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Abstract. This paper proposes an optimized fuzzy reinforcement-learning algorithm to control ionic polymer metal com-
posites. The IPMC has been made by thin polymer membrane with metal electrodes plated chemically on the both faces.
Its application is widely and may be used as the artificial muscle due to the large bending strain at low voltages. Although
there are some controllers designed in the literature, most of them are model-based and for this reason are not used widely.
In this study, a free model controller based on fuzzy is considered. The fuzzy rule making is not straightforward and must
be taken by an expert, so an algorithm based on the reinforcement learning is employed to make the rule sets strongly. After
learning the fuzzy sets, firstly, the reinforcement learning parameters have been optimized using the Taguchi method and then
an optimized algorithm based on the genetic is started to tune up the configuration of membership functions for controller
designing. The effectiveness of the reported controller for the IPMC actuator is confirmed by simulation and experimental

results.
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1. Introduction

Ionic polymer metal composites (IPMCs) have
attracted attention of many researchers for their
potential applications in a large variety of engineer-
ing areas [1-12]. Shahinpoor et al. introduced an
electroactive polymer material which shows very
large deformations in response to the low input volt-
ages [13, 14]. They clarified several advantages of
IPMC actuators including large strokes with low
voltages, soft surface and low stiffness and good
performance in wet and underwater environments. In
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1994 Kanno et al. developed the first empirical mod-
els of the IPMC actuator by using the data from the
step response data of an IPMC strip [15]. They pro-
posed a fourth-degree transfer function by using this
data.

Movement manipulating of an IPMC based mate-
rials is one the most challenging issues which has
attracted many scholars. In 2004, Bhat et al. designed
afeedback controller for an IPMC actuator which was
implemented in a cantilever configuration to reduce
settling time, percentage overshoot and the steady
state error [16]. Five years later, Andres Hunt et al.
used an IPMC actuator to stabilize an inverted pen-
dulum for about 5 minutes [17]. In their controller
algorithm, a state-space model is developed for the
system, in which a linear quadratic regulator (LQR)
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controller is coupled with an observer. In addition,
one year later, D. Liu et al. designed a controller for
micro—manipulation by exploiting an IPMC actuated
rotary linkage [18]. In particular, a Proportional, Inte-
gral (PI) controller was initially developed to control
the tip displacement of the mechanism. Then for tun-
ing the performance of the PI controller an adaptive
nonlinear tuning method called Iterative Feedback
Tuning was developed. In 2012, Lee et al. unveiled a
novel controlling strategy for the target mobile robot
units by using an ionic polymer—metal composite
actuator and a microwave link [19].

Since smart materials like IPMC have been
employed for improving the function of an under-
water applications like biomimetic robots, a variety
of algorithms were suggested to develop the control
performance in the underwater conditions for various
reference motions [20, 21]. In recent years, several
studies have been performed to optimize motion con-
trol of an IPMC actuators with adaptive models [22,
23]. A control algorithm for manipulating an IPMC
with different shapes and dimensions was presented
by Lina Hao et al. In this study a semi-physical sliding
mode control is proposed for controlling both deflec-
tion and force of Multi—-IPMCs without changing any
parameter in the control system [24]. Nevertheless,
controlling this kind of smart material is not straight-
forward and usually deals with nonlinearities and
approximate physical models [5, 6, 8, 9]. In all of the
proposed methods mentioned in the literature, control
methods are using a linear or a nonlinear model for the
IPMC [6, 9]. Although modeling of these polymers
is not completely defined, they respond properly in
the linear regime [6]. Recently an accurate model was
generated to simulate the helix IPMC behavior [25].
While defining a comprehensive model is a bewil-
dering task, the uncertainties and lack of a reliable
controller for nonlinear dynamics are the most chal-
lenging problems. Due to these problems, we decided
to use a control method which is needless of having
a model. This method is based on the learning by
the reinforcements [26-32]. Reinforcement Learning
(RL) is a powerful tool for finding the optimum policy
for a process [31, 33-36]. RL uses the environment
feedback and make a signal named reinforcement.
This signal may be a reward or a punishment. Agent
is same as process and action is as controller sig-
nal. RL aims to find the best action for each state
which agent (process) wants to move. Q-learning is a
simple algorithm which is used in this concept. This
algorithm has a lookup table named Q table [37, 38].
It estimates the discounted future rewards for taking

actions from given states. When reinforcement learn-
ing integrated with the fuzzy logic, it can be more
reliable because of the continuous behavior of the
fuzzy [39]. RL helps fuzzy controller to find the rules
in the best way, and fuzzy sets aid the RL to have
a full domain state-action approximation. Therefore,
fuzzy-RL is used to set the rules of a process without
the existence of the model [39]. Previously, we built
a fuzzy-RL toolbox which is capable of taking into
account any model in MATLAB-SIMULINK [40].
After building the fuzzy rules using reinforcement
learning, the second round of the optimization will
be started. In this stage, the membership functions
will be tuned by an evolutionary procedure such as
the genetic algorithm.

