . . , Is] ∈ R
s×ks .

Proof The proof is similar to that of Theorem 1.

Finally, by using the matrix-valued residual polynomial of block GMRES algo-
rithm applied to the system (1.1) with X0, the relation (4.11) can be written as
follows:

‖RBl−BiCG
k ‖F ≤ ‖N̄k‖F ‖ PBG

k (A) ◦ R0 ‖F , (4.12)
In [7], the authors established the following theorem about the convergence

properties of the block GMRES method.

Theorem 3 Assume that A is positive real with respect to the inner product 〈., .〉F .
Then for k = 1, 2, ... the block GMRES residuals RBG

k = B − AXBG
k satisfy

‖RBG
k ‖F ≤ (1 − γ 2

νmax

)1/2‖RBG
k−1‖F , (4.13)

where

γ := min{Re(〈V, AV 〉F)

〈V, V 〉F : V ∈ C
n×s , V 	= 0},

νmax := max{Re(〈AV, AV 〉F)

〈V, V 〉F : V ∈ C
n×s , V 	= 0}.

Numerical Algorithms

Now, based on the above observations, we can state the following theorem about
the convergence properties of the block GPB-iCG.

Theorem 4 Assume that A is positive real with respect to the inner product 〈., .〉F .
Then for k = 1, 2, ... the block GP-BiCG residuals RBl−GPBiCG

k satisfy

‖RBl−GPBiCG
k ‖F ≤ ‖M̄k‖F ‖N̄k‖F (1 − γ 2

νmax

)k‖R0‖F , (4.14)

and the convergence is guaranteed.

Proof The result immediately follows from (4.9), (4.12), and (4.13).

5 Numerical experiments

In this section, numerical examples are presented to illustrate the effectiveness of
the block GPBi-CG to solve (1.1). All the numerical experiments were performed
in double precision floating point arithmetic in MATLAB R2017b. The machine we
have used is a Intel(R) Core(TM) i7, CPU 3.60 GHz, 16.00 GB of RAM. In all
the examples, the starting guess was taken to be 0. We consider the right-hand side
B = rand(n, s), where function rand creates an n×s randommatrix with coefficients
uniformly distributed in [0, 1]. No preconditioning has been used in any of the test
problems. The stopping criterion

‖Rk‖F

‖R0‖F

≤ 10−9

Table 2 Test problems information

Matrix Property Matrix Property

Order nnz sym Order nnz sym

1 nos4 100 594 Yes 12 poli4 33,833 73,249 No

2 rdb200l 200 1120 No 13 zhao1 33,861 166,453 No

3 psmigr 3 3140 543,160 No 14 cage11 39,082 559,722 No

4 poisson3Da 13,514 352,762 No 15 poisson3Db 85,623 2,374,949 No

5 appu 14,000 1,853,104 No 16 torso2 115,967 1,033,473 No

6 wathen100 30,401 471,601 Yes 17 cage12 130,228 2,032,536 No

7 wathen120 36,441 565,761 Yes 18 FEM 3D thermal2 147,900 3,489,300 No

8 gr 30 30 900 7744 Yes 19 crashbasis 160,000 1,750,416 No

9 add32 4960 19,848 No 20 torso3 259,156 4,429,042 No

10 cage10 11,397 150,645 No 21 language 399,130 1,216,334 No

11 poli3 16,955 37,849 No 22 cage13 445,315 7,479,343 No

Numerical Algorithms

was used. For the tests, a set of 22 problems were taken from the University of Florida
Sparse Matrix Collection [4]. These matrices with their generic properties are given
in Table 2.

Example 1 In this example, we used the matrices

A1(i, j) = tridiag(1, 4, 1), A2(i, j) = 0.5

n − i − j + 1.5
,

and the matrices 1−7 of Table 2. In Table 3, we give the ratio t (s)/t (1), for s =
5, 10, 15, 20, 30, where t (s) is the CPU time for Bl-GPBiCG algorithm and t (1)
is the CPU time obtained when applying GPBi-CG for one right-hand side linear
system. Note that the time obtained by GPBi-CG for one right-hand side depends
on which right-hand was used. So, in our experiments, t (1) is the average of the
times needed for the s right-hand sides using GPBi-CG. We note that Bl-GPBiCG is
effective if the indicator t (s)/t (1) is less than s. Table 3 shows that the Bl-GPBiCG
algorithm is effective and less expensive than the GPBi-CG algorithm applied to each
right-hand side.

