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Detecting Differential Item Functioning Using Cognitive Diagnosis 
Models: Applications of the Wald Test and Likelihood Ratio Test in a 
University Entrance Examination
Roghayeh Mehrazmay a, Behzad Ghonsoolya, and Jimmy de la Torreb

aEnglish Department, Ferdowsi University of Mashhad; bFaculty of Education, The University of Hong Kong

ABSTRACT
The present study aims to examine gender differential item functioning (DIF) 
in the reading comprehension section of a high stakes test using cognitive 
diagnosis models. Based on the multiple-group generalized deterministic, 
noisy “and” gate (MG G-DINA) model, the Wald test and likelihood ratio test 
are used to detect DIF. The flagged items are further inspected to find the 
attributes they measure, and the probabilities of correct response are 
checked across latent profiles to gain insights into the potential reasons for 
the occurrence of DIF. In addition, attribute and latent class prevalence are 
examined across males and females. The three items displaying large DIF 
involve three attributes, namely Vocabulary, Main Idea, and Details. The 
results indicate that females have lower probabilities of correct response 
across all latent profiles, and fewer females have mastered all the attributes. 
Moreover, the findings show that the same attribute mastery profiles are 
prevalent across genders. Finally, the results of the DIF analysis are used to 
select models that could replace the complex MG G-DINA without significant 
loss of information.

1. Introduction

Cognitive diagnosis models (CDMs) belong to a novel psychometric framework that assumes success-
ful performance on a test item depends on the effective execution of the latent attributes measured by 
the item. Attributes, as defined by Birenbaum, Kelly, and Tatsuoka (1993, p. 443), include must-have 
“cognitive procedures, skills, or knowledge . . . to successfully complete the target task.” By acknowl-
edging the elicitation of more than one attribute by each test item, CDMs postulate multi- 
dimensionality within test items and delve into the examinees’ mastery of each attribute required by 
items. CDMs serve as a tool to provide diagnostic feedback to examinees about the attributes they have 
or have not mastered, as in, their areas of strengths and weaknesses (Kim, 2015; Lee, de la Torre, & 
Park, 2012). As such, they can be contrasted with many item response theory (IRT) models that only 
provide a general ability estimate, θ, on a unidimensional scale.

CDMs have been either used as a framework to develop diagnostically informative tests or retro-
fitted to tests not originally intended for diagnostic purposes (Gierl & Leighton, 2007). For the first 
purpose, the so-called cognitive diagnostic assessments are “expected to measure knowledge and 
processing skills with sufficient precision to make an examinee’s incorrect response informative about 
what exactly the student does and does not know” (Leighton & Gierl, 2007, p. 148). To this end, all 
items are constructed in such a way that they provide maximal diagnostic information about the test 
takers’ attribute mastery profiles. Regarding the second purpose, a particular CDM is retrofitted to an 
already administered test to provide “fine-grained diagnostic feedback beyond the aggregated test 
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scores” (Jang, 2009, p. 4). Analyzing extant tests to find the skills that result in successful performance 
on those items can provide researchers with insights into designing CDAs, and save them time and 
money (Lee & Sawaki, 2009).

A large number of CDMs have been developed, each of which is based on certain assumptions. 
Although CDMs can accommodate a variety of item responses and latent attributes (Chen & de la 
Torre, 2013; Rupp & Templin, 2008; von Davier, 2005; Yi, 2017), this paper focuses on dichotomous 
responses and attributes. In general, these models are divided into general (saturated) and reduced 
(constrained) CDMs. Reduced models can be derived from general CDMs by constraining certain 
parameters of the general models. Depending on the classification schemes, reduced CDMs can be 
classified as conjunctive or disjunctive, compensatory or noncompensatory, and additive or non- 
additive.

A compensatory model hypothesizes that nonmastery of an attribute can be compensated for, and 
result in successful performance on the item, by mastery of another required attribute (Li, Hunter, & 
Lei, 2015). As a rule of thumb, however, mastery of all the required skills maximizes the probability of 
a correct response to an item (Lee et al., 2012). In non-compensatory models, mastery of all the 
required skills is necessary for successful performance on the item, and non-mastery of any of the 
required attributes cannot be compensated for by mastery of other required attributes (Lissitz, Jiao, Li, 
Lee, & Kang, 2014). In other words, “the probability of a correct response is the same whether one or 
more than one of the required attributes is missed” (Li, 2008, p. 11).

Henson, Templin, and Willse (2009) distinguish between conjunctive and disjunctive noncom-
pensatory models. They define conjunctive noncompensatory models in the same way as noncom-
pensatory models were described above. Tatsuoka (1986) asserts that such models are typically suitable 
for math tests in which, as DiBello, Roussos, and Stout (2007, p. 1013) express, “the conjunction of 
successful skill execution on all the skills is required for success on the item.” Describing such models 
as the opposite of conjunctive models, Henson et al. (2009) add that in disjunctive models, mastery of 
any subset of the required attributes results in successful performance on the item. As Roussos, 
DiBello, Henson, Jang, and Templin (2010) put it, disjunctive noncompensatory models are consid-
ered as ‘extreme’ compensatory models. Such models are more popular in psychology (Templin & 
Henson, 2006) or in education where multiple strategies can be used by the examinees to succeed on 
the item (Henson et al., 2009). Finally, additive models are those in which mastery of an attribute has 
a constant impact on the success probability expressed in various link functions (de la Torre, 2011).

Every test, cognitive diagnostic assessments included, aims at being fair to all test takers and 
ensuring invariance of measurement properties across examinees with distinct social, ethnic, or 
language backgrounds. Differential item functioning (DIF) analysis has long been used to ascertain 
measurement invariance with respect to examinees with diverse backgrounds. The issue of a DIF-free 
test is considered part of establishing the fairness and construct validity of the test (Sireci & Rios, 
2013). DIF is present when two or more groups of examinees have dissimilar probabilities of 
answering an item correctly after being matched on their ability levels (Scheuneman & Bleistein, 
1989). In other words, the ability level should account for all the differences in the examinees’ 
performances; otherwise, the assumption of measurement invariance is violated (Millsap, 2011). In 
the context of CDM, the examinees are matched on their attribute mastery profiles, which are latent 
classes that indicate the attributes they have or have not mastered (Li, 2008). Under the CDM 
framework, uniform DIF is present when examinees from one particular group consistently have 
a higher or lower chance to endorse an item across all attribute mastery profiles. However, in non- 
uniform DIF, examinees who belong to a specific group have a higher chance of getting an item correct 
for some particular attribute mastery profiles and a lower probability of success for others (Hou, de la 
Torre, & Nandakumar, 2014).

Li and Wang (2015) argue that DIF results in contamination of item parameters and person 
attribute profiles, which, in turn, leads to the incomparability of latent classes across groups. 
Therefore, the validity and fairness of the whole test will be in jeopardy. Findings of a simulation 
study conducted by Wang, Guo, and Bian (2015) on the effect of DIF items on the accuracy of CDM 
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estimates illuminate the importance of performing DIF analyses. They reported that DIF had a more 
significant impact on the accuracy of the estimation of mastery profiles of the focal group than the 
reference group, and an increase in the magnitude and number of DIF items further reduced the 
estimation accuracy.