2. Modeling

Although we established the power of fuzzy rein-
forcement learning for the free model, a model which
is developed in [6], as shown in Equation (1), is used
for the proposed simulation.

P(s) pas® + pis + po
V(s) s*+q3s3 +qas2+qis+qo

D

Where the uncertainties of the present parameters
(pi, qi) are shown in (2). These parameters describe
the Laplace transfer function of position (P(s)) to
voltage (V(s)) for an IPMC.

po € {0.0527, 0.1582] . pL=0.0774;
py e | 1.647 x 1074, 4.941 x 10—4}
g0 € | 73.5376, 661.8387}

|
|
g1 € {335.6968, 1.0263 x 103}
g € {39.0918, 95.8073]

{

g3 € | 16.6336 48.0608} @)

3. Fuzzy reinforcement learning strategy

Learning can be served as an apparatus for forming
the best arrangements in a procedure [33, 41]. Rein-
forcement learning interacts with its surroundings
and produces a reinforcement signal. This signal may
be considered as a reward or a punishment based on
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the evaluation of a state. In RL method, a controller
signal is often called action and all reinforcement-
learning agents (they are known as process or decision
maker) affect their environment by the means of the
actions. The main aim of RL is to discover what
actions for each state direct the system to best perfor-
mance [33]. In this paper, we used Q-learning which
is one of the famous methods of reinforcement learn-
ing [37]. In Q-learning, the agent provides a table of
expected discounted reward for each state-action pair
[42]. The agent will then learned from these rewards
what to do in order to maximize the reward for each
state and lead the system to the best controlling policy.

The algorithm and detailed procedure of the sug-
gested method is depicted in Fig. 1 and Table 1,
respectively. This algorithm has a lookup table named
Q table. It tries to estimate the discounted future
rewards for taking actions from given states.

In traditional reinforcement learning, states must
be discretized because the agent deals with its envi-
ronment in discrete time steps [33]. Because of the
state discretization, traditional RL requires a lot of
memory and cannot be applied when dealing with
continuous- state problems [40]. In this situation,
states should be approximated using function approx-
imators such as fuzzy inference systems (FIS) [32,
43] or gradient methods [39]. However solutions
which provided with these methods, suffers from

Initialize Q(s,a) arbitrarily
Repeat for each episode:
Initialize s
Repeat for each time step:
Choose a from s using policy derived
from Q(s,a) (e.g., epsilon-greedy)
Take action a, observer, s'
O(sg.ar )< O(ss . )+
o (7. )X[RHI +yxmaxQ (s 41,0 +1) 0 (s . )}

s€s'
Until s is terminal

Fig. 1. Q-learning Algorithm [33].

Table 1
Learning terms definition
Symbol Description
O (st, ar) Old value
o (81, ar) Learning rate
Rt Reward
y Discount factor

Maximum of future value
Learned value

max Q (¢41, dr+1)
Rip1 +y x max Q (141, ar+1)

slow convergence. The proposed method in this paper
is fuzzy Q-learning, where each state is the result of
arule set [43, 44].

In this case, all of the states are considered as
the inputs of fuzzy and action is defined as the out-
put. Figure 2 presents the Q-Learning principals with
their equations. In this method, the Takagi-Sugeno
fuzzy inference system (TS-FIS) is used and all of
the rules between the input membership functions
and the constant outputs, are generated by Q-learning
algorithm [44].

N

N
a() =Y (@) xa)/ Y e (x)

i=1 i=1

N N
Q@)=Y xqliil] | /3w

i=1 i=1
N

N
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i=1

AQ=r+yV(y)— 0, a)
N

Aq [i.iq — A Qi (1)) Y @i (x)
i=1

In the above equations, o and «; are learn-
ing rate and truth-value, respectively. Figures 3—4
show membership functions related to output/desired

Fuzzy system is launched by type of
Takagi-Sugeno. For j™ input, the number of

i™ membership functions is 72 (mf,.j )

Qtable (n ><m) is generated initially
where n is the all of relations between
mf,;/ and m is the discrete number of ac-
tions.