Example 2 In the second example, we consider matrix A1 from Example 1 and
matrix A3 which represents the 5-point discretization of the operator

L(u) = −�u + 2δ1ux + 2δ2uy − δ3u

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions
[3, 12]. The discretization was performed using a grid size of h = 1/65 which yields
a matrix of dimension n = 4096; we chose δ1 = 2, δ2 = 4 and δ3 = 0.

Also, we used the matrices 8−14 of Table 2. In this example, we examine the
residual bounds given in (4.10). The results are presented in Table 4. In this table,
UBBl and UBGl denote the upper bounds obtained by applying the block GMRES
and global GMRES to the system (1.1) with X0 = XBl−BiCG

k , respectively. As can

Table 3 Effectiveness of Bl-GPBiCG algorithm measured by t (s)/t (1)

Matrix \ s 5 10 15 20 30

A1, n=1000 2.39 3.56 4.74 5.10 7.45

A2, n=1000 2.84 3.67 7.62 4.08 5.79

nos4 1.73 1.41 1.75 1.48 1.26

rdb200l 3.47 4.12 3.54 3.99 3.96

psmigr 3 2.69 4.49 6.04 7.43 11.36

poisson3Da 3.45 6.59 9.79 12.41 18.52

appu 3.41 6.48 10.60 13.09 19.47

wathen100 4.70 8.40 11.41 14.72 19.67

wathen120 4.70 8.21 10.94 12.98 18.92

Numerical Algorithms

Table 4 The upper bounds of the residual norm for s = 2, 4, 8 for Example 2 matrices

Matrix \ s 2 4 8

UBBl 4.9757e−07 4.9594e−07 4.8497e−07

A1, n=1000 UBGl 5.0615e−07 5.0690e−07 4.9982e−07

‖ Rk ‖F 2.5198e−08 3.2259e−08 4.1136e−08

UBBl 1.8998e−10 7.8244e−11 1.3526e−10

A3, n=4096 UBGl 1.0771e−09 1.7696e−10 9.4841e−10

‖ Rk ‖F 1.2146e−10 3.9362e−11 1.3095e−10

UBBl 2.0443e−06 7.6744e−06 3.5291e−06

gr 30 30 UBGl 2.6341e−06 1.0679e−05 6.1416e−06

‖ Rk ‖F 1.9448e−07 1.3534e−07 1.6547e−07

UBBl 4.4649e−06 2.6993e−06 1.9119e−06

add32 UBGl 4.6439e−06 3.1868e−06 3.3039e−06

‖ Rk ‖F 5.4183e−07 5.1987e−07 8.4386e−07

UBBl 5.9681e−06 2.3144e−05 3.2691e−05
cage10 UBGl 7.7135e−06 3.2498e−05 6.5722e−05

‖ Rk ‖F 2.4823e−07 1.0239e−06 1.3101e−06

UBBl 1.6640e−06 4.1834e−06 1.0865e−06
poli3 UBGl 2.9444e−06 1.0545e−05 5.1889e−06

‖ Rk ‖F 7.3270e−08 3.5905e−07 8.5699e−08

UBBl 4.8318e−07 4.9825e−06 1.2262e−05

poli4 UBGl 7.6575e−07 3.5743e−05 4.6450e−05

‖ Rk ‖F 1.9097e−08 4.9041e−07 4.1436e−07

UBBl 9.4143e−06 1.0651e−05 1.1526e−05

zhao1 UBGl 1.0605e−05 1.4499e−05 2.9009e−05

‖ Rk ‖F 2.4241e−07 4.7453e−07 1.8329e−06

UBBl 2.8079e−05 3.5318e−05 2.5783e−05

cage11 UBGl 3.4395e−05 5.1646e−05 6.2362e−05

‖ Rk ‖F 1.1850e−06 1.5646e−06 1.4635e−06

be seen, the upper bounds UBBl and UBGl are the suitable bounds for the residual
norm (‖ Rk ‖F) of the Bl-GPBiCG method.