Despite its importance, only few DIF studies have previously been performed using CDMs. 
Utilizing the deterministic inputs, noisy “and” gate (DINA; Junker & Sijtsma, 2001) model, Zhang 
(2006) carried out a simulation study to compare the power of Mantel-Haenszel (MH; Mantel & 
Haenszel, 1959) and Simultaneous Item Bias Test (SIBTEST; Shealy & Stout, 1993) in identifying 
gender DIF. Results indicated that conditional upon the accuracy of the specified CDM and 
Q-matrix, matching on the attribute mastery profiles produced lower Type I error rates and higher 
power. Li (2008) applied a modified higher-order DINA (HO-DINA) model to a statewide mathe-
matics test and concluded that MH performed better with larger sample sizes and more discrimi-
nating attributes. Hou et al. (2014) studied the capability of the Wald test in detecting DIF under the 
DINA model, and found that the Wald test exhibited smaller Type I error rates and greater power 
with an increase in the sample size, and outperformed both MH and SIBTEST in detecting 
uniform DIF.

Svetina et al.’s study (Svetina, Dai, & Wang, 2017) aimed at moving beyond simply finding DIF 
items by scrutinizing the patterns of skills and cognitive processes underlying items to explain the 
potential sources of DIF. MANOVA analyses indicated statistically significant differences among 
items regarding the patterns of elicited attributes, though with small effect sizes. In a more recent 
study, Ravand, Baghaei, and Doebler (2020) examined DIF across genders in the reading comprehen-
sion (RC) section of an English test in Iran using the Wald test and investigated the fit of multiple- 
group G-DINA (MG G-DINA). They reported no DIF in the test and also no significant difference 
between the two genders with regard to the correlations among the attributes and each gender’s 
attribute mastery probabilities.

In summary, the very few applications of CDM DIF analyses to real data have mostly focused on 
identifying DIF items and have not delved into the sources of DIF. In addition, the benefits of using 
multiple-group models when there is more than one manifest group have been under-researched. To 
address the above-mentioned gaps, the present study aimed to:

(1) examine DIF across genders in the RC section of the Iranian University Entrance Examination 
(IUEE) and inspect the potential sources of DIF; and

(2) evaluate the improvement gained in the model due to using MG G-DINA, which allows 
separate parameter estimates for DIF items.

2. Theoretical Framework

2.1. Multiple-Group G-DINA

The G-DINA model, proposed by de la Torre (2011), is a generalized model from which some specific 
reduced models are derived. The general formulation of the model in identity function as presented by 
de la Torre (2011, p. 3) is as follows: 

P α�lj
� �

¼ δj0 þ
XK�j

k¼1
δjkαlk þ

XK�j
K0 ¼kþ1

XK�j � 1

k¼1
δjkk0αlkαlk0 . . .þ δj12...K�j

YK�j
k¼1

αlk (1) 

where
δj0is the intercept for item j;
δjk is the main effect due to αk;
δj12Kjis the interaction effect due to α1 and αK0 ; and
δj12:::sK�j is the interaction effect due to α1,. . . , αK�j .
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For notational purposes, α�lj is used to represent the reduced attribute vector l containing only the 
subset of attributes required by item j, as opposed to all the attributes required by the whole test. In 
addition, the star symbol distinguishes the reduced attribute vector from the full one. The probability of 
a correct response equals the sum of the three elements present in the equation: a) δj0 or the intercept 
for item j, which is equal to the guessing parameter for item j defined as the probability that an examinee 
who has not mastered any of the required attributes answers the item correctly through mere guessing 
(Zheng & Chang, 2016); b) the main effect due to mastering each individual attribute required by item j; 
and c) the interaction effects due to the mastery of two or more required attributes.

The G-DINA model yields different success probabilities for examinees mastering different 
numbers and combinations of attributes. Models such as the DINA, deterministic input, noisy 
“or” gate (DINO; Templin & Henson, 2006), additive CDM (A-CDM; de la Torre, 2011) model, 
linear logistic model (LLM; Maris, 1999), and reduced reparametrized unified model (R-RUM; 
Hartz, 2002) can be obtained from the above equation as special cases of the G-DINA model by 
constraining the G-DINA parameters (DINA, DINO, and A-CDM), and changing the link functions 
(R-RUM and LLM).

The G-DINA model implicitly assumes that all test-takers belong to the same population, an 
assumption that does not hold when test-takers come from various manifest groups as in studies 
of DIF, where two or more distinct groups of test-takers exist (George & Robitzsch, 2014). As an 
extension of G-DINA, the MG G-DINA model allows the item parameters and q-vectors to vary 
across groups for all or some items (Ma, Terzi, & de la Torre, 2020b). The probability of a correct 
response for an examinee belonging to the manifest group g in MG G-DINA is presented as: 

P α�glj

� �
¼ δgj0 þ

XK�gj

k¼1
δgjkαglk þ

XK�gj

K 0 ¼kþ1

XK�gj � 1

k¼1
δgjkk0αglkαglk0 . . .þ δgj12...K�gj

YK�gj

k¼1
αglk (2) 

2.2. DIF in Cognitive Diagnostic Models

Under the CDM framework, DIF occurs when the reference and focal groups have different prob-
abilities of answering the item correctly after being matched on their attribute mastery profiles. In 
other words, DIF is present if the probability of answering item j is different for the reference and focal 
groups in at least one of the attribute mastery profiles, shown as follows: 

Δjαl ¼ PðXj ¼ 1jαlÞF � PðXj ¼ 1jαlÞR�0; (3) 

where PðXj ¼ 1jαlÞ denotes success probability for examinees belonging to attribute mastery 
profile αl on item j for either the reference (R) or the focal (F) group; and Δjαl ,whose value 
determines which group the item is favoring, represents DIF in item j for the examinees. When 
Δjαl < 0 or > 0, item j favors the examinees in the reference or focal group with attribute pattern αl, 
respectively.

In the context of CDMs, uniform DIF occurs when Δjαl consistently has values greater or less 
than zero across all attribute mastery profiles. Non-uniform DIF, on the other hand, exists if Δjαl 
yields positive values at certain attribute mastery profiles and negative values at certain others, 
a fact that signifies the reference group is advantaged only for some particular attribute mastery 
profiles.

As reviewed in the introduction section of the paper, previous studies have applied various methods 
to detect DIF. Below, the applications of the Wald test and the likelihood ratio test (LRT) to detect DIF 
are discussed based on the MG G-DINA model. To simplify notation, the following discussion is 
limited to two groups.
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2.2.1. The Wald Test
The Wald test was first introduced into the CDM literature by de la Torre (2011), who used it at the 
item level to test whether a reduced model could replace the saturated G-DINA model with an 
acceptable fit. The Wald test was later used to detect DIF in the DINA model by Hou et al. (2014). 
This test uses multivariate hypothesis testing to detect DIF in the items.

The Wald test is implemented in two steps. In the first step, an unconstrained model is fitted to the 
data, and the item parameters are concurrently estimated by assuming the non-invariance of all item 
parameters across the focal and reference groups (Ma et al., 2020b). The item parameters are estimated 
in the form of a vector as shown below. 

