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Abstract
Precipitation is among the main variables in weather and climate studies. The length of the 
statistical period plays a pivotal role in the accurate analysis of precipitation. One of the 
limitations of meteorological stations is having missing data. Analysis based on incom-
plete data leads to biased analysis. The historical monthly precipitation of the five stations 
in Iran is available since 1880 with missing data. The name of these synoptic stations are 
Mashhad, Isfahan, Tehran, Bushehr, and Jask. The data in the period of 1941–1949 have 
a gap that was during and following World War II (1939–1945). The present study aimed 
to use several classic and meta-heuristic methods to estimate these missing data. The Root 
Means Square Error (RMSE) criteria were used for comparison. The neighboring stations 
of Iran were selected as independent variable to estimate missing rainfall data. First, miss-
ing data were restored with the fitting of several new regression models for monthly pre-
cipitation (with RMSEs: 9.79, 7.89, 13.43, 6.65, and 20.96 millimeter(mm)). Then, the 
parameters of regression models were optimized by methods of genetic algorithm (GA) 
and Ant Colony (ACO). It was observed that RMSEs reduced to 2.56, 2.51, 3.49, 2.48, 
and 4.02 mm. Besides, Artificial Neural Network (ANN) and Support Vector Regression 
(SVR) methods were used to model the data. ANN and SVR could not increase the accu-
racy of the estimated data. The missing data were imputed using evolutionary methods 
(GA and ACO). As a result, the length of the statistical period of the stations reached over 
125 years, and the data could be considered a valuable basis for water resources, drought 
analyses, evaluation trends, climate changes, and global warming.
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1 Introduction

Missing data are among the major issues in data mining and pattern recognition. The 
concept of missing values is essential to the successful management of data. The knowl-
edge in attributes and missing data is also critical in improving the decision-making 
process of an organization (Little & Rubin, 2002). Problems with missing data in 
climatic series often arise and are caused by many circumstances, mainly due to the 
sources of acquisition, which are usually reports, manual collection instruments, or 
remote sensors. Typically, these problems lead to a combination of random and chrono-
logical missing data patterns in precipitation time series (Aguilera et al., 2020). Simply 
ignoring missing data can lead to partial and biased results in data analysis. One of the 
main constraints in this regard is that meteorological stations are riddled with missing 
climatic data. Classical statistical analyses are mainly based on complete sample data. 
Analysis based on incomplete data leads to biased estimates, and bias tends to be higher 
with increased missing ratio (Little & Rubin, 2002). The sample size (record length) 
of arid and semi-arid lands should be at least 100 years (Jacob et al., 1999) for statisti-
cal analysis. Moreover, studies with limited precipitation periods cannot provide a great 
perspective (Belala et al., 2018).

Precipitation is an essential variable in meteorology, climatology, hydrology, and 
environmental sciences (Türkeş et  al., 2016). This factor has a direct correlation with 
the regional climate. Recording of precipitation data in Iran began in 1951. These data 
are available on the website of Iran Meteorology Organization (IMO; http:// www. irimo. 
ir). Accordingly, the maximum length of these records is 68 years.

Five stations in Iran have longer monthly precipitation records with missing data 
since 1878 (Smithsonian Institution 1927, 1934, & 1947). These stations are located in 
Mashhad, Tehran, Isfahan, Jask, and Bushehr. The most prominent data missing in these 
stations were during and following World War II (1941–1949). Consequently, the only 
acceptable precipitation data for analysis are available in these five stations after repair.

Several studies have been focused on the management of missing data. Some 
researchers have only studied classical methods. To assess suitability of the different 
methods for filling in missing data, Sattari et al. considered monthly precipitation data 
collected at six different stations. They considered various classic techniques (the arith-
metic averaging method, the multiple linear regression method, and the nonlinear itera-
tive partial least-squares algorithm) for filling in missing precipitation data. The mul-
tiple imputation method produced the most accurate results for precipitation data from 
five dependent stations (Sattari et  al., 2017). Another study assessed the variations in 
daily precipitation characteristics during 1960–2014 in the source region of the Yellow 
River in China. Their data had missing values, and they filled the missing precipitation 
using the linear regression method with the stations nearby. In detail, the station with 
the missing data was regarded as dependent station, and its neighboring stations (with-
out missing values) were considered as independent stations (Iqbal et al., 2018).