Example 3 For the third set of experiments, we compared the Frobenius norm of
the residuals (‖Rk‖F), the number of iterations (Iter),and the CPU time in seconds
(CPU) for convergence for the block GPBi-CG, the block BiCGSTAB, and the block
BiCG methods. We used the large matrices of Table 2. The results obtained by these
algorithms are presented in Table 5. In this table, a dagger (†) indicates that no con-
vergence is achieved after 2500 iterations. As can be seen from Table 5, the methods
are similar in Frobenius norm of residuals (‖Rk‖F). In addition, as expected, for all
problems the number of iterations of the block GPBi-CG is less than that of the block
BiCGSTAB and the block BiGG . The CPU time obtained for the block BiCGSTAB

Numerical Algorithms

Ta
bl
e
5

N
um

er
ic
al
re
su
lts

fo
r
E
xa
m
pl
e
3

B
l-
B
iC
G

B
l-
B
iC
G
ST

A
B

B
l-
G
PB

iC
G

M
at
ri
x

\s
2

4
8

2
4

8
2

4
8

po
is
so
n3
D
a

C
PU

(I
te
r)

0.
35
(2
11
)

†
†

0.
17
(1
03
)

0.
27
(9
4)

†
0.
21
(9
5)

0.
30
(8
1)

0.
61
(7
2)

‖R
k

‖ F
8.
77
7e

−0
8

0.
03
15

39
6.
54
5

8.
07
8e

−0
8

7.
34
3e

−0
8

4.
18
3e
+
15

9.
16
1e

−0
8

9.
98
2e

−0
8

7.
93
4e

−0
8

ap
pu

C
PU

(I
te
r)

0.
71
(1
04
)

1.
37
(1
03
)

2.
75
(1
07
)

0.
47
(6
5)

0.
90
(6
7)

2.
06
(7
6)

0.
38
(5
2)

0.
74
(5
1)

1.
53
(4
9)

‖R
k

‖ F
8.
24
7e

−0
8

1.
24
2e

−0
7

1.
26
3e

−0
7

8.
73
2e

−0
8

1.
35
5e

−0
7

5.
48
7e

−0
8

7.
20
2e

−0
8

1.
28
6e

−0
7

1.
87
7e

−0
7

w
at
he
n1
00

C
PU

(I
te
r)

0.
65
(2
88
)

0.
95
(2
46
)

2.
67
(2
01
)

0.
36
(1
84
)

0.
56
(1
62
)

1.
70
(1
55
)

0.
55
(1
83
)

0.
84
(1
40
)

2.
50
(1
21
)

‖R
k

‖ F
1.
33
1e

−0
7

1.
27
6e

−0
7

2.
60
1e

−0
7

1.
41
8e

−0
7

1.
59
8e

−0
7

2.
36
7e

−0
7

1.
36
3e

−0
7

1.
98
9e

−0
7

2.
74
1e

−0
7

w
at
he
n1
20

C
PU

(I
te
r)

0.
81
(3
01
)

1.
87
(2
36
)

3.
65
(2
19
)

0.
56
(2
26
)

1.
16
(1
77
)

1.
96
(1
40
)

0.
72
(1
95
)

1.
74
(1
47
)

3.
37
(1
29
)

‖R
k

‖ F
1.
14
9e

−0
7

2.
18
9e

−0
7

2.
14
5e

−0
7

1.
28
4e

−0
7

2.
07
6e

−0
7

1.
69
9e

−0
7

1.
48
6e

−0
7

2.
00
7e

−0
7

2.
62
8e

−0
7

po
li3

C
PU

(I
te
r)

0.
03
(2
9)

0.
05
(2
8)

0.
16
(2
5)

0.
01
(1
7)

0.
02
(1
6)

0.
06
(1
5)

0.
02
(1
4)

0.
03
(1
5)

0.
13
(1
4)

‖R
k

‖ F
1.
75
7e

−0
8

1.
22
2e

−0
7

5.
58
8e

−0
8

1.
13
1e

−0
8

9.
78
3e

−0
9

8.
45
2e

−0
9

7.
32
7e

−0
8

1.
08
5e

−0
8

9.
79
3e

−0
9

po
li4

C
PU

(I
te
r)

0.
06
(4
1)

0.
28
(4
4)

0.
48
(3
4)

0.
03
(2
2)

0.
09
(2
1)

0.
17
(1
8)

0.
05
(2
1)

0.
18
(1
9)

0.
35
(1
7)

‖R
k

‖ F
3.
63
3e

−0
8

1.
59
3e

−0
7

1.
48
2e

−0
7

1.
42
4e

−0
7

7.
85
4e

−0
8

6.
17
8e

−0
8

1.
78
7e

−0
8

1.
58
6e

−0
7

1.
02
5e

−0
7

zh
ao
1

C
PU

(I
te
r)