β̂
�

j ¼ β̂Rj; β̂Fj

� �0

¼ ðP̂ α�0j

� �

R
; . . . ; ðP̂ α�lj

� �

R
; . . . ; ðP̂ α�1j

� �

R
; P̂ α�0j

� �

F
; . . . ; ðP̂ α�lj

� �

F
; . . . ; ðP̂ α�1j

� �

F
Þ0 (4) 

In the second step, the item parameters are constrained to be equal across the groups, and the 
model-data fit is checked to see whether the constrained model provides a worse fit to the data. To 
apply the constrained model in the second step, a restriction matrix of the dimensions 2K�j � 2K�j þ1 is 
constructed where K�j is the reduced attribute vector that represents the number of attributes 
required by item j. To illustrate, if item j requires K�j ¼ 1 attribute, a restriction matrix of 2� 4 is 
created, as: 

Rj ¼
1 0 � 1 0
0 1 0 � 1

� �

(5) 

Given the restriction matrix, the Wald statistic to test DIF in item j is then computed as: 

Wj ¼ Rj � β̂�j
h i0

Rj � Var β̂�j
� �

� R0j
h i� 1

Rj � β̂�j
h i

(6) 

where
Rj is the restriction matrix for item j;
bβ�j is the estimated item parameters for item j stacked across groups; and
Var bβ�j
� �

is the variance-covariance matrix of the item parameters.
The tested null hypothesis for item j is Rj�bβ�j¼ 0, and the test statistic Wj is asymptotically chi- 

square distributed with degrees of freedom equal to 2K�j .

2.2.2. Likelihood Ratio Test (LRT)
To test for DIF, the LRT compares the likelihood of a reduced model to that of an augmented model. 
In the reduced model, the parameters of all the items are constrained to be equal across the focal and 
reference groups, whereas the augmented model permits the item parameters of the studied item to 
differ across groups while restricting the item parameters of the rest of the items to be equal. The LRT 
statistic (G2) is, then, calculated as: 

G2 ¼ � 2 LLreduced � LLaugmented
� �

(7) 

where LLreduced and LLaugmented are the log-likelihoods of the reduced and augmented model, 
respectively. The LRT statistic is χ2-distributed under the null hypothesis of no DIF, with degrees of 
freedom equal to the difference in the number of estimated parameters for the two models (Langer, 
2008).

In contrast to the use of the LRT with IRT models, the application of LRT to CDMs does not require 
the identification of a set of unbiased items as the studied groups are on the same binary scale of 
mastery/non-mastery (de la Torre & Lee, 2010; Ma et al., 2020b). Ma et al. (2020b) propose a modified 
LRT under the CDMs framework in which the reduced model restricts the item parameters of the 
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studied item, thus, allowing the item parameters for the rest of the items to be estimated freely. In the 
augmented model, on the other hand, no restrictions are imposed on any items and the item 
parameters are freely estimated for all items across the reference and focal groups.

2.2.3. Effect Size Measure for the Magnitude of DIF
Zumbo (1999) suggests that a measure of DIF magnitude be provided alongside the test statistics to 
offset the effect of sample size and reduce the risk of false identification of DIF items. The present study 
utilizes two effect size measures, namely the unsigned area (UA) and the noncompensatory DIF 
(NCDIF), both of which are based on Raju’s (1990) formulation of UA. The UA introduced by George 
and Robitzsch (2014, p. 414; Equations 8 & 9) calculates the absolute difference between the item 
response functions for the reference and focal groups for item j. They suggest classifying the 
magnitude of DIF as “moderate” and “large” if the effect size measure exceeds .059 and .088, 
respectively. 

UAj ¼
XL

l¼1
w alð Þ PðXj ¼ 1

�
�αl; g1Þ � PðXj ¼ 1

�
�αl; g2Þ

�
�

�
� (8) 

where 

wðalÞ ¼
1
2
½PðαljG ¼ g1Þ þ PðαljG ¼ g2Þ�: (9) 

The second effect size measure is derived from the measure proposed by Oshima and Morris (2008, 
Equations 10 & 11). It is based on the average squared difference between the item response functions 
for the two groups for item j. 

NCDIFj ¼ EF dj alð Þ
2� �

(10) 

where 

dj alð Þ ¼ ESjF alð Þ � ESjR alð Þ: (11) 

In the above equation, ESjF alð Þ and ESjR alð Þ are the probabilities of correctly answering item j for 
the focal and reference groups, respectively, conditional on the attribute vector al. The expectation of 
NCDIF for item j is taken over the attribute of the focal group. The cutoff values of .003 and .008 for 
NCDIF define moderate and large DIF (Wright & Oshima, 2015).

3. Method

3.1. Data and Participants

The present study utilized the data of the RC section of the IUEE, a high-stakes test taken by 
approximately one hundred thousand test-takers in Iran each year. The exam is administered annually 
to admit applicants seeking to study foreign languages into various undergraduate programs. IUEE 
comprises 70 questions in six parts, namely, Grammar, Vocabulary, Sentence Structure, Language 
Functions, Cloze Test, and RC section consists of three reading passages, each followed by five 
multiple-choice comprehension questions.

A sample of 12,169 candidates with an average age of 19.10 taking the test in 2017 was obtained 
from Iran’s National Organization for Educational Testing. The data included responses of 4686 
(38.5%) male and 7483 (61.5%) female candidates to the RC section. Furthermore, seven content 
experts participated in this study to design and validate the Q-matrix. To this end, two university 
professors, two Ph.D. graduates, and three Ph.D. candidates of teaching English as a foreign language 
(TEFL) with a mean of 11.2 years of experience in teaching reading comprehension courses were 
invited to identify the skills measured by each item.
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3.2. Procedure

The first step toward conducting a CDMs analysis is to develop a Q-matrix (Tatsuoka, 1983) of the 
attributes the test items measure. The Q-matrix specifies the existing conceptual relationships between 
the items and the attributes they measure (Tatsuoka, 1986, 2009). There are several ways to construct 
the Q-matrix. Zhang (2006) states that Q-matrices are most often developed based on test blueprints 
or the judgments of the experts of the subject matter. Verbal reports such as think-aloud protocols can 
also provide hints on designing the Q-matrix (Leighton & Gierl, 2007). Previous research in the 
literature is also beneficial to better understand the cognitive processes involved in responding to 
items. However, the present researchers did not have access to the test blueprints; therefore, to develop 
the initial Q-matrix, relevant studies on RC and the experts’ judgments were considered as ways of 
ascertaining the validity of the extracted attributes to the extent possible. To this end, previous 
research on RC was analyzed to come up with a list of attributes that RC tests generally aim to 
measure.

In a comprehensive review, Alderson (2000) summarized a large number of studies on reading tests 
and concluded that there was no unanimity among researchers as to, first, whether reading was a single 
unitary skill or divisible into a number of skills; and, second, what those skills were. He asserts that “the 
notion of skills and subskills in reading is enormously pervasive and influential, despite the lack of 
clear empirical justification” (Alderson, 2000, p. 10). Such a skills-based perspective serves CDM 
purposes well since such assessments are aimed at providing finer feedback about the test takers’ 
weaknesses and strengths in the skills measured by the test. However, as cautioned by Alderson (2000), 
those lists lack an empirical basis. This claim is evidenced by the diverse list of attributes utilized in 
tests of RC (e.g., Cohen & Upton, 2006; Day & Park, 2005; Grabe, 2009; Jang, 2009; Jang, Dunlop, Park, 
& van der Boomet, 2015; Kim, 2015; Li & Suen, 2013; Ravand, 2016; Sawaki, Kim, & Gentile, 2009).