For each episode:

e  Observe the state (S)

e The truth value is defined

e The reward value is calculated
by reward function

e Exploring is running by ¢ -
greedy

e  An action is calculated by (3)

e The next state is observed by the
previous action (s')

e  Qtable is updated by (4-6)

e Let(s’) be the new state

Fig. 2. Fuzzy Q-learning Algorithm.
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Fig. 3. Membership functions for tip displacement (output and
desired).
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Fig. 4. Membership functions for tip velocity (output and desired).

displacement and output/desired velocity. The num-
ber of states and actions in this study are 625 and
1, respectively. The relationship between these func-
tions are established with the help of reinforcement
learning.

In this paper, the action is a control voltage in the
domain of -5 to 5 volts. In addition, Q-learning which
is one the robust methods of RL algorithmis exploited
and a policy is generated with the help of reward
function. The reward function describes the quality
of every performance that the system makes in each
transition. The proposed reward function can be seen
in (8).

100
R= [lpo—m |vo—vd|} | o

x [|P0_Pd| Ivo—vdlr 3)

Where po, pd and vo, vd are observed and desired
tip position and velocity, respectively. The inner
matrix in this reward function insists on the tip posi-

tion due to the greater weight of this factor (10>1).
Learning rate and discount factor are considered 0.1
and 0.9, respectively. The procedure for obtaining
the optimum value for learning rate, discount factor
and epsilon greedy parameter are discussed more in
Section 5.

4. Control process

Fuzzy system is a powerful method for interpreting
human’s language and dealing with decision-making
problems encompassing uncertainties [41, 42]. There
are two types of fuzzy interface systems includ-
ing Mamdani-type FIS and Takagi-Sugeno-type FIS.
Output membership functions in Sugeno’s fuzzy
interface method are either linear or constant and this
differentiates the Mamdani method from Sugeno. The
main drawback of fuzzy controllers is the arrange-
ment of basic rule base that would fulfill desire
control targets. One method that can be used to tackle
this issue and find an optimal solution is RL. Herein,
the efficient functional rules for Takagi-Sugeno-type
fuzzy are generated and tuned through Q-learning.
In particular, we use Takagi-Sugeno FIS with four
inputs and one output which is the voltage of IPMC.
The rules between these parameters are constructed
through trial-error interactions with the Q-learning
algorithm. Fuzzy control system is organized as
shown in Fig. 5.

The controller and the implementation of the pro-
posed model in Simulink is demonstrated in Fig. 6.

Using fuzzy-RL, a powerful policy is extracted as
shown in Fig. 7. The mentioned policy depicts the
relationship of the voltage (-5 to 5 volt) versus output
and desired tip displacement, which is the goal of the
control problem.

OO

Output Tip Displacement

IPMC
OO

Output Tip Velocity

XX

Desired Tip Displacement

(sugeno) f(u)

\

625 rules

Control Voltage

Desired Tip Velocity

Fig. 5. Fuzzy set for IPMC control system.
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Fig. 6. SIMULINK environment for implementing the model and controller.
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Fig. 8. A basic controller during the first of the learning process
(Tip displacement in [mm] versus the time [sec]).

Figure 8 shows the control of the desired sig-
nal using fuzzy reinforcement learning in the earlier
stage. As itis clear in this graph, the controller cannot
find the desired signal well.

Although the fuzzy rules can be made by rein-
forcement learning, better result will be achieved
by an optimizing procedure. First, maximizing the
rewards can be done by finding optimum Q-learning
parameters like learning rate, discount value and the
main parameter of exploration algorithm. Second,
changing the structure of fuzzy membership func-
tions using an evolutionary procedure like genetic
algorithm [45]. The layout of this procedure is shown
in Fig. 9.

s |
Fuzzy
Reinforcement
Learning
AN A
ra ™

‘ Optimized
Reinforcement
\ learning

* Making fuzzy rules by
reinforcement learning

* Optimizing RL procedure by
Taguchi method

N

>

A A

Optimized
Fuzzy

* Optimizing fuzzy membership
functions by genetic algorithm

Fig. 9. Procedure diagram of proposed optimized fuzzy reinforce-
ment learning algorithm.
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5. Optimization of fuzzy reinforcement
learning

In this section an optimization procedure is consid-
ered to improve fuzzy reinforcement learning result.
After generating rules by reinforcement learning,
three involving parameters in Q-learning are opti-
mized using the Taguchi method. Then fuzzy-RL will
continue with these new parameters value to reach to
an acceptable intelligence. This status occurs when
Q-table converges to a fixed pattern in high itera-
tion process. After that, learning will be stopped and
fuzzy membership functions will be tuned up using
the genetic algorithm.