Coulibaly and Evora investigated six types of artificial neural network (ANN), includ-
ing the multilayer perceptron (MLP) network and its variations (time-lagged feed-forward 
network [TLFN]), generalized radial basis function network, recurrent neural network and 
its variations (time-delay recurrent neural network), and counter propagation fuzzy-neural 
network (CFNN) using various optimization methods for infilling the total daily missing 
precipitation records. According to the findings, MLP, TLFN, and CFNN could provide the 
most accurate estimates of the missing daily precipitation data (Coulibaly & Evora, 2007).

http://www.irimo.ir
http://www.irimo.ir
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Using precipitation data of the nearby stations is a common approach to repairing miss-
ing values. In a study, researchers reconstructed daily precipitation data series using classic 
models, such as generalized linear modeling (GLM). In addition, they used the rainfall data 
(occurrence and rate) in 10 nearby areas as dependent variable, as well as the geographic 
data of each station (latitude, longitude, and elevation) as independent variables (Serrano-
Notivoli et al., 2017). In another research, the missing flow data were predicted by using 
the neighbor sites. The researchers used ANN, and Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS), and conventional methods (correlation and normal ratio method). According 
to the results, the four methods presented acceptable predictions in some cases and the 
ANFIS technique showed superior ability for predicting the missing flow data, especially 
in arid zones. Furthermore, comparison of the results indicated that ANN was a more effi-
cient method to predict the missing data as opposed to the conventional approaches (Das-
torani et al., 2010).

Researchers have investigated meteorological drought in the northern and northwestern 
regions in Mexico in various climate change scenarios. In this study, a feed-forward arti-
ficial neural network approach was employed for the interpolation of the missing rainfall 
data (Escalante-Sandoval & Nuñez-Garcia, 2017). Another study proposed a new meth-
odology for imputing the missing attribute values through integrating GA techniques and 
decision tree learning for the imputation of the missing attribute values (Patil & Bichkar, 
2010).

Other methods are also available for the management of missing values. Yozgatligil 
et al. (2013) compared several imputation methods to complete the missing values of spa-
tiotemporal meteorological time series. Among these methods, simple arithmetic aver-
age, normal ratio (NR), and NR-weighted correlations were considered as simple meth-
ods, whereas multilayer perceptron neural network and the multiple imputation strategy 
of Markov chain Monte Carlo expectation–maximization  (MCMC-EM) algorithm were 
considered as the computationally intensive techniques. In addition, the authors proposed 
modification on the MCMC-EM method and concluded that using the MCMC-EM algo-
rithm for the imputation of missing values before the statistical analysis of meteorologi-
cal data could decrease uncertainty and provide robust results (Yozgatligil et al., 2013). A 
fixed functional set genetic algorithm method (FFSGAM) is proposed for estimating histor-
ical daily missing precipitation data of 15 rain gaging stations from the state of Kentucky, 
USA. This research uses genetic algorithms and a nonlinear optimization formulation to 
obtain optimal functional forms and coefficients. The tests of FFSGAM at two rainfall 
gauging stations indicated that better estimates of precipitation can be obtained compared 
to those from a traditional inverse distance weighting technique (Ramesh et al., 2009).

Missing data are among the top problems in data analysis and pattern recognition. 
Undoubtedly, the concept of missing values is essential in data management. In order to 
predict the missing values in the five weather stations in Iran, we could not found compari-
son of various techniques (e.g., classic, evolutionary, and machine learning methods) for 
the imputation of missing monthly rainfall data in the literatures. Therefore, we used and 
compared multiple regression, ANN, SVR, GA, and ACO to fill in this research gap. GA 
and ACo algorithms can be used to select optimally parameters in the regression patterns 
(Seyyednezhad Golkhatmi et al., 2012). This fact can be effective in increasing the accu-
racy of estimating missing data that is evaluated in this study. The present study aimed to 
implement and compare several classic and heuristic methods to estimate the missing data 
for five long-term monthly precipitation stations in Iran. Initially, several multiple regres-
sions were made fit to each monthly station precipitation, and the optimal regression model 
was selected for each station. Following that, the GA and ACO were applied to improve 
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the accuracy of the selected regression models by optimizing their parameters. In addition, 
ANN and support vector regression (SVR) were used to calculate the missing monthly val-
ues. Finally, the applied methods and the selected predictors for the filling of the missing 
values were compared.

2  Materials and methods

This study aims to increase the accuracy of estimating the missing historical monthly rain-
fall data of the five stations in Iran. This research is important in two ways. 1—Using dif-
ferent efficient methods in increasing the accuracy of estimating missing data, 2—Collect-
ing, reconstructing and presenting historical precipitation data of the five stations in Iran 
that have not been available to researchers so far. The study area and methods used are as 
follows.

2.1  Study site

Persia officially the Islamic Republic of Iran  is a country in Western Asia in the Middle 
East. Iran is bordered to the northwest by Armenia and the Republic of Azerbaijan, to the 
north by the Caspian Sea, to the northeast by Turkmenistan, to the east by Afghanistan and 
Pakistan, to the south by the Persian Gulf and the Gulf of Oman, and the west by Turkey 
and Iraq.

