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Abstract
The LSQR iterative method is a Krylov subspace method for solving least-squares problems. Early termination is rare, and

it is common for LSQR to require many iterations before an approximation of the solution with desired accuracy has been

determined. In this paper, we present a restarted LSQR method and we use a new technique for accelerating the con-

vergence of restated by adding some approximate error vectors to the Krylov subspace. The effectiveness of the new

method is illustrated by several examples.
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1 Introduction

In this paper, we consider the problem of finding a solution

of least-squares problems

min
x2Rl

kAx� bk2; ð1Þ

where A 2 Rn�l is a large sparse matrix with n� l and b 2
Rn: For solving systems of linear equation (1), Krylov sub-

space methods have become one of the popular choices for

solving (1); see (Hayami et al. 2010; Piage and Saunders

1982) and references therein. The LSQRmethod is a famous

approach that is proposed by Piage and Saunders (1982). In

this method, thematrixA is used only to compute products of

the form Av and ATu for various vectors v and u. Hence,

Awill normally be large and sparse or will be expressible as a

product of matrices that are sparse or have special structure.

A typical application is to the large least-squares problems

arising from the solution of the diffusion–convection equa-

tion with variable velocity field through the use of the dual

reciprocity method in multidomains (Popov et al. 2007).

Also, LSQR has been shown to be numerically more reliable

in various circumstances than the other methods considered

for solving some inverse problems (Jiang et al. 2007).

In LSQR method, the Golub–Kahan bidiagonalization

process is applied, with initial vectors u1 ¼ r0
kr0k and v1 ¼

ATu1
kATu1k to construct orthonormal bases fu1; u2; . . .; umg and

fv1; v2; . . .; vmg for the Krylov subspaces

KmðAAT ; u1Þ ¼ spanfu1; ðAATÞu1; . . .; ðAATÞm�1u1g;
KmðATA; v1Þ ¼ spanfv1; ðATAÞv1; . . .; ðATAÞm�1v1g:

ð2Þ

The LSQR method finds an approximate solution xm by mini-

mizing kAx� bk2 over the subspace x0 þKmðATA; v1Þ: The
associated residual vector rm ¼ b� Axm lies in KmðAAT ; u1Þ:
The LSQRmethod will in exact arithmetic terminate beforem

steps havebeencarriedout if theKrylov subspaceKmðATA; v1Þ
is of dimension less thanm. LSQRdelivers, in this situation, the

solution of (1). However, early termination is rare and it is

common for LSQR to require many iterations before an

approximation of the solution x� of (1) of desired accuracy has
been determined. In Baglama et al. (2013), Baglama et al.

explore the idea of an augmented LSQRmethod. Theirmethod

consists of two stages: first, the augmenting stage, which uses

restarted LSQR to approximate the singular vectors associated

with the smallest singular values of A and simultaneously
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improve an available approximation of the solution of (1), and

second, the LSQR stage, in which LSQR is applied using the

augmented Krylov subspaces with fixed harmonic Ritz vectors

to solve the least square problem. The proposed iterative

method is not a restarted LSQR method. In this paper, we

propose a restarted version of LSQR method. In restarted

LSQR (LSQR(m)), the method is ‘‘restarted’’ once the Krylov

subspace reaches dimension m, and the current approximate

solution becomes the new initial guess for the nextm iterations.

The restarted parameterm is generally chosen small relative to

n to keep the storage and computation requirements reasonable.

In general, restarting slows the convergence ofLSQR.Whenan

iterative approach is restarted, the current approximation space

is discarded at each restart. Therefore, a well-known drawback

of LSQR(m) is that orthogonality to previously generated

subspaces is not preserved at each restart. In fact LSQR(m) can

stall as a result. Stalling means that there is no decrease in the

residual norm at the end of a restart cycle. In this paper, we

describe a newmethod for accelerating restartedLSQRmethod

by adding approximate errors to the next restarted subspace.

This paper is organized as follows. In Sect. 2, we will

give a review of LSQR method. In Sect. 3, we introduce

our new technique. We present numerical results in Sect. 4.

Finally, Sect. 5 summarizes our finding.