0.
08
(4
7)

0.
30
(4
7)

0.
62
(4
8)

0.
11
(8
1)

0.
33
(7
1)

1.
97
(2
00
)

0.
06
(2
4)

0.
23
(2
4)

0.
51
(2
5)

‖R
k

‖ F
5.
66
9e

−0
8

1.
01
4e

−0
7

2.
79
7e

−0
7

3.
71
7e

−0
8

1.
69
2e

−0
7

2.
73
8e

−0
7

4.
13
8e

−0
8

7.
19
6e

−0
8

1.
31
2e

−0
7

ca
ge
11

C
PU

(I
te
r)

0.
08
(2
8)

0.
28
(3
0)

0.
48
(2
6)

0.
05
(1
7)

0.
12
(1
7)

0.
26
(1
8)

0.
06
(1
4)

0.
19
(1
4)

0.
40
(1
4)

‖R
k

‖ F
6.
34
0e

−0
8

4.
06
2e

−0
8

3.
82
9e

−0
8

1.
14
4e

−0
7

2.
06
1e

−0
7

1.
52
2e

−0
8

4.
59
1e

−0
8

5.
03
5e

−0
8

5.
84
3e

−0
8

po
is
so
n3
D
b

C
PU

(I
te
r)

6.
56
(3
35
)

†
†

3.
68
(2
09
)

†
†

4.
76
(1
87
)

7.
58
(1
67
)

12
.7
8(
14
1)

‖R
k

‖ F
1.
48
0e

−0
7

13
4.
62
3

5.
46
6e
+
04

2.
10
0e

−0
7

2.
95
8e
+
11

9.
75
0e
+
21

2.
39
1e

−0
7

3.
03
3e

−0
7

4.
49
5e

−0
7

Numerical Algorithms

Ta
bl
e
5

(c
on
tin

ue
d)

B
l-
B
iC
G

B
l-
B
iC
G
ST

A
B

B
l-
G
PB

iC
G

M
at
ri
x

\s
2

4
8

2
4

8
2

4
8

to
rs
o2

C
PU

(I
te
r)

1.
13
(8
1)

2.
02
(7
7)

†
0.
53
(4
7)

1.
00
(4
6)

2.
04
(4
3)

0.
90
(4
2)

1.
81
(4
3)

3.
49
(4
1)

‖R
k

‖ F
2.
46
2e

−0
7

1.
87
7e

−0
7

10
.1
37

1.
94
1e

−0
7

3.
52
8e

−0
7

4.
98
4e

−0
7

2.
10
0e

−0
7

1.
91
9e

−0
7

2.
12
8e

−0
7

ca
ge
12

C
PU

(I
te
r)

0.
46
(2
5)

0.
91
(2
7)

1.
70
(2
5)

0.
26
(1
7)

0.
49
(1
7)

0.
95
(1
7)

0.
36
(1
3)

0.
69
(1
3)

1.
38
(1
3)

‖R
k

‖ F
2.
86
0e

−0
7

1.
39
7e

−0
7

2.
89
0e

−0
7

1.
21
6e

−0
7

1.
40
2e

−0
7

1.
69
0e

−0
7

1.
94
9e

−0
7

2.
21
4e

−0
7

2.
51
4e

−0
7

FE
M

3D
th
er
m
al
2

C
PU

(I
te
r)

13
.1
6(
57
2)

20
.3
0(
50
7)

†
6.
27
(3
18
)

11
.4
1(
32
4)

†
9.
68
(2
96
)

15
.7
3(
25
8)

30
.0
3(
24
6)

‖R
k

‖ F
2.
42
7e

−0
7

3.
65
2e

−0
7

1.
21
0e
+
03

2.
91
2e

−0
7

3.
18
5e

−0
7

5.
05
4e
+
11

3.
03
0e

−0
7

4.
10
7e

−0
7

6.
04
7e

−0
7

cr
as
hb
as
is

C
PU

(I
te
r)

†
†

†
5.
49
(3
27
)

14
.0
5(
42
8)

†
8.
60
(2
78
)

17
.1
7(
28
5)

35
.9
2(
30
4)

‖R
k

‖ F
2.
45
5e
+
05

7.
85
3e
+
04

5.
92
93
+
06

2.
51
0e

−0
7

1.
44
4e

−0
7

2.
97
0e
+
37

1.
38
0e

−0
7

4.
39
0e

−0
7

4.
29
1e

−0
7

to
rs
o3

C
PU

(I
te
r)