Most climatic regions in Iran are arid and semi-arid. (Salehnia et al. 2017; Golkar Ham-
zee Yazd et al., 2019; Kazemzadeh & Malekian, 2018).

The observed data in the first synoptic station in Iran were available since 1951 (http:// 
irimo. ir/). Long-term historical monthly precipitation data are available in five cities in Iran 
(Fig.  1), which have been measured and recorded by the Embassy of the United States 
and England since 1880 (Smithsonian Institution, 1927, 1934, & 1947). These stations 
are located in Mashhad, Tehran, Isfahan, Jask, and Bushehr (Fig.  1). Unfortunately, the 
data have missing monthly values, the most important of which were during and following 
World War II (1941–1949).

Due to the distance, relationship, and completeness of data since 1880, the stations in 
the neighboring countries were selected as the predictive variables (Fig. 1). The data of the 
predictive stations were used to estimate the missing monthly values in Mashhad, Tehran, 
Isfahan, Jask, and Bushehr. The predictive stations are located in Turkmenistan (Ashgabat, 
Sarakhs, and Kooshka), Iraq (Baghdad, Basra, and Diwaniya), Azerbaijan (Lenkoran), 
Bahrain (Bahrain), and the United Arab Emirates (Sharjah) (http:// sdwebx. world bank. org, 
https:// clime xp. knmi. nl). The features of these stations are presented in Table 1.

2.2  Statistical analysis

The framework of data analysis involved the use of several conventional and heuristic 
methods to estimate the missing data of the long-term monthly precipitation in the men-
tioned stations in Iran consisting of four stages.

At the first stage, several multiple regressions were fitted to each monthly station pre-
cipitations, and the optimal regression model was selected for each station. Afterward, 
GA, and ACO were applied to improve the accuracy of the selected regression models by 
optimizing their parameters. At the next stage, ANN and SVR were used to estimate the 

http://irimo.ir/
http://irimo.ir/
http://sdwebx.worldbank.org
https://climexp.knmi.nl
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missing monthly values separately. Finally, the results of the previous stages were com-
pared using the RMSE, and the optimal models were applied to determine the missing val-
ues of each station.

Fig. 1  Location of the study area, 5 stations of Iran (bold circles) that have missing data and base stations 
(hollow circles)

Table 1  Names, information, positions and missing percent of selected stations

Type of variable Stations name Country Long (°) Lat (°) Alt (m) Duration to 
2017 (year)

Missing (%)

Dependent Mashhad(RMas) Iran 59.63 36.27 980 1893 9.1
Isfahan (REsf) Iran 51.70 32.70 1590 1894 9.5
Tehran (RTeh) Iran 51.40 35.70 1191 1884 12.4
Jask (RJas) Iran 57.50 25.80 4 1893 19.5
Bushehr (RBus) Iran 50.80 29.00 14 1878 19.6

Independent Ashgabat Turkmenistan 58.33 37.97 227 1892 19.2
Sarakhs Turkmenistan 61.22 36.53 279 1902 29.2
Kushkah Turkmenistan 62.35 35.28 57 1897 25.5
Baghdad Iraq 44.40 33.30 34 1888 34.4
Basreh Iraq 47.70 30.40 2 1921 43.6
Diwania Iraq 45.00 32.00 20 1940 68.8
Lenkoran Azerbaijan 48.83 38.73 − 13 1847 32.5
Bahrain Bahrain 50.65 26.27 2 1902 17.7
Sharjah Emarat 55.50 25.30 34 1933 48.7
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2.2.1  Artificial neural networks (ANN)

The ANN is derived from natural learning systems. ANN is an interconnected group of 
artificial neurons that uses a mathematical model for information processing based on a 
connectionist approach to computation. In more practical terms, neural networks are non-
linear statistical data-modeling tools. They can be used to model complex relationships 
between inputs and outputs or to find patterns in data. In many applications, modeling tools 
have provided better results when used in hydrological time series analysis. Neural net-
works must be trained with a set of typical input/output pairs of data called the training 
set (Miang Kueh & Kuok Kuok, 2016). By attempting to map the intrinsic relationships 
between the data with the training process and with the neurons, it tries to provide a map-
ping between the input space (input layer) and the desired space (output layer). The layer 
(or hidden layers) processes the information received from the input layer and provides the 
output layer (Fig. 2). Each network trains by receiving examples. Training is a process that 
ultimately leads to learning.

Network training is done when the communication weights between the layers change 
so that the difference between the predicted and calculated values is acceptable. Learning 
is achieved by achieving these conditions of the process. These weights represent memory 
and network knowledge.