Given the disagreement on what skills RC tests measure, the researchers decided to examine the RC 
section of the IUEE to identify the skills measured by the test taking into account the attributes already 
identified in the previous studies. On one hand, the identified skills had to be broad enough so that 
there would be sufficient items measuring each skill; on the other hand, the list of the skills had to be 
detailed enough to provide fine-grained information about the test takers’ RC abilities. The initial list 
of attributes included the seven skills of Vocabulary, Syntax, Reference, Details, Inference, Rhetorical 
Purpose, and Main Idea Comprehension. As the next step, the attributes were clearly defined based on 
similar attributes found in the literature, and the content experts were invited to identify the skills 
measured by each item to validate those skills. For each item, the experts were asked to put a “1” or “0” 
for each attribute if they believed the item was or was not measuring the attribute, or put a “?” if they 
could not decide one way or another. They were also asked to explain, name, or define any other 
attributes they believed the item measured, but were not provided on the list.

After the first round of coding was completed by the experts, the number of times each attribute 
was measured by the 15 RC items was calculated, and two of the attributes, namely Reference and 
Rhetorical Purpose, were found not to be measured by sufficient numbers of items. To address this 
problem, the experts suggested that the two attributes of Reference and Rhetorical Purpose be 
combined with the more general skills of Inference and Main Idea, respectively, on the basis of the 
features they shared with them. The coding was updated accordingly and the overall Fleiss Kappa 
agreement index (κ) among the experts was calculated. The average Fleiss Kappa index (κ) was .611, 
with a range from .545 to .679. Landis and Koch (1977) consider values between .41 to .60 and .61 to 
.80 as “moderate” and “substantial” agreement, respectively. The moderate agreement indices were 
obtained for Syntax and Vocabulary, where experts disagreed on the difficulty level of the vocabularies 
and grammatical structures of the passage. The initial Q-matrix and the values of κ for each attribute 
are reported in Appendix A.

Expert judgments per se are considered “fallible,” the use of which introduces the danger of “a 
misspecified Q-matrix” (Chiu, 2013), which can, in turn, result in misclassification of the examinees as 
well as incorrect estimation of the model parameters (de la Torre & Chiu, 2016). Hence, the initially 
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developed Q-matrix was subjected to empirical validation in the GDINA package (Ma & de la Torre, 
2020) in R (R Core Team, 2020). The GDINA package uses a discrimination index (ς2

j ) to identify for 
each item the most parsimonious q-vector that yields the highest variability in the probabilities of 
success among the latent classes. The q-vector with the fewest number of required attributes that 
accounts for a pre-specified proportion of variance (PVAF) relative to the maximum possible variance 
is suggested to replace the misspecified q-vector (de la Torre & Chiu, 2016).

To facilitate future applications of the GDINA package, generic codes of each step taken in the 
present study are provided in Appendix H. In the first run, a total of seven modifications in six items 
were suggested. The star symbol (*) next to the attributes in Appendix A denotes a suggested 
modification. The experts inspected the items for which there were suggested modifications, and 
considered the possibility of the inclusion of the specified attributes in the items’ q-vectors or their 
exclusion therefrom. The experts agreed on applying modifications to items 1, 5, and 14 but insisted 
on keeping the original q-vectors for items 3, 7, and 10. The inspection of the mesa plots for those 
items helped further investigate the appropriateness of the specified q-vectors. As shown in 
Appendix B, the mesa plot for Item 3 depicts the original (“11001,” in red bullet) and the suggested 
q-vector (“01001”) as accounting for very similar PVAF values. Logically, the simpler q-vector is 
preferred. Nonetheless, the content experts emphasized the critical role of vocabulary for a correct 
response.

For Item 10, the original q-vector was simpler than the suggested one but accounted for less 
variance. Although the cutoff value is typically set to ϵ = .95, Nájera, Sorrel, and Abad (2019) noted that 
the PVAF cutoff value may vary as a function of a number of factors, such as sample size, item quality, 
and test length. Thus, there is no hard and fast rule to interpret PVAF, and a value greater than .80, as 
for the original q-vector of Item 10, is still considered high enough. For Item 7, the interpretation of 
the mesa plot was not as straightforward. According to the mesa plot, the three vectors of “01000,” 
“01010,” and “01011” could be considered possible candidates, but the experts generally agreed that 
the item measures both Inference and Detail.

To check whether any further modifications were required, the revised Q-matrix served as the 
input for the second round of empirical Q-matrix validation. Four modifications were suggested for 
Items 3, 4, and 10 in the second run. Modifications to Items 3 and 10 were the same as those 
suggested in the first run; as for Item 4, it was suggested that Inference be dropped from the 
q-vector. When consulted, the experts unanimously opted to keep the original q-vectors for the 
three items. The mesa plots for Items 3 and 10, as previously discussed, and the one for Item 4 (see 
Appendix C), all favored keeping the original q-vectors. The more parsimonious q-vector (i.e., 
“01001”) suggested for Item 4 offered a similar PVAF value. Nevertheless, the experts deemed 
Inference a necessary skill for this item. Since the experts did not agree with any of the suggested 
modifications, the Q-matrix obtained in the second round of revisions was selected as the final 
Q-matrix for subsequent analyses.

4. Results

4.1. Model Selection and Fit Analysis

The validated Q-matrix was used to select the model that best fitted the data. The GDINA package 
compares the fit of G-DINA as a saturated model to five reduced models, namely, the DINA, DINO, 
ACDM, RRUM, and LLM to find the best fitting model that can replace the saturated G-DINA model. 
The relative fit indices and the χ2 tests comparing G-DINA to the reduced models all yielded 
significant p-values indicating that G-DINA could not be replaced by other reduced models. As 
shown in Appendix D, G-DINA had the largest log-likelihood and the smallest values for AIC and 
BIC. Furthermore, the LRT tests comparing the fit of G-DINA to each reduced model all yielded 
values greater than the critical values, resulting in significant p-values which meant the reduced 
models did not fit the data equally well.
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Whereas relative fit indices help select the model that best fits the data among competing models, 
absolute fit indices determine whether or not the selected model adequately fits the data (Chen, de la 
Torre, & Zhang, 2013). Absolute fit indices are important to consider because they ascertain the 
validity of the inferences based on the CDM (Santos & de la Torre, 2019). Thus, the absolute fit indices 
for the G-DINA model, as provided in Tables 1 and 2, were checked in the next step. The GDINA 
package provides six fit indices, including the M2 statistic, RMSEA, SRMSR, proportion correct (PC), 
log odds ratio (LOR), and transformed correlation (TC). Nonsignificant values for M2, PC, LOR, and 
TC (de la Torre & Akbay, 2019; Hansen, Cai, Monroe, & Li, 2016) alongside values smaller than .05 for 
RMSEA and SRMSR (Maydeu-Olivares, 2013) indicate a good fit of the model. The M2 statistic for the 
G-DINA model was nonsignificant (p-value = .327). Both the RMSEA and SRMSR had values smaller 
than the recommended .05 value and the p-value for PC was nonsignificant, too. However, TC and 
LOR had significant p-values. Although there was no complete agreement among the different 
absolute fit indices, there was compelling evidence to support model-data fit.

A major concern about the RC test items is the issue of local or conditional dependence. As 
a central assumption of IRT models, local independence requires that a person’s response to an item be 
independent from their response to other items in the test conditional on the person’s ability (De 
Ayala, 2008; Stout, Nandakumar, & Habing, 1996). Statistically, this means that after conditioning on 
the latent trait, the correlation between residuals of item pairs should not be significant; otherwise, 
items are said to be locally dependent (Lee, 2004). A violation of local independence occurs “whenever 
the response process of one item provides the necessary cognitive schema to trigger a response to 
a subsequent item” (Ackerman, 1987, p. 1). Lee (2004) argues that RC items test related pieces of 
information provided in the passage which causes greater correlations among reading questions of 
a particular passage compared to correlations of items of a different passage. He adds that not all high 
inter-item correlations within the same passage are due to common latent trait, and “The extra item 
dependence within the passage, which is unaccounted for by this common latent trait, is very likely to 
lead to correlated residuals or LID [local item dependence]” (p. 78).