12
.3
0(
31
9)

†
†

6.
71
(2
06
)

10
.3
8(
17
6)

18
.3
5(
16
2)

8.
17
(1
47
)

14
.5
7(
14
0)

25
.7
1(
12
6)

‖R
k

‖ F
3.
15
9e

−0
7

60
4.
38
7

13
4.
18
4

3.
38
8e

−0
7

5.
49
2e

−0
7

4.
59
7e

−0
7

3.
86
7e

−0
7

4.
50
5e

−0
7

5.
47
7e

−0
7

la
ng
ua
ge

C
PU

(I
te
r)

1.
94
(4
1)

4.
49
(4
5)

8.
81
(4
1)

1.
08
(2
7)

2.
06
(2
7)

3.
82
(2
6)

1.
77
(2
3)

3.
54
(2
4)

7.
29
(2
5)

‖R
k

‖ F
3.
68
3e

−0
7

4.
46
6e

−0
7

7.
36
6e

−0
7

4.
16
9e

−0
7

1.
23
7e

−0
8

4.
59
1e

−0
9

1.
37
3e

−0
7

2.
32
9e

−0
7

5.
78
8e

−0
8

ca
ge
13

C
PU

(I
te
r)

1.
99
(2
9)

3.
39
(2
6)

7.
78
(2
7)

1.
01
(1
7)

1.
93
(1
8)

3.
68
(1
8)

1.
48
(1
4)

2.
70
(1
4)

5.
68
(1
5)

‖R
k

‖ F
1.
80
3e

−0
7

4.
88
7e

−0
7

2.
77
2e

−0
7

2.
75
5e

−0
7

2.
43
2e

−0
7

4.
24
0e

−0
7

1.
82
3e

−0
7

2.
22
2e

−0
7

1.
73
1e

−0
7

Numerical Algorithms

is smaller than the one for the block GPBi-CG (except for examples appu and zhao1
with s = 2, 4, 8, poisson3Db with s = 4, 8, poisson3Da, FEM 3D thermal2, and
crashbasis with s = 8). We also observe that the block GPBi-CG algorithm needs
less CPU time than the block BiCG.

Fig. 1 Convergence history of Bl-GPBiCG, Bl-BiCGSTAB, and Bl-BiCG algorithms for some matrices
of Table 2 with s=4. (a) appu (b) wathen120 (c) poli4 (d) torso2 (e) cage12 (f) FEM-3D-thermal2

Numerical Algorithms

In Fig. 1, we display the convergence history of Bl-GPBiCG, Bl-BiCGSTAB, and
Bl-BiCG algorithms for some matrices of Table 2 with s = 4. In this figure, the
horizontal axis is the number of iterations (iters) and the vertical axis is the logarithm
of the Frobenius norm of residuals (log10 ‖ Rk ‖F). As can be seen from Fig. 1, the
convergence of Bl-GPBiCG method is faster (in terms of the number of iterations
required for convergence) than Bl-BiCGSTAB and Bl-BiCG methods and even is
smoother.

6 Conclusion

In this paper, we have derived the block GPBi-CG method for nonsymmetric linear
systems with multiple right-hand sides. Also, we have proposed the suitable upper
bounds for the residual norm of the method in terms of block GMRES residual norm
and global residual norm. In order to earn the proposed bounds, we set H1 and G1
equal to the k’th residual of Bl-BiCGmethod and definedHj andGj, j = 2, ..., k+1
similar to Rj and Pj . Then, by using two lemmas, we obtained the upper bounds. In
addition, we proved that convergence is guaranteed when A is positive real. Finally,
experimental results showed the effectiveness of Bl-GPBiCG method and confirmed
the theoretical results.

Acknowledgements We would like to thank the referees for their valuable remarks and helpful sugges-
tions.