The final weight vector of a successfully trained neural network represents its knowl-
edge about the problem. As different types of neural network deal with the issues in differ-
ent ways, their ability varies depending on the nature of the problem in hand. Multilayer 
Perceptron networks (MLP) are a static architecture of neural networks, as well as recur-
rent and time-lagged recurrent neural networks, which are dynamic networks (Dastorani 
et al., 2010). MLP has been applied to distinct areas, performing tasks such as fitting func-
tion and pattern recognition problems, by using the supervised training with an algorithm 
known as “Error backpropagation.” Therefore, MLP with one input layer, three hidden lay-
ers, and one output layer were used in this study. The hyperbolic tangent sigmoid is used 
as the activation function for the hidden nodes. The Loewenberg Marquart was selected for 
the training algorithm in this study.

Fig. 2  A framework of a single ANN neuron
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2.2.2  Support vector regression (SVR)

Support Vector Machine (SVM) is used for both classification and estimation of data fitting 
function in regression problems, so that the least error occurs in data classification or fit-
ting function. This method is based on statistical learning theory, which uses the principle 
of structural error minimization and produces a general optimal solution. Support vector 
regression (SVR) is directly derived from SVM theory (Smola & Vishwanathan, 2008). 
Simply put, SVR is a linear regression that uses a margin instead of a line. Points near 
this margin are more important than farther points. Whereas linear regression considers the 
importance of all points equally. Both linear regression and SVR are actually data separa-
tors (Smola & Vishwanathan, 2008; Aydilek & Arslan, 2013).

SVR maintains all the main features that characterize the algorithm (maximal margin). 
SVR uses the same principles as the SVM for classification, with only a few minor differ-
ences. In the SVR, a Safety margin (ℇ) is set in approximation to the SVM, which would 
have already requested from the problem. This algorithm is more complicated, therefore to 
be taken into consideration. However, the main idea is always the same: to minimize error, 
to individualize the hyperplane which maximizes the margin and keeping in mind that part 
of the error is tolerated.

Equation 1 is the Vapnik’s cost function. Figure 3 depicts the situation graphically. The 
SVR function can be linear and nonlinear that linear type is shown in Fig.  3. All sam-
ples that fall outside the support vectors (lines with ε interval) are penalized by the cost 
function.

(1)|y − f (x)|� =
{

0 if |y − f (x)| ≤ �

|y − f (x)| − � otherwise

Fig. 3  In SVR, all samples outside a fixed tube with size ε (i.e., support vectors) are penalized by applying 
a cost function. Here, Vapnik’s ε cost function is deployed, which accounts for a linear penalization
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2.2.3  Genetic algorithms optimization (GA)

We use the method described by Aydilek & Arslan (2013) shortly. GA was introduced 
for natural selection, in which the law of survival of the fittest is applied to a population 
of individuals. This method is based on the biological  evolution Darwin theory, and the 
results obtained from this study improve during the process. GA has been widely used as 
an effective search technique to perform searches ranging from general to specific and from 
simple to complex. This natural method is used for optimization. GA is implemented by 
generating a population and creating a new population by performing the following pro-
cedures: reproduction, crossover, and mutation. Crossover is the most significant phase in 
a genetic algorithm. For each pair of parents to be mated, a crossover point is chosen at 
random from within the genes. Mutation occurs to maintain diversity within the popula-
tion and prevent premature convergence. Figure 4 shows the chromosome, gene, popula-
tion and crossover and mutation operators in GA algorithm. In a GA, a population of can-
didate solutions (called individuals, creatures, or phenotypes) to an optimization problem 
is evolved toward better solutions. Each candidate solution has a set of properties (its chro-
mosomes or genotype) which can be mutated and altered; traditionally, solutions are rep-
resented in binary as strings of 0 s and 1 s, but other encodings are also possible (Salehnia 
et al., 2019).

The evolution usually starts from a population of randomly generated individuals and is 
an iterative process, with the population in each iteration called a generation.

For each member of the population, a value is assigned to represent the degree of its 
adaptation to the objective function. The more compatible the members are, the more 
likely they are to be selected and transferred to the next generation (elitism). The genetic 
mating function combines the genes of the chromosomes together. But it does not neces-
sarily apply to all disciplines. Apply it with probability p. The mutation operator is per-
formed by randomly selecting multiple chromosomes and randomly selecting one or more 
genes and replacing it with a reverse. The mutation is performed with a certain probability 
of pm. In this way, the process cycle will continue in subsequent generations. The end of 
the algorithm process is to achieve optimal solutions (Aydilek & Arslan 2013).

In this research, the GA is used to estimate and optimize the parameters of the regres-
sion models. The objective function is to minimize the root mean square error (RMSE). 
The error function is optimized by repeating the algorithm and producing better parameters 
in each generation.