2 The LSQR Method

In this section, we recall some necessary properties of LSQR

algorithm (Piage and Saunders 1982) which is one of the

well-known iterative methods, for solving square and rect-

angular system of Eq. (1). The LSQR method uses an

algorithm of Golub and Kahan (1965), which reduces A to

the lower bidiagonal form. Let x0 be an initial approximate

solution of (1) and r0 ¼ b� Ax0. The procedure bidiago-

nalizationwith starting vector r0 can be described as follows:

b1u1 ¼ r0; a1v1 ¼ ATu1; ð3Þ

biþ1uiþ1 ¼ Avi � aiui;

aiþ1viþ1 ¼ ATuiþ1 � biþ1vi;

�
i ¼ 1; 2; . . .m; ð4Þ

the scalars ai � 0 and bi � 0 are chosen so that kuik2 ¼
kvik2 ¼ 1: With the definitions

Um ¼ ½u1; u2; . . .; um�;Vm ¼ ½v1; v2; . . .; vm�;

Bm ¼

a1
b2 a2

. .
. . .

.

bm am
bmþ1

2
66666664

3
77777775
;

the recurrence relations (3) and (4) can be rewritten as:

Umþ1ðb1e1Þ ¼ r0;

AVm ¼ Umþ1Bm;

ATUmþ1 ¼ VmB
T
m þ amþ1vmþ1e

T
mþ1:

In exact arithmetic, we have UT
mUm ¼ I and VT

mVm ¼ I;

where I is the identity matrix. The columns of Um and Vm

are orthonormal bases for the Krylov subspaces (2). By

taking xm ¼ x0 þ Vmym; where ym 2 Rm; and solving the

least squares problem minkb1e1 � Bmyk2; the LSQR

method constructs an approximation solution of (1), where

xm 2 x0 þKmðATA; v1Þ and the associated residual vector

rm ¼ b� Axm lies in KmðAAT ; u1Þ: More details about

LSQR method can be found in Piage and Saunders (1982).

3 A New Augmented LSQR Method

When an iterative approach is restarted, the current

approximation space is discarded at each restart. Our

technique attempts to accelerate the convergence of

LSQR(m) by retaining some of the information that is

typically discarded at the time of restart. Suppose that x� is
the true solution to the problem (1). The error after the ith

restart cycle of LSQR(m) is denoted by ei , where

ei ¼ x� � xi:

If our approximation space contains the exact correction ei
such that x� ¼ xi þ ei , then we have solved the problem.

We define

zi � xi � xi�1

as the approximation to the error after the ith

LSQR(m) restart cycle, and zj � 0 for j\1. From the fact

that xi 2 xi�1 þKmðATA;ATri�1Þ, we observe that zi 2
KmðATA;ATri�1Þ: So, in some sense, this error approxi-

mation zi represents the space KmðATA;ATri�1Þ generated
in the previous cycle and subsequently discarded. There-

fore, as pointed out in Baker et al. (2005), including an

approximation to ei (such as zi ) to the next approximation

space KmðATA;ATriÞ is a reasonable strategy. As

LGMRES(m, k) Baker et al. (2005), the new restarted

augmented LSQR algorithm, denoted by LLSQR(m, k),

appends k previous approximations to the error to the

current Krylov approximation space, and at the end of

restart cycle iþ 1, it finds an approximate solution to (1) in

the following way:

xiþ1 ¼ xi þ qm�1
iþ1 ðATAÞATri þ

Xi

j¼i�kþ1

bijzj;

where polynomial qm�1
iþ1 and bij are chosen such that kriþ1k2

is minimized. Note that k ¼ 0 corresponds to LSQR(m).
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Let m be the dimension of Krylov subspace, and suppose

that k given vectors zi�kþ1; zi�kþ2; . . .; zi are the most recent

errors used for adding to the Krylov subspace, and

s ¼ mþ k. Typically, the number of vectors appended, k, is

much smaller than the restart parameter m. Let !k ¼
½zi�kþ1; zi�kþ2; . . .; zi� and ½Qk;Rk� be the reduced QR

decomposition of A!k: Then, by defining Yk ¼
½y1; y2; . . .; yk� ¼ Qk and starting with

b1u1 ¼ ri �
Xk
j¼1

hj1yj; a1v1 ¼ ATu1; ð5Þ

we implement m steps of modified Golub–Kahan bidiag-

onalization process as follows:

blþ1ulþ1 ¼ Avl � alul �
Pk

j¼1
�hjlyj;

alþ1vlþ1 ¼ ATulþ1 � blþ1vl;