Within the context of CDMs, local independence has long been an inherent assumption (George & 
Robitzsch, 2014). Hansen et al. (2016) suggested applying Chen and Thissen’s χ2

LD index in the CDM 
context to complement overall fit analysis statistics such as M2. The χ2

LD statistic is used to detect local 
dependence among item pairs by evaluating the fit of the model to each pair of items. This statistic is 
provided in the output of the CDM R package (Robitzsch, Kiefer, George, & Ünlü, 2020) denoted as 
max(X2) accompanied by a test of significance with one degree of freedom. A non-significant value 
indicates the absence of local dependence. To test for the presence of local dependence in the present 
study, the max(X2) index obtained from the CDM package was checked. The max(X2) statistic was 
232.14 with a significant p-value of 0, indicating the violation of local independence. Considering other 
model fit statistics discussed above, the acceptable values for indices such as M2, RMSEA, SRMSR, and 

Table 1. Absolute Fit Indices for the G-DINA 
Model.

Statistic Value

M2 5.791 df = 5 p-value = .327
RMSEA .003 with 90% CI: [0, .0135]
SRMSR .027

Table 2. Absolute Fit Indices for the G-DINA Model.

Statistic mean[stats] max[stats] max[z.stats] p adj. p

Proportion Correct .0007 .0021 .5204 .6028 1
Transformed Correlation .0187 .1370 15.1081 .0000 0
Log Odds Ratio .0869 .6339 13.9353 .0000 0
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PC at least partially support the use of the model despite the violation of local independence. However, 
as warned by Santos and de la Torre (2019), the presence of local dependence results in biased 
parameter estimates. Thus, the results should be interpreted with caution.

4.2. DIF Analysis Results

G-DINA, as the model providing the best fit, was used to perform DIF analysis based on the Wald test 
and LRT. Appendix E displays the test statistics for the Wald test and LRT and the effect size measures 
for the flagged items. The effect size measure introduced by George and Robitzsch (2014) is presented 
under the “ABS d” column, and the one proposed by the authors to be used within the CDM-DIF 
context is shown in the column titled “d 2.” The p-values were adjusted using Bonferroni correction to 
control for the Type I error due to multiple comparisons.

As shown in Appendix E, both methods flagged a large number of items. The results of the Wald 
test indicated that 8 out of 15 items displayed DIF at the .05 significance level. LRT flagged the same 
items as the Wald test except for Item 12, which had a nonsignificant p-value. Taking the effect size 
into account, Item 13 displayed negligible DIF, items of which type can be freely included in tests 
according to the ETS classification (Wiberg, 2007). Overall, the absolute and the squared difference 
effect size measures yielded almost similar results. However, Items 3, 9, and 12 were not consistently 
categorized by the two measures. Items 3 and 9 were classified as having medium DIF by the effect size 
based on the absolute difference, but displayed large DIF according to the squared distance effect size 
measure. In either event, ETS warns against using items showing medium and large DIF (Zieky, 1993). 
Item 12, which was only flagged by the Wald test, displayed negligible and moderate DIF based on the 
absolute and squared difference effect size measures, respectively.

Chi-square test statistics, LRT included, are notorious for being highly sensitive to sample size. To 
account for the large sample size that leads to a higher rejection rate for the null hypothesis of “no DIF” 
for the items, LRT statistics were adjusted for sample sizes equal to half, a quarter, and one-sixth of the 
original sample size to check the consistency of the results. The p-values were also adjusted accord-
ingly, as presented in Table 3. Adjusting for the sample size resulted in fewer DIF items. Halving the 
sample size, Items 1, 6, and 8, which displayed large DIF in both effect size measures, had significant 
p-values. When adjusting the p-values for N/4 and N/6, only Item 1 displayed DIF.

Table 3. LRT Statistics Adjusted for Sample Size.

N N/2 = 6084 N/4 = 3042 N/6 = 2028

Item LRStat df p adj. p LRStat p adj. p LRStat p adj. p

1 58.08 4 .00 .00* 29.04 .00 .00* 19.36 .00 .01*
2 3.86 8 .86 1.00 1.93 .98 1.00 1.28 .99 1.00
3 18.61 8 .01 .25 9.30 .31 1.00 6.20 .62 1.00
4 17.32 8 .02 .40 8.66 .37 1.00 5.77 .67 1.00
5 6.51 8 .58 1.00 3.25 .91 1.00 2.17 .97 1.00
6 20.57 4 .00 .00* 10.28 .03 .53 6.85 .14 1.00
7 8.69 8 .36 1.00 4.34 .82 1.00 2.89 .94 1.00
8 28.35 8 .00 .00* 14.17 .07 1.00 9.45 .30 1.00
9 21.83 8 .00 .07 10.91 .20 1.00 7.27 .50 1.00
10 7.64 4 .10 1.00 3.82 .43 1.00 2.54 .63 1.00
11 0.57 2 .74 1.00 0.28 .86 1.00 0.19 .90 1.00
12 7.24 4 .12 1.00 3.62 .45 1.00 2.41 .65 1.00
13 12.50 4 .01 .20 6.25 .18 1.00 4.16 .38 1.00
14 5.30 2 .07 1.00 2.65 .26 1.00 1.76 .41 1.00
15 2.85 4 .58 1.00 1.42 .83 1.00 0.95 .91 1.00

Note. Flagged items are shown with the star symbol.
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The attributes measured by DIF items were further inspected to gain a better understanding of 
those items. To do so, the researchers only focused on Items 1, 6, and 8 – the three items having large 
effect sizes, as discussing all seven items would not be feasible given the limited space. Vocabulary was 
the attribute that was required by all three items. Items 1 and 6 measured Vocabulary and Main Idea, 
whereas Item 8 measured Vocabulary, Syntax, and Detail.

For each item, bar charts of success probabilities by gender (Appendix F) were examined for latent 
classes with non-overlapping standard errors. For Item 8, the latent group “100” was not displayed in this 
figure due to having a less than one expected count, which resulted in unreliable estimates. As evident 
from the bar charts, females had uniformly lower probabilities of success across all mastery profiles.

Attribute prevalence for males and females was checked next to find out more about the attributes 
that were easier to master for the two genders. As shown in Table 4, Inference and Syntax were the 
easiest attributes for males as they were mastered by 43% of the examinees. The easiest attribute for 
females was Syntax which was mastered by 38% of the examinees. On the other hand, the most difficult 
attribute for both genders was Main Idea, which was mastered by 34% and 28% of the males and 
females, respectively. Females had consistently lower mastery rates in comparison to males across all 
the five attributes.

Prevalent latent classes were also examined to determine which attribute mastery profiles were the 
most common across the two genders. As presented in Appendix G, 36% of the examinees were 
nonmasters of all the attributes (latent class “00000”) among males, and 19% of them had mastered all 
the attributes (latent class “11111”). The third most prevalent latent class was “11000” meaning that 12% 
of the examinees had mastered Vocabulary and Syntax. The same most prevalent attribute mastery 
profiles were observed among females. However, compared to males, a larger proportion of females 
belonged to the latent class “00000” (41%), and fewer females had mastered all the five attributes (13%).