Fig. 4  Display of the chromosome, gene, population and crossover and mutation operators in GA algorithm
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2.2.4  Ant colony optimization (ACO)

We use the method described by Chaudhuri et al. (2014). A meta-heuristic algorithms 
usually take inspiration from social behaviors of animals. The ACO for solving combi-
natorial optimization problems was first used to solve the traveling salesman problem 
(TSP): given that one single traveling salesman must visit a set of n cities, how to mini-
mize the total distance length, which is a well-known NP-hard problem.

In ACO algorithm, the ants work together to find the shortest path between the nest 
and the food source so that they can transport food to the nest in as little time as pos-
sible. During their trip’s, ants leave a chemical trail called pheromone on the ground. 
The high number of traffic and the creation of more pheromones leads to an optimal 
path. The pheromone evaporation and the probability-accident allow the ants to find the 
shortest path. The ACO algorithm manages the scheduling of three activities. The first 
step consists mainly of initialization of the pheromone trail. In the iteration (second) 
step, each ant constructs a complete solution to the problem, according to a probabilistic 
state transition rule. The state transition rule depends mainly on the state of the phero-
mone. The third step updates the quantity of pheromone. A global pheromone updating 
rule is applied in two phases: in the first phase, a fraction of the pheromone evaporates; 
and in the second phase, each ant deposits an amount of pheromone which is propor-
tional to the fitness of its solution. This process is iterated until a stopping criterion is 
met (Chaudhuri et al., 2014).

2.3  Used software

Data analysis was performed using MATLAB and R Studio software. I used the MAS, 
car, boot, spatial, lmtest, and survival packages for regression modeling and the e1071 
package  for SVR modeling. The “nftool” package in MATLAB software (2017) was 
employed for the MLP model of the ANN algorithm. Also, GA and ACO optimization 
were performed in MATLAB software (2017).

3  Results

The present study aimed to estimate and impute the missing data of the five stations in 
Iran regarding the long-term historical monthly rainfalls with the missing values. The 
imputation of the missing values before the statistical analysis of the meteorological 
data could definitely decrease uncertainty and provide robust results. To this end, the 
classic parametric multiple regression method was compared with nonparametric, meta-
heuristic methods. Missing percentage of this stations is listed in the last column of 
Table 1. The missingness mechanism for each of these five stations was MAR (Missing 
at Random) (Farzandi, 2019).

Some stations in the neighboring countries of Iran have available long-term data and 
are located in Turkmenistan, Azerbaijan, Uzbekistan, Pakistan, Oman, the United Arab 
Emirates, Qatar, Iraq, and Armenia (Fig. 1). The available stations in the neighboring 
countries (n = 81) were surveyed. According to the results of the statistical analysis, 
most of the stations were not reliable in terms of missing data management. Therefore, 
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reliable stations were selected based on the two factors of closeness and complete data-
set (Fig. 1).

Initially, the regression procedure was adopted, followed by the use of GA and ACO, to 
improve the adequacy of the estimation of the missing values using regression. Moreover, 
ANN and SVR were used separately to determine the missing values.

3.1  Regression

The regression method on this paper prepares an initial model for GA and ACO. Because 
the evolutionary methods (GA and ACO) require an initial pattern. After examining differ-
ent regression patterns, the best model for each station was selected according to Eqs. 2-6 
for fitting GA and ACO. The monthly precipitation in Ashgabat (RAsh as X1), Sarakhs (RSer 
as X2), and Kooshka (RKus as X3) was selected as the predictive variables for the manage-
ment of the missing data of Mashhad (RMas as Y) (Eq.  2). The monthly precipitation in 
Baghdad (RBag as X1) and Lenkoran (RLen as X2) was selected for Tehran (RTeh as Y) (Eq. 3). 
The monthly precipitation of Basra (RBas as X1) and Diwaniya (RDiw as X2) was selected for 
Isfahan (REsf as Y) (Eq. 4). The monthly precipitation of Bahrain (RBah as X1) and Sharjah 
(RSha as X2) was selected for Jask (RJas as Y) (Eq. 5), and the monthly precipitation of Bah-
rain (RBah as X1) was chosen for Bushehr (RBus as Y) (Eq. 6).

Initially, the missing data of each station were restored by the fitting of several multiple 
linear regression models to the monthly precipitations. It is notable that in this analysis, 
the outlier data were eliminated, and the best-fitted model was selected for the five sta-
tions separately (Table 2). The adjusted coefficient of variation (R2) was within the range of 
0.42–0.85, which was considered adequate (Fox, 2016). The optimal results of the selected 
models are presented in Table  2. The P values of β0–β3 indicated that these parameters 
were significant at 99%. In addition, all the variance inflation factors were less than 3.1 
(Table 2).