)
l ¼ 1; 2; . . .m;

ð6Þ

where the coefficients �hjl; l ¼ 1; . . .;m; are obtained by

imposing orthogonality conditions

ulþ1 ? ½y1; y2; . . .; yk�; for l ¼ 1; . . .;m;

and the scalars al � 0 and bl � 0 are chosen so that kulk2 ¼
kvlk2 ¼ 1: Let �Hm ¼ f �hjlgj¼1:k;l¼1:m, then the recurrence

relations (5) and (6) can be rewritten as:

Umþ1ðb1ekþ1Þ ¼ ri �
Pk

j¼1 hj1yj;

AVm ¼ ½Yk Umþ1�
�Hm

Bm

� �
;

ATUmþ1 ¼ VmB
T
m þ amþ1vmþ1e

T
mþ1:

Then, we have

A !k Vm½ � ¼ ½Yk Umþ1�
Rk

�Hm

0 Bm

� �
:

By defining

Ĝs ¼
Rk

�Hm

0 Bm

� �
; V̂s ¼ !k Vm½ �; Ûsþ1 ¼ Yk Umþ1½ �;

ð7Þ

and using the fact that Û
T

sþ1Ûsþ1 ¼ Isþ1, the approximate

solution over the subspace spanned by the columns of V̂s

can be computed by solving the following minimization

problem:

ns ¼ min
n2Rs

kri � AV̂snk

¼ min
n2Rs

kri � Ûsþ1Ĝsnk

¼ min
n2Rs

kê� Ĝsnk;

where ê ¼ h11; h21; . . .; hk1; b1; 0; . . .; 0½ �T . The approximate

solution can be formed by

xiþ1 ¼ xi þ ziþ1; with ziþ1 ¼ V̂sns:

Now, we can summarize the LLSQR(m, k) algorithm as

shown in Algorithm 1.

For the LLSQR(m, k), the following theorem can be

stated.

Theorem 1 Suppose that we augment the Krylov space

with k error approximation vectors zj ¼ xj � xj�1; j ¼ i�
k þ 1; . . .; i; then

(i) ziþ1 ?ATA fzjgj¼ði�kþ1Þ:i;

(ii) cos\ðriþ1; ri�jÞ ¼ kriþ1k
kri�jk ; for 0	 j	 k:

Proof The proofs of (i) and (ii) are similar to those of

Theorems 3 and 6 in Baker et al. (2005), respectively. h
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4 Numerical Results

In this section, we report some numerical results obtained

by executing the new method for computing the solution of

the least-squares problem (1). All the numerical experi-

ments were performed in double precision floating point

arithmetic in MATLAB R2018b. The machine we have

used is a Intel(R) Core(TM) i7-4500U, CPU 1.80 GHz,

12.00 GB of RAM. For the tests, a set of nine problems

were taken from the University of Florida Sparse Matrix

Collection (Davis 2018). These matrices with their generic

properties are given in Table 1. In all the examples, the

starting guess was taken to be zero. The vector b also was

chosen from University of Florida Sparse Matrix Collec-

tion (Davis 2018) when available, otherwise we considered

the right-hand side b ¼ randðn; 1Þ, where function rand

creates an n� 1 random vector with entries uniformly

distributed in the interval [0, 1]. The stopping criterion

kATrik=kATr0k	 10�8

was used. We compare the results obtained by the LSQR,

the RLSQR, and the LLSQR algorithms in terms of the

number of iterations (Iter), the number of cycles (Cycles),

the CPU time in seconds (CPU, in parentheses), and the

Table 1 Test problems

information
Matrix Property Matrix Property

Order nnz Order nnz

1 jpwh 991 991 6027 6 psmigr 3 3140 543,160

2 Sherman4 1104 3786 7 poisson3Da 13514 352,762

3 cavity05 1182 32,632 8 appu 14000 1,853,104

4 poli3 16,955 37,849

5 add20 2395 13,151

Table 2 Cycles, matrix–vector

products, and CPU time

required for convergence

kATrik=kATr0k	 10�8 of

methods

Matrix LSQR m k RLSQR (m ? k) LLSQR(m, k)