4.3. Improvement in the Model Fit

Following the identification of DIF items, we checked whether or not the model that allowed the three 
DIF items’ parameters to vary across males and females would fit the data significantly better than the 
original calibration of the data under single-group analysis. To this end, relative fit statistics for the 
four nested models were compared, wherein the most complex one was the MG G-DINA that assumed 
non-invariance of item parameters and allowed for separate estimation of item parameters for the two 
studied groups. The second MG model assumed invariant item parameters for the twelve non-DIF 
items and allowed separate parameter estimates for the three DIF items. The third model was an MG 
model that assumed item invariance for all the items across the two genders, and the fourth one, 
a single-group model, assumed the respondents did not belong to different manifest groups and thus, 
estimated one set of item parameters. Logically, it is expected that a multiple-group model allowing the 
parameters to vary across males and females provides the optimal fit. The likelihood ratio test was used 
to determine whether a simpler model could replace the MG G-DINA that estimated all the item 
parameters for the two genders separately.

As presented in Table 5, the MG model with the non-invariance assumption yielded the largest log- 
likelihood, followed by the less complex models with fewer numbers of parameters. The χ2 values 
associated with the LRT all had significant p-values meaning that the simpler models could not 

Table 4. Attribute Prevalence Estimates for the 
Comparison Groups.

Attribute Female Male

Vocabulary .33 .42
Syntax .38 .43
Main Idea .28 .34
Inference .33 .43
Detail .34 .38
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provide an equally good fit to the model. Despite the significant p-values, the model “12Common + 
3DIF” yielded smaller AIC and SABIC values, providing partial support for this model. For the same 
reason previously discussed concerning the sensitivity of χ2-based tests to the sample size, the values of 
the χ2 and log-likelihood were adjusted for the large sample size (not shown). Specifically, by adjusting 
the statistics for half the sample size, the χ2 statistic for the LRT yielded a nonsignificant p-value for the 
model that allowed the item parameters for the three DIF items to be separately estimated for the two 
genders. This meant that the “12Common + 3DIF” model could fit the data equally well and replace 
the “MG-Separate” model.

5. Discussion

The present study inspected gender DIF in a high stakes RC test using CDMs. DIF analysis is a routine 
procedure for ascertaining fairness and establishing the validity of score interpretations. To this end, 
the attributes measured by the test were defined, and the initial Q-matrix was developed, validated, 
and used to select the model that best fitted the data – G-DINA. It should be noted that the utilized RC 
test was not developed for diagnostic purposes; therefore, we retrofitted G-DINA to it (Ravand & 
Baghaei, 2019). Cognitive diagnostic assessments, designed for diagnostic purposes from scratch, 
provide more detailed information about the examinees’ performance. Retrofitting CDMs to already 
developed tests can still provide finer-grained information compared to single ability scores reported 
as in IRT analyses. Despite having a similar θ score, the students might belong to different attribute 
mastery profiles or students having the same profile might have distinct θ scores (Ma, Minchen, & de 
la Torre, 2020a). However, to benefit from such information, one must ensure the attributes are 
measured by sufficient numbers of items and that the model fits the data well. Hence, the fit of 
G-DINA was assessed in comparison to DINA, DINO, RRUM, LLM, and ACDM in the present study.

Fitting the MG G-DINA model, DIF was analyzed using the Wald test and LRT, and the effect sizes 
for the flagged items were calculated. The Wald test and LRT identified eight and seven DIF items, 
respectively, among which three items displayed large DIF according to both effect sizes. Adjusting 
LRT test statistics for half the sample size, the same three items (i.e., items 1, 6, & 8) had significant 
p-values. We utilized the CDM framework to delve into DIF items to obtain fine-grained information 
about the items’ cognitive demands and the examinees’ performances, and the cognitive processes 
involved in answering an item. CDM lends a fresh perspective on the reasons for the occurrence of 
DIF and possible explanations about the differential performance of the examinees. Thus, the three 
flagged items were further examined in detail to identify the attributes they measured. The three DIF 
items measured four out of the five attributes measured by the test. As the next step, success 
probabilities by gender were inspected at every latent class, and males were found to outperform 
females across all latent classes, which meant uniform DIF in favor of males for the three items.

The majority of DIF analyses have reported that, conditional on the same ability level, RC tests 
generally favor either females or none of the genders, which is at odds with the findings of the current 
study wherein DIF items favored males. The above discrepancy can be addressed from several 
perspectives. First, despite the fact that RC items have been found to generally favor females, finding 
items favoring males is not unprecedented. Lin and Wu (2004) who analyzed the English Proficiency 
Test in China using SIBTEST found three items that favored females, in contrast to the one item 
favoring males. Analyzing the verbal reasoning and English sections of the Psychometric Entrance 
Test in Israel, Gafni (1991) reported that the two studied forms displayed DIF in favor of males. 

Table 5. Relative Fit Indices Comparing the Four Nested Models.

Model # par −2LL AIC BIC SABIC χ2 df p

MG-Separate 230 193,636 194,096 195,799 195,068
12Common + 3DIF 162 193,765 194,089 195,280 194,774 129 68 <.001
MG-Common 146 193,879 194,171 195,253 194,789 115 16 <.001
Single-Group 115 194,343 194,572 195,424 195,058 464 31 <.001
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Findings of a study carried out by Ravand, Rohani, and Firoozi (2019) using multiple-indicators 
multiple-causes structural equation modeling showed that RC items favored males in an exam 
administered to select examinees into master’s programs. Moreover, Bordbar (2020) examined the 
IUEE using Rasch model and found three items in the RC section favoring males, in contrast to the 
two items that favored females. Bordbar (2020) also examined the RC part of the general English 
section of the same test and found four items functioning differentially in favor of males. The above 
findings provide evidence that RC items can favor males.

Second, the present authors examined the overall performance of males and females based on the 
PC scores. Results showed that males outperformed females as evident from their PC scores, 0.37 vs. 
0.29, which rules out the possibility of the CDM results’ being merely an artifact of the method used. 
Third, previous studies on differential performance of males and females on RC tests have investigated 
the effect of the content of the passage, as well as the item on the performance of the two genders 
(Brantmeier, 2001; Bügel & Buunk, 1996). Analyzed in the light of schema theory, it is believed that 
prior knowledge of a topic facilitates processing of the new information (Rumelhart, 1980). Such 
interpretations are, however, post hoc explanations provided by the authors rather than content 
experts and are, thus, subjective. Therefore, care should be taken when interpreting the results. 
Previous studies have extensively reported that females perform better on items related to the 
mood, impression, or tone of the passage (Pae, 2012), human relations (O’Neill & McPeek, 1993), 
and passages on humanities (Doolittle & Welch, 1989). Males, on the other hand, have been reported 
to outperform females on items related to science topics and technical contents, and items requiring 
logical inference (Doolittle & Welch, 1989; Gafni, 1991; Lawrence, Curley, & McHale, 1988).

Content analysis of the DIF items was done by the present authors to possibly explain the reasons 
for the occurrence of DIF. In this study, the two passages whose items displayed DIF were about the 
stages of the expansion of cities and the Apollo moon landing. In particular, Items 6 and 8 were related 
to the second passage, which was on a science-related topic. This makes the items potentially easier for 
males. To be more specific, Item 6 asked for the main idea of the passage, which requires a general 
understanding of the whole text. Afflerbach’s (1990) study showed that topic familiarity positively 
influenced the reformulation of the main idea of the passages. Thus, differential functioning of the 
item can be attributed to the fact that the topic of the passage is more male-friendly. Differential 
performance of Item 8 in favor of males can also be explained given that it requires skimming through 
the same science-related passage.