The RMSE of the five patterns was within the range of 7.8–20.9 mm. Moreover, the 
statistics of the F-test were adequately significant in all the models (range: 222–845). The 
Durbin–Watson test statistics (D–W) were within the unmatched limits of the Durbin–Wat-
son table (1.5–2.5), which confirmed the independence of the residual (Table 2).

According to the Chi-square test results in the non-constant of variance (NCV) test, the 
variance of residuals was not stable in all the stations. The NCV value of the stations in 
Mashhad, Isfahan, Tehran, Jask, and Bushehr was estimated at 273, 108, 114, 408, and 
407, respectively, with all the P values close to zero. In addition, the range of the average 
cook-distance statistics in all the patterns was 0.0024–0.025, which indicated the lack of 

(2)RMas = �0 + �1RAsh + �2RKus + �3RSer

(3)RTeh = �0 + �1RBag + �2RLen

(4)REsf = �0 + �1RBas + �2RDiw

(5)RJas = �0 + �1RBah + �2RSha

(6)RBus = �0 + �1RBah
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an outlier. Shapiro–Wilk test showed that the normality assumption of the residuals was 
rejected. But due to a large amount of data, we ignored it.

3.2  Optimization of the patterns with GA and ACO

Due to the lack of basic assumptions, the results of the regression are not invoked and non-
parametric methods (GA and ACO) are chosen to optimize the patterns.

GA and ACO make slight changes to its solutions slowly until getting the best solution. 
Here, the objective function (optimizer) is to minimize the amount of error (RMSE) and 
the objective function (optimizer) is to minimize the amount of error (RMSE) as well. That 
is, it changes the coefficients of regression patterns so that the error is minimized.

The regression parameters were estimated using the least-squares error method. GA and 
ACO were the optimization methods that could improve the accuracy of parameters β0, β1, 
β2, and β3 in Eqs. 2–6. After estimating the new coefficients, the RMSEs of the latest and 
previous patterns (i.e., regression patterns) were compared.

GA requires some default parameters, and the coefficient range was selected to be − 20 
to + 20 in the present study based on the pilot analysis. Parameters estimate in Table  2 
shows that the regression coefficients were at least 0.1 and at most 7.5. So coefficients less 
than − 20 and more than + 20 are inconceivable.

The maximum iteration was within the range of 200–1000 in each pattern. The assump-
tions and initial inputs for the implementation of GA included the initial population size of 
30, the mutation parameter of 0.02, gamma of 0.05, number of parents of two, the mutation 
rate of 0.3, and crossover rate of 0.8 with the roulette wheel as the selected method. The 
output results are shown in Table 3.

ACO requires initial values and constant parameters. The initial population count was 
10, with the sample size of 50, the deviation-distance ratio of one, and intensification fac-
tor (q) of 0.5. The final results of GA and ACO based on the optimized parameters and 

Table 2  Results of fitting regression patterns for the 5 stations rainfall, include: Coefficients, Variance Infla-
tion factor (VIF), Durbin–Watson Statistics, RMSE (mm), and Pattern power (F-statistic)

Pattern of Mashhad in first row has three independent variables (β0–β3 are the estimated coefficients). Isfa-
han and Tehran in the second and third row has two independent variables (β0–β2 are the estimated coef-
ficients). Bushehr in the fourth row has one independent variables (β0–β1 are the estimated coefficients). (–) 
show that there is no second or third independent variable. β0 is the width of the origin
Methods are compared with the error value (RMSE)

Stations 
name

Parameter estimate VIF Radj^2 RMSEreg 
(mm)

F-statistic D–W

β0 β1 β2 β3

Mashhad 2.05 0.29 0.11 0.68  < 3.1 0.78 9.79 968 1.76
p value 1.1*10–4 2.0*10–16 4.1*6–9 2.0*10–16

Isfahan 2.92 0.36 0.19  < 1.6 0.57 7.89 222 1.91
p value 3.5*10–8 2.0*10–16 1.2*10–8 –
Tehran 6.32 0.71 0.02  < 1.1 0.46 13.43 294 1.91
p value 3.3*10–15 2.0*10–16 3.0*10–4 –
Jask 0.18 0.36 0.70  < 1.8 0.85 6.56 845 1.88
p value 6.0*10–2 1.9*10–13 2.0*10–16 –
Bushehr 7.48 1.48 – 0.42 20.96 734 1.50
p value 2.0*10–16 2.0*10–16 – –
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RMSEs of the studied stations are shown in Table 3. According to the information in this 
table, the RMSE of all the patterns was less than 4 mm. Furthermore, no significant differ-
ence was observed between GA and ACO in terms of the RMSE.