5.1. RL parameter optimization

In order to identify optimum solution for Q-
learning procedure, three involved parameters,
epsilon parameter, learning rate and discount fac-
tor are considered to get the maximum reward in a
period time of learning. In addition, a classical rein-
forcement learning which was considered in a new
environment in [42] is employed. These three param-
eters can change in an interval between 0 and 1. It
is time consuming to investigate most of the possible
values and obtain the best parameters. In this case, a
design of experiment based on the Taguchi method is
employed. In this method a clear insight on all possi-
ble values could be gained by the minimum number
of experiments in an orthogonal table.

The Taguchi method is an industrial optimization
method to obtain the optimum levels for some involv-
ing parameters [46—49]. This technique decreases the
number of experiments due to the orthogonal array,
therefore it can be suitable for the studies which are

eDetermining a function

eldentifying factors and their levels

eSelecting an orthogonal array

ePerforming the experiments

eCalculating S/N ratio

eAnalyzing

eConfirming experiment

—/J _JL _J L _J L _JL _J

<o Lol - 4

Fig. 10. Seven steps of designing experiments based on Taguchi
method.

not able to cover all of the possible experiments [50,
51]. This method has seven steps which are demon-
strated in Fig. 10.

Three parameters proposed in this study and their
levels are given in Table 2.

Table 2
Experiments parameters and their levels

Level Epsilon Learning Discount

parameter A rate B factor C
1 0.01 0.01 0.01
2 0.05 0.05 0.05
3 0.1 0.1 0.1
4 0.5 0.5 0.5
5 0.9 0.9 0.9

Table 3
Orthogonal table of experiments, parameters levels and their
associated reward

No. A B C Reward
1 1 1 1 1.427844
2 1 2 2 2.138186
3 1 3 3 1.951669
4 1 4 4 2.799058
5 1 5 5 3.894814
6 2 1 2 2.545467
7 2 2 3 2.155887
8 2 3 4 2.53877
9 2 4 5 3.027735
10 2 5 1 1.809457
11 3 1 3 1.676096
12 3 2 4 2.492116
13 3 3 5 2.839745
14 3 4 1 1.649241
15 3 5 2 1.66965
16 4 1 4 1.679834
17 4 2 5 1.496886
18 4 3 1 1.445647
19 4 4 2 1.499083
20 4 5 3 1.553908
21 5 1 5 1.616732
22 5 2 1 1.588492
23 5 3 2 1.597852
24 5 4 3 1.61183
25 5 5 4 1.621279
Table 4
Signal to noise ratio values

Level A B C

1 7.251 4.875 3.962
2 7.531 5.746 5.351
3 6.056 6.048 4.988
4 3.711 6.114 6.733
5 4.121 5.888 7.635
Delta 3.820 1.240 3.673
Rank 1 3 2
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Table 5
Signal to noise ratio values
DF  SeqSS  AdjSS  AdjMs F P

A 1 2.8181  2.8181  2.8181 16.48  0.001
B 1 0.1701  0.1701  0.1701 099 0330
C 1 2.8677  2.8677  2.8677 16.77  0.001
Error 21 35914 35914  0.1710
Total 24 9.4473

An orthogonal table with 25 rows is given in
Table 3. All of the three parameters are interacting
with each other by their levels described in Table 2.
The last column in Table 3 is the reward value
obtained for each experiment.

The “Larger Better” criterion was used in this
investigation. Using LB, the description of the loss
function (L) for RMS output, y; of n repeated exper-
iments and The S/N ratio »;; can be expressed as (9)
and (10), respectively.

. 12”: 1 @
SB = — )
ni4 i

nij = —log(L;j) )

Where two indices i and j represent ith performance
characteristic and jth experiment, respectively. The
S/N ratio for each experiment of L5 are shown in
Table 4 and Fig. 11.

As Fig. 11 shows the optimum values for epsilon
greedy parameter, learning rate and discount factor
are 0.05, 0.5 and 0.9, respectively. For further clar-

ification, analysis of variance is used. As Error!
Reference source not found. shows the p-value for
learning rate parameter is not as low as the other
parameters. As a result, it could be concluded that
learning rate parameter is not as effective during the
simulation as other parameters.

To identify the interaction of these parameters,
a full quadratic model is employed. In this model,
R?=88.76%, R? (pre) = 58.32%, R? (Adj) = 82.02%.
Two informative graphs are shown in Fig. 12 using
response surface method. These results confirm how
the low value of epsilon parameter, the medium level
of learning rate and the highest value of discount rate
can result in the maximum level of reward.