References

1. Addam, M., Heyouni, M., Sadok, H.: The block Hessenberg process for matrix equations. Electron-
Trans. Numer. Anal. 46, 460–473 (2017)

2. Amini, S., Toutounian, F., Gachpazan, M.: The block CMRHmethod for solving nonsymmetric linear
systems with multiple right-hand sides. J. Comput. Appl. Math. 337, 166–174 (2018)

3. Calvetti, D., Golub, G.H., Reichel, L.: Adaptive Chebyshev iterative methods for nonsymetric linear
systems based on modified moments. Numer. Math. 67, 21–40 (1994)

4. Davis, T., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38,
1–25 (2011). Avaiable online at http://www.cise.ufl.edu/research/sparse/matrices/list$ by $id.html

5. Freund, R.W., Malhotra, M.: A Block-QMR algorithm for non-hermitian linear systems with multiple
right-hand sides. Linear Algeb. Appl. 254, 119–157 (1997)

6. Frommer, A., Lund, K., Szyld, D.B.: Block Krylov subspace methods for functions of matrices.
Electron. Transact. Numer. Anal. 47, 100–126 (2017). https://doi.org/10.1553/etna-vol47s100

7. Frommer, A., Lund, K., Szyld, D.B.: Block Krylov subspace methods for functions of matrices
II: Modified block FOM, tech. report, MATHICSE cublens. https://doi.org/10.5075/ep-MATHICSE-
265508 (2019)

8. El Guennouni, A., Jbilou, K., Sadok, H.: The block Lanczos method for linear systems with multiple
right-hand sides. J. App. Numer. Math. 51, 243–256 (2004)

9. El Guennouni, A., Jbilou, K., Sadok, H.: A block version of BiCGSTAB for linear systems with
multiple right-hand sides. Electron. Trans. Numer. Anal. 16, 129–142 (2003)

10. Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM GMRES algorithms for matrix equations. Appl.
Numer. Math. 31, 49–63 (1999)

11. Karimi, S., Toutounian, F.: The block least squares method for solving nonsymmetric linear systems
with multiple right-hand sides. Appl. Math. Comput. 177, 852–862 (2006)

http://www.cise.ufl.edu/research/sparse/matrices/list $_$ by $_$ id.html
https://doi.org/10.1553/etna-vol47s100
https://doi.org/10.5075/ep-MATHICSE-265508
https://doi.org/10.5075/ep-MATHICSE-265508

Numerical Algorithms

12. Koulaei, M.H., Toutounian, F.: On computing of block ILU preconditioner for block tridiagonal
systems. J. Comput. Appl. Math. 202, 248–257 (2007)

13. Kubínová, M., Soodhalter, K.M.: Admissible and attainable convergence behavior of block Arnoldi
and GMRES. Siam J. Matrix Anal. Appl. 41, 464–486 (2019)

14. Nikishin, A., Yeremin, A.: Variable block cg algorithms for solving large sparse symmetric positive
definite linear systems on parallel computers, I: General iterative scheme. SIAM J. Matrix Anal. Appl.
16, 1135–1153 (1995)

15. OLeary, D.: The block conjugate gradient algorithm and related methods. Linear Algeb. Appl. 29,
293–332 (1980)

16. Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
17. Simoncini, V.: A stabilized QMR version of block BiCG. SIAM J. Matrix Anal. Appl. 18, 419–434

(1997)
18. Simoncini, V., Gallopoulos, E.: Convergence properties of block GMRES and matrix polynomials.

Linear Algeb. Appl. 247, 97–119 (1996)
19. Sonneveld, P.: CGS, A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput. 10, 36–52 (1989)
20. Stiefel, E.L.: Kernel polynomial in linear algebra and their numerical applications. In: Further

contributions to the determination of eigenvalues, vol. 49, pp. 1–22 (1958)
21. Tong, C.H., Ye, Q.: Analysis Of the finite precision bi-Conjugate gradient algorithm for nonsymmetric

linear systems. Math. Comput. 69, 1559–1575 (1999)
22. Toutounian, F., Mojarrab, M.: The block LSMR method: A novel efficient algorithm for solving non-

symmetric linear systems with multiple right-hand sides. Iran J. Sci. Technol. 39, 69–78 (2015)
23. Van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution

of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631–644 (1992)
24. Zhang, S.-L.: GPBi-CG: generalized product-type methods based on Bi-CG for solving nonsymmetric

linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Block GPBi-CG method for solving nonsymmetric linear systems with multiple right-hand sides and its convergence analysis
	Abstract
	Introduction
	Matrix-valued polynomials and block BiCG algorithm
	Block BiCG method
	Matrix-valued polynomials and Bl-BiCG method

	The block GPBi-CG algorithm
	Convergence analysis of Bl-GPBiCG
	Bounds for the positive real matrix

	Numerical experiments
	Conclusion
	References