According to the information in Table 2, RMSE was greater than 6.65 mm, while the 
minimum RMSE of ACO and GA was 2.48  mm, indicating a difference between the 
regression models, GA, and ACO in this regard. Therefore, it could be concluded that evo-
lutionary methods could significantly reduce the error of the regression patterns.

3.3  Modeling with ANN

ANN is a flexible mathematical structure, which is capable of identifying the complex, 
nonlinear correlations between the input and output datasets. In the current research, the 
MLP model in ANN was selected and implemented to the model precipitation data of the 
stations to predict the missing values. According to the findings, 70% of the data were on 
training, 15% were on validation, and 15% were on randomized testing.

The number of the hidden layers was set at three based on trial and error. The tanh1 
sigmoid function was considered optimal, and the Loewenberg Marquart represented the 
training algorithm. Data were split randomly, and the performance level was measured 
based on the MSE. The model was allowed to repeat 500 times. The efficiency (error rate) 
and number gradient were close to zero, with 20 allowed failures. Notably, the occurrence 
of any of these factors disrupts the process. The result of all output of ANN was huge in all 
stations, so do not report them.

Figures  5, 6, 7 show the studied samples. As depicted, the graphs of the observed 
monthly precipitation in Mashhad (targets) and predicted data (outputs) indicated that the 

Fig. 5  Time series of the observed monthly rainfall (1893–2017) of Mashhad (Targets) and predicted data 
by a network (Outputs) in mm (A), determination coefficient between Targets and Output (B), time series of 
error values (C), and μ distribution (D)

1 Hyperbolic tangent.
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model output could partly justify the monthly rainfall patterns, and the determination coef-
ficient of data was estimated at 0.852 (Fig. 5).

Time series of the observed monthly rainfall (From January (1893) to December (2017) 
of Mashhad (Targets) and predicted data by a network (Outputs) in mm is shown at the top 
left of Fig. 5. As can be seen, the time series of the error values indicated the RMSE was 
13.59 mm (Fig. 5). Besides, the error histogram (μ distribution) is illustrated at the down-
right of Fig. 5. This indicated the distribution of the errors with a little skewness, which is 
due to some extreme amounts of precipitation.

The stacked distribution of the modeling errors is shown in Fig. 6, and education (blue), 
validation (green), and experiment (red) are depicted in Fig. 6. Figure 7 shows the linear 
regression and determination coefficient between the predicted and observed values of the 
monthly precipitation of Mashhad with the neural network in terms of training, validation, 
test, and all the data. Accordingly, the determination coefficient for training, validation, 
test, and all the data was 0.858, 0.849, 0.831, and 0.852, respectively (Fig. 7).

3.4  Support vector regression

The SVR model was fitted for the prediction of the missing data of monthly rainfall in the 
five stations. The radial kernel function was selected for the SVR algorithm. The input 
parameters of cost and epsilon in the first stage were considered to be 1 and 0.1, respec-
tively. For instance, in the final stage (four repetitions), the best-estimated parameter for 
rainfall in Mashhad was achieved by the cost of 1.4 and epsilon of 0.1 in the fourth stage. 
In addition, the number of support vectors was 382, with the RMSE of 11.88 mm (Table 4). 
The RMSE value obtained from the ANN and SVR is presented in Table 5.

Fig. 6  Distribution of errors (Mashhad monthly precipitations). Training (blue), validation (green), and 
experiment (red)
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In the final comparison, the RMSEs of the regression, GA, ACO, ANN, and SVR meth-
ods were calculated (Table 5). Accordingly, the RMSEs of GA and ACO were the same 
and minimum, while the RMSEs of SVR and ANN were the maximum. Therefore, it could 
be concluded that the monthly missing data of the selected stations were imputed with an 
optimized pattern of ACO or GA. In the present study, ACO required less repetition to 
achieve convergence, while it might have underestimated some of the missing values, espe-
cially in the stations in Tehran and Mashhad. As a result, the missing values were imputed 
using the GA for the stations in Tehran and Mashhad, while the data of the other stations 
were imputed using the ACO algorithm. It is also notable that the mentioned analyses were 
performed on a monthly scale, and the rainfall series was restored on a monthly scale as 
well. The total annual precipitation per year calculated by the sum of monthly precipitation 
values recorded in that year.

Fig. 7  Draw the predicted values against the observed values (Mashhad monthly precipitations (mm)) by 
the neural network in the training (A), validation (B), test (C), and all data (D)
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Figure 8 shows the completed annual precipitation time series of the five selected sta-
tions. Figure  8A was related to 125  years of annual precipitation in Mashhad, 7B was 
related to 125 years of precipitation in Isfahan, 7C was referred to 137 years of precipita-
tion in Tehran, D was linked to 125 years of precipitation in Jask, and E related to 140 years 
of precipitation in Bushehr. In Fig. 8 the black series were related to long-term time-series 
precipitation at the five stations in Iran. The missing data imputed by GA or ACO meth-
ods are shown by red color. Also, the average annual precipitation line was plotted in each 
series. The main stages of this research are shown in the flow chart (Fig. 9).