Item 1 based on the first passage tested the examinees’ main idea comprehension on a topic related 
to urban development. As the item did not touch a content more familiar to males, the present authors 
could not come up with an explanation for differential functioning of this item. However, the fact that 
Items 1 and 6 both required the same skills of Vocabulary and Main Idea may shed light on this issue. 
Aside from topic familiarity, vocabulary plays a central role in understanding a passage and answering 
its items. Both passages as well as the four options in Items 6 and 8 were replete with formal words that 
could hinder understanding. Previous studies such as Edelenbos and Vinjé (2000) have reported that 
males perform better than females in vocabulary knowledge. However, the role of required skills in 
answering RC items and in the occurrence of DIF is an issue future studies can investigate in the light 
of CDMs.

We also examined attribute prevalence across genders and found that males had consistently higher 
attribute mastery rates across the five attributes. Inference and Syntax were the easiest attributes for 
males, and Syntax was the easiest skill for females to master. Main Idea was the most difficult skill to 
master for both genders. Detail and Vocabulary were the second most difficult attributes for males and 
females, respectively. Based on Bloom’s taxonomy of comprehension levels (Bloom, 1956), recalling 
Detail and Main Idea requires lower-order cognitive processes, and thus, these two skills are easier to 
master than Inference. The findings of the present study are, therefore, not in line with Bloom’s levels 
of cognition. The findings are worth considering more carefully as two out of the three DIF items 
measured only Vocabulary and Mail Idea. Detailed scrutiny of the reason for this discrepancy can be 
considered as potential future research.
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Finally, to check whether taking into account the three DIF items improves model fit, three nested 
MG G-DINA models were compared with the single-group G-DINA model. Using the entire sample, 
none of the models provided a better fit than the MG G-DINA model with separate parameter 
estimates. When the χ2 statistics were adjusted for half the sample size, however, the model accounting 
for the three DIF items had a nonsignificant p-value indicating that it performed as well as the MG 
G-DINA with non-invariant item parameters. Finding DIF items is the ultimate goal in many studies. 
However, allowing DIF analysis results to inform model selection would enable us to minimize the 
effect of DIF on item and person parameter estimates.

Findings of the present study inform the practice of test development in a number of ways. First, 
most tests, IUEE included, undergo a sensitivity review by a panel of experts, the aim of which is to 
identify potential sources of bias against a particular group of test takers. However, often, the 
sensitivity review panel experts cannot identify all sources of bias. Hence, the need to carry out 
statistical DIF analysis. Identified DIF items can be further examined by content experts and if found 
to be testing unintended constructs, the items can be revised or discarded from the test (American 
Educational Research Association, American Psychological Association & National Council on 
Measurement in Education, 2014). Second, CDM DIF analysis provides researchers a more detailed 
picture of the items that function differentially; thus, enabling researchers to focus on the passage, the 
content of DIF items, and the attributes measured by them to “better understand item and group 
properties that are responsible for differential test performance, and consequently may lead to tests 
that are more fair,” (Penfield & Camilli, 2007, p. 155) and more accurately reflect test takers’ abilities.

Third, CDMs’ aim of providing finer-grained diagnostic feedback to examinees is accomplished by 
estimating the attribute profile each examinee belongs to as well as classifying examinees into masters 
or non-masters of a particular attribute. Apart from threatening the fairness and construct validity of 
tests, the existence of even moderate levels of DIF seriously jeopardizes profile-level classification 
accuracy and can endanger attribute-level accuracy in case the magnitude and number of DIF is large 
(Paulsen, Svetina, Feng, & Valdivia, 2020). As a measure of reliability for CDAs (Cui, Gierl, & Chang, 
2012), classification accuracy can be improved by avoiding the inclusion of DIF items which, in turn, 
results in more accurate feedback to test takers. Fourth, since MG G-DINA can accommodate separate 
estimation of item parameters for all or certain items, identifying DIF items helps having improved 
model-data fit, leading to more precise classification accuracy (Gao, 2014).

Finally, the attribute-level accuracy indices provided by CDMs make it possible to choose the best 
test that measures the intended attributes the most accurately (Cui et al., 2012). However, the 
attributes can be measured more reliably if the attributes and the relationship among them is decided 
upon in advance and CDAs are built based on the selected CDM. Since the present study retrofitted 
the G-DINA model to IUEE, the two attributes of Reference and Rhetorical Purpose had to be 
combined with Inference and Main Idea so that they were measured by enough number of items. If 
considered important attributes worth being measured, CDAs can be designed whose items reliably 
measure Reference and Rhetorical Purpose, too. Thus, high quality items can be developed from the 
scratch in a way that they preferably measure each attribute in isolation to gain higher levels of 
classification accuracy, or in combination with other attributes by enough test items (Liu, Huggins- 
Manley, & Bradshaw, 2017).

Future research may focus on the differences between males and females in the cognitive processes 
they use to answer RC items. Qualitative research may address each gender’s cognitive processes and 
the attributes utilized to answer RC test items. MG CDMs can accommodate different Q-matrices for 
the studied groups if the two genders are found to seek recourse to different cognitive processes and 
attributes. One more line of research relates to examining differential attribute functioning (Milewski 
& Baron, 2002) to check whether examinees with similar ability levels have statistically different 
probabilities of mastering each attribute. Findings of the present study indicated that females generally 
had lower attribute mastery rates than males, and a greater portion of the females had mastered none 
of the attributes. It is worth researching whether or not the attributes function differentially since 
feedback obtained from differential attribute functioning analysis can help language educators focus 
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on developing attributes in which a particular group has a lower probability of success. Furthermore, 
the Wald test and LRT used to detect DIF and compare nested models are χ2-based tests highly 
sensitive to the sample size, and the smallest differences become statistically significant. The effect of 
the sample size on the estimates can be investigated, too.

In sum, the present study aimed to explore DIF in an RC test and look into the items displaying DIF 
more carefully by inspecting probabilities of success at every latent class and examining the attributes 
DIF items measure. The utilized RC test was a high stakes test screening examinees who aim to enter 
undergraduate programs. DIF analysis helps ensure the fairness of the test and the validity of the 
decisions based on test results. Despite widespread applications of DIF analysis, little is known about 
the nature of DIF and the reasons for its occurrence (Svetina et al., 2017). Using the CDM DIF 
framework, we aimed to probe item demands and the cognitive processes involved in answering test 
items to shed light on the findings of DIF analysis. Furthermore, since the model fit is of utmost 
importance when retrofitting CDMs to already developed tests, CDM DIF analysis helps identify items 
whose parameters need to be estimated separately in the model, which may result in significant 
improvement in fit indices and, in turn, in item and person parameter estimates.
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Appendix A

The Initial Q-matrix Based on the Experts’ Coding.

Appendix B

Mesa Plots for Items 3, 7, & 10 in the First Round of Q-Matrix Validation.