5.2. Fuzzy membership function optimization

Genetic algorithm (GA) are family members of
computational models that are inspired from evo-
lutionary events, such as mutation and crossover.
The performance of GA has been evaluated in seek-
ing an efficient solution in a large search space,
and the consequence is that GA could be integrated
effectively with intensive search procedure, such as
optimal fuzzy rules searching [43]. These solutions
are selected according to a fitness function; then new
members are generated over the administration of
crossover operator. This operation is continued rou-
tinely until the cost function reaches to its minimum
value. Figure 13 illustrates a framework for GA pro-
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Fig. 11. Signal to noise ratio graph.



132 M. Goharimanesh et al. / An intelligent controller for ionic polymer metal composites

HEER
~N

v I Ax

wwnN

Discount factor

01 02 03 04 05 06 0.7 08 09
Epsilon parameter

0.9

0.8

v I Ax
W W N

EER
~N

0.7

0.6

0.5

0.4

Discount factor

0.3
0.2

0.1

01 02 03 04 05 0.6 07 08 09
Learning rate

Fig. 12. Results of response surface method.

[ Start GA ]

—>| Measure fitness |

| Initialization |

y

| Selection |

v

| Mutation |

v

| Convergence |

Test for
convergence

[ Finish GA ]

Fig. 13. Biological genetic algorithm process flow.

cess; also, the assigned variables to implement the
method in MATLAB are available in Table 6.

6. Simulation and results

Exploitng fuzzy Q-learning reduces the search
area for the GA and results in a faster running time
for optimization. In the proposed method, GA has

Table 6

Properties of the conducted genetic algorithm
Option Value
Crossover function Heuristic
Crossover fraction 0.8
Elite number 2
Initial penalty 10
Mutation function Adaptive feasible
Penalty factor 100
Population initial range [-1,1]
Population size 100
Population type Bit string

Selection function Stochastic uniform

been employed to investigate optimal relationships
between inputs and output in membership functions.
The final membership functions by applying this
searching technique are shown in Fig. 14 which illus-
trates four membership functions before and after the
optimizing. For the fourth input, desired velocity,
we don’t see any difference in changing member-
ship functions. It is because the desired curve is
constant in the period of time and so the first dif-
ferentiation of the position is zero. This causes to see
no difference between the memberships functions of
the desired velocity even the genetic algorithm was
implemented.

After the fine-tuning, we can see a more reliable
response of the mentioned controller.

As Fig. 15 shows, the Fuzzy-RL optimized by
the genetic algorithm could follow the desired sig-
nal. Moreover, to illustrate the applicability of the
proposed controller we have considered a variable
desired signal. To show the error of the output and
the desired signal, two criteria are used. The Root
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Fuzzy reinforcement learning
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ig. 14. The past and tuned membership functions optimized by genetic algorithm after being expert by reinforcement learning.
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position. Fig. 16. Policy achieved for Fuzzy-RL and optimized Fuzzy-RL.
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Mean Square Error (RMSE) is usually used to mea-
sure the difference between values predicted by a
model and the values actually observed from the
environment that is being modelled. These individ-
ual differences are also called residuals, and the
RMSE serves to aggregate them into a single mea-
sure of predictive power. The RMSE in this study is
described as:

—_— (6)

n

n
> (po — pa)?
RMSE = !

Where P, is observed or output values and Py is
desired values at time/place i.

The integral of time-weighted absolute error
(ITAE) integrates the absolute error multiplied by
the time over time. This weighs errors which exist
after a long time much more heavily than those at
the start of the response. This criterion is described
as (12).

20
1TAE:/|e|tdt @)
0

The policy of fuzzy reinforcement learning and
optimized reinforcement learning are compared with
all of the inputs in Fig. 16. This shows a dramatic
change of variable behavior between the desired. tip
displacement versus the tip displacement and the
desired tip velocity versus the velocity which are
compared in these policies.

7. Conclusion

In this paper, we established an intelligent method
to control the smart materials like IPMC. As men-
tioned, the IPMC models are not thoroughly exploited
and for this reason, there is not a comprehensive
controller, which is reliable for the uncertainties and
many disturbing conditions. Fuzzy controller can be
employed in these conditions but the main problem
in this method is finding the most efficient IF-THEN
rules. As discussed, reinforcement learning can aid
the fuzzy to set the rules in the suboptimal policy. In
this research, we found that the fine-tuning for the
membership functions could strengthen the perfor-
mance of the proposed controller in which it can let
the system follow the desired signal.
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