4  Discussion

Environmental models typically require a complete time series of meteorological inputs; 
thus, reconstructing missing data are a crucial issue in the functionality of such physical 
and statistical models. Estimating with missing values is bias. So, determining missing 
data must be as precise as possible.

In the present study, we implemented and compared several methods to improve the 
accuracy of estimating missing values. These methods include classic approaches (multi-
ple regression), artificial intelligence (ANN and SVR), and evolutionary methods (GA and 
ACO) to repair missing precipitation data of the five stations in Iran. First, several regres-
sion models fitted to data for estimating missing values. If the data have some hypotheses 
such as normality, independent of errors, variance stability, then the estimation of param-
eters is Best Linear Unbiased Estimator (BLUE) with minimum variance (Fox, 2016). 
Monthly rainfall data are not normal and have deviated from this hypothesis (noisy data). 
For improving the accuracy of regression parameters, we used GA and ACO optimizations 
methods. According to the results (Table  5), GA and ACO could enhance the accuracy 
of estimating the regression parameters of our monthly precipitation data. Therefore, this 

Table 4  Modified coefficients of precipitation patterns with SVR algorithm

step Best cost Best epsilon Gama Weight (W) b Number of 
Support Vec-
tors

RMSESVR (mm)

RAsh RSer RKus

1 1 0.1 0.167 13.97 19.04 13.30 − 1.24 381 12.18
2 1 0.1 0.167 13.97 19.04 13.30 − 1.24 381 12.18
3 1.4 0.16 0.167 16.23 20.84 14.30 − 1.32 328 11.89
4 1.4 0.1 0.167 16.36 20.28 14.12 − 1.31 382 11.88

Table 5  RMSE (mm) value 
obtained from fitted 5 methods 
(regression, GA, ACO and 
modeling by ANN and SVR)

Stations name RMSE (mm)

Regression GA ACO ANN SVR

Mashhad 9.8 2.6 2.6 13.6 11.8
Isfahan 7.9 2.5 2.5 6.7 7.6
Tehran 13.4 3.5 3.5 15.4 15.8
Jask 6.6 2.5 2.5 16.5 11.9
Bushehr 21.0 4.0 4.0 34.2 35.0
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study found that GA and ACO optimizations have greatly enhanced the accuracy of miss-
ing data estimation. This result is consistent with the application of evolutionary meth-
ods. Because the main motivation behind using evolutionary algorithms in data mining is 
their attractive features that enable them to resolve some of the drawbacks in conventional 

Fig. 8  The completed time series of annual precipitation for the five stations. The black series were related 
to long-term precipitation. Missing data imputed by GA or ACO methods are shown by red color. The aver-
age annual precipitation line was plotted in each series. A Mashhad, B Isfahan, C Tehran, D Bushehr, and E 
Jusk stations
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data mining techniques and allow them to discover novel solutions, such as their robustness 
when dealing with noisy data, and their ability to interpret data without any a priori knowl-
edge (Abbass et al., 2002).

The authors of this article in another study found that the machine learning methods 
(SVR & ANN) significantly enhanced the accuracy of the missing temperature data esti-
mation and performed better than traditional and evolutionary approaches (Farzandi et al., 
2019). Therefore, evolutionary methods are the best for estimate noisy data such as precipi-
tation, and machine learning methods (ANN& SVR) are more suitable for high correlation 
data (with independent variables), such as temperature.

5  Conclusion

The current research aimed to predict the missing values of the five stations in Iran 
(Table 1, Fig. 1) regarding the long-term monthly precipitation (125–140 years). Several 
methods were used to this end, including regression, GA, ACO, ANN, and SVR.

Comparison of RMSE of the mentioned methods indicated that evolutionary methods 
(GA and ACO) could better estimate the missing monthly precipitation data. The RMSEs 

Fig. 9  Flowchart of the main 
stages for imputation of missing 
data in this research
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of GA and ACO in the selected stations were within the range of 2.6–4.0  mm. On the 
other hand, machine learning methods (ANN and SVR) could not increase the accuracy 
of imputing the missing data of monthly precipitation compared to the regression method 
(Fig. 9). As a result, the complete historical annual precipitation of the five stations in Iran 
became available (Fig.  8). Our findings could be valuable in addressing issues such as 
water resources, the return of extreme precipitation, droughts, climate changes, and global 
warming.
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