Attributes

Vocabulary Syntax Main Idea Inference Detail

Items

1 1* 0 1 0 0
2 1 0 1 1 0

3 0* 1 0 0 1
4 0 1 0 1 1

5 0 1* 1 0 1*
6 1 0 1 0 0

7 0 1 0 1 0*
8 1 1 0 0 1
9 0 1 0 1 1

10 0 1* 0 1 0
11 0 0 1 0 0

12 0 0 0 1 1
13 1 0 1 0 0

14 0* 0 0 1 0
15 1 0 0 0 1
κ .568 .545 .635 .679 .628

Note. The star symbols denote suggested modifications in the first run.
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Appendix C

Mesa Plot for Items 4 in the Second Round of Q-Matrix Validation.

Appendix D

Relative Fit Indices Comparing G-DINA to Other Reduced Models.

Model #par logLik Deviance AIC BIC χ2 df p

G-DINA 115 −97,171.06 194,342.13 194,572.13 195,423.89
DINA 61 −98,363.55 196,727.09 196,849.09 197,300.90 2384.97 54 <.001

DINO 61 −98,490.12 196,980.25 197,102.25 197,554.06 2638.12 54 <.001
ACDM 81 −97,490.51 194,981.03 195,143.03 195,742.96 638.9 34 <.001
RRUM 81 −97,423.09 194,846.19 195,008.19 195,608.13 504.06 34 <.001

LLM 81 −97,332.18 194,664.35 194,826.35 195,426.29 322.23 34 <.001
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Appendix E

The Results of the Wald Test and LRT

Appendix F

Bar Charts of Success Probabilities per Gender and Latent Class.

Note. Solid bars represent latent classes whose standard errors overlap, and the striped bars represent latent classes 
with non-overlapping standard errors.

Wald LRT Effect Size

Item WaldStat. p adj. p LRstat p adj. p ABD d d2

1 125.88 .00 .00* 116.16 .00 0.00* .099 L .013 L
2 7.62 .47 1.00 7.73 .46 1.00

3 165,317.60 .00 .00* 37.24 .00 0.00* .066 M .008 L
4 36.48 .00 .00* 34.64 .00 0.00* .066 M .007 M
5 11.80 .16 1.00 13.04 .11 1.00

6 54.60 .00 .00* 41.15 .00 0.00* .089 L .013 L
7 12.54 .13 1.00 17.40 .03 0.39

8 386,011.82 .00 .00* 56.70 .00 0.00* .104 L .017 L
9 39.37 .00 .00* 43.66 .00 0.00* .065 M .008 L

10 13.19 .01 .16 15.29 .00 0.06
11 1.33 .52 1.00 1.15 .56 1.00

12 17.33 .00 .03* 14.49 .01 0.09 .053 N .007 M
13 26.54 .00 .00* 25.00 .00 0.00* .040 N .002 N
14 8.32 .02 .23 10.60 .01 0.07

15 6.35 .17 1.00 5.70 .22 1.00

Note. Flagged items are shown with a star symbol.
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Appendix G

Attribute Mastery Profiles per Gender

Appendix H

Codes Used in the Study
# Importing data and the Q-matrix
## The first column of the data file includes the gender of the cases.
dat <- read.csv (“E:/Data/data.csv,” header = TRUE)
Q <- read.csv (“E:/Data/Q.csv,” header = TRUE)
# Q-matrix validation using de la Torre and Chiu’s method, Round I
fit <- GDINA (dat = dat[,-1], Q = Q, model = “GDINA”)
qval1 <- Qval (fit, method = “PVAF,” eps = 0.95)
PVAFvalues1 <- extract (qval1, what = “PVAF”)
PVAFvalues1
suggQ1 <- extract (qval, what = “sug.Q”)
suggQ1
# Draw mesa plots using the function plot
plot (qval1, item = 3)
plot (qval1, item = 7)
plot (qval1, item = 10)
# Q-matrix validation, Round II
NewQ <- read.csv (“E:/Data/NewQ.csv,” header = T)
fit <- GDINA (dat = dat[,-1], Q = NewQ, model = “GDINA”)
qval2 <- Qval (fit, method = “PVAF,” eps = 0.95)
PVAFvalues2 <- extract (qval1, what = “PVAF”)
PVAFvalues2
suggQ2 <- extract (qval1, what = “sug.Q”)
suggQ2
# Draw mesa plots using the function plot
plot (qval2, item = 4)
# Model fit
fit <- GDINA (dat = dat[,-1], Q = NewQ, model = “GDINA,” mono.constraint = TRUE)
fitDINA <- GDINA (dat = dat[,-1], Q = NewQ, model = “DINA,” mono.constraint = TRUE)
fitDINO <- GDINA (dat = dat[,-1], Q = NewQ, model = “DINO,” mono.constraint = TRUE)

Latent Class Posterior Probability Latent Class Posterior Probability

Females Males Females Males

00000 .41 .36 11100 .00 .00
10000 .00 .00 11010 .02 .04

01000 .03 .01 11001 .00 .00
00100 .00 .01 10110 .00 .00
00010 .01 .04 10101 .00 .00

00001 .06 .01 10011 .03 .04
11000 .12 .12 01110 .02 .02

10100 .00 .00 01101 .01 .01
10010 .00 .00 01011 .00 .00

10001 .00 .01 00111 .05 .06
01100 .00 .00 11110 .00 .00
01010 .02 .01 11101 .00 .00

01001 .00 .00 11011 .01 .01
00110 .01 .00 10111 .02 .00

00101 .05 .04 01111 .00 .01
00011 .00 .00 11111 .13 .19

Note. The three most prevalent latent classes are highlighted in bold type.

22 R. MEHRAZMAY ET AL.



fitACDM <- GDINA (dat = dat[,-1], Q = NewQ, model = “ACDM,” mono.constraint = TRUE)
fitRRUM <- GDINA (dat = dat[,-1], Q = NewQ, model = “RRUM,” mono.constraint = TRUE)
fitLLM <- GDINA (dat = dat[,-1], Q = NewQ, model = “LLM,” mono.constraint = TRUE)
## Relative Fit indices
anova (fit, fitDINA, fitDINO, fitACDM, fitRRUM, fitLLM,)
## Absolute Fit indices
summary (fit)
# Local independence
LD <- CDM::gdina(dat = dat[,-1], q.matrix = NewQ, group = dat[,1], rule = “GDINA”)
summary (LD)
summary (CDM::modelfit.cor.din (LD))
# DIF
wald <- dif (dat[,-1], Q = New Q, group = dat[,1], method = “wald,” p.adjust.methods = “bonferroni,” nstarts =100, 

mono.constraint = TRUE, SE.type = 3)
wald
# DIF using LR test
LR <- dif (dat[,-1], Q = New Q, group = dat[,1], method = “LR,” p.adjust.methods = “bonferroni,” nstarts = 100, 

mono.constraint = TRUE, SE.type = 3)
LR
# Improvement
## Fit indices for the “MG-Separate” model
### Create a block diagonal matrix of data and its corresponding Q-matrix, and import them
mgSep<- GDINA (dat = dat30[,-1], Q = QM30, group = dat30[,1], nstarts = 5)
## Fit indices for the “MG-Common” model
mgCom<- GDINA(dat = dat[,-1], Q = New Q, group = dat[,1], nstarts = 5)
## Fit indices for the “12 Common + 3 DIF” model
### Create a block diagonal matrix of data with three DIF items and 12 common items. Then, create its 

corresponding Q-matrix, and import them.
DIF<- GDINA (dat = datDIF[,-1], Q = QDIF, group = datDIF[,1])
# Compare relative model fit indices
anova (fit, mgSep, mgCom, DIF)
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