Iter (CPU) Mvp Cycle (CPU) Mvp Cycle (CPU) Mvp

jpwh 991 322 (0.01) 646 60 4 12 (0.023) 1561 4 (0.02) 630

sherman4 914 (0.02) 1830 70 15 1392 (2.34) 239425 14 (0.11) 2370

cavity05 7534 (0.57) 15070 100 40 � � 34 (0.82) 8680

add20 3633 (0.23) 7268 75 10 751 (3.86) 129173 40 (0.63) 6342

psmigr 3 121 (0.17) 244 20 5 62 (2.05) 3225 5 (0.22) 282

poisson3Da 2254 (2.91) 4510 175 10 208 (48.40) 77377 12 (5.75) 4686

appu 740 (4.92) 1482 60 10 13 (6.67) 1847 9 (4.99) 1330

cavity10 7385 (1.09) 14,772 118 40 � � 40 (2.49) 11,398

poli3 2301 (0.95) 4604 120 15 38 (2.16) 10337 17 (4.73) 4596

The dagger (�) symbol indicates that no convergence is achieved after 2500 iterations

Table 3 Results for RLSQR(m ? k) and LLSQR, m, k, median skip angle, and median sequential angle are listed for each problem

Matrix m k RLSQR(m ? k) LLSQR(m, k)

Median skip angle Median seq. angle Median skip angle Median seq. angle

\ðri; ri�1Þ \ðriþ1; ri�1Þ \ðri; ri�1Þ \ðriþ1; ri�1Þ

jpwh_991 60 4 84.48 71.74 89.93 88.30

sherman4 70 15 9.24 6.54 33.47 24.68

add20 75 10 8.33 5.90 46.94 33.73

psmigr 3 20 5 37.11 26.74 84.18 83.26

poisson3Da 175 10 27.73 19.81 84.32 68.97

appu 60 10 79.17 64.24 85.18 72.92

poli3 120 15 61.86 46.63 79.45 65.28
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number of matrix–vector products (Mvp) required for

convergence. The results obtained are presented in Table 2.

In this table, a dagger y indicates that no convergence is

achieved after 2500 iterations. This table shows that except

for matrix poli3 (its CPU time), for all other matrices the

LLSQR algorithm is better (in terms of the number of

cycles, the CPU time, and the number of matrix–vector

products needed for convergence) than the RLSQR algo-

rithm. Moreover, we observe that the number of matrix–

vector products (Mvp) required for convergence of the

LLSQR is smaller than the one for the LSQR (except for

matrices Sherman4, psmigr 3, and poisson3Da; however,

they are almost close). We also observe that for all

matrices, the LSQR algorithm needs less CPU time than

the RLSQR and LLSQR algorithms.

Finally, from Theorem 1, we observe that LLSQR is

effective if it has large sequential angles and large skip

angles. For some matrices of Table 1, we present in Table 3

the median sequential and median skip angle values. We

observed that the LLSQR(m, k) algorithm has a larger

median skip angle and median skip angle than does

RLSQR(m ? k) algorithm. These results indicate that the

LLSQR(m, k) algorithm is preferable for its better

numerical behavior convergence.

5 Conclusion

In this paper, we have presented an augmented LSQR

method for solving large-scale linear LS problems or linear

systems of equations, along with details of its

implementation and experimental results. As we observed,

the LLSQR augmentation scheme is an effective acceler-

ator for RLSQR(m) method. In addition, numerical results

showed that the new algorithm needs fewer matrix–vector

products needed for convergence than the LSQR algorithm

and provides better results than the RLSQR algorithm.
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