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Blattellidae) due to sublethal doses of imidacloprid, indoxacarb, and 
lambda-cyhalothrin

Ahmed Rajaba , Gholamhossein Moravvejb  and Ahmad Asoodehc

aPlant Protection Department, Ferdowsi University of Mashhad, Mashhad, Iran; bFaculty of Agriculture, Plant Protection 
Department, Ferdowsi University of Mashhad, Mashhad, Iran; cDepratment of Chemistry, Ferdowsi University of Mashhad, 
Mashhad, Iran

ABSTRACT
The German cockroach is a global urban pest that causes serious public health problems. 
The induced levels of insecticide tolerance in the first-generation strains of German cockroach 
from previous topical treatment of laboratory colonies with LD10 or LD25 doses of imidacloprid, 
indoxacarb, or lambda-cyhalothrin four times with seven-day interval between each were 
investigated. Our results showed that the resistant ratios (RR50) at LD50, cytochrome P450 
content, and glutathione S-transferase (GSTs) activity in adult cockroaches increased in the 
first generation when compared to the parental (field) and susceptible strains (SS). Therefore, 
cockroaches treated with insecticidal sublethal dose are likely to have more insecticide 
resistance in comparison to untreated ones.

Introduction

The German cockroach, Blattella germanica (L.), is 
a common household pest living in close association 
with humans around the world (Tang et al. 2019). 
Cockroach is a serious risk to public health as they 
are able to 1) mechanically or physically transmit 
many human pathogenic microorganisms and para-
sites, such as bacteria (Jalil et al. 2012), medically 
important fungi (Haghi et al. 2014), and parasitic 
worms (Salehzadeh et al. 2007), and 2) cause allergic 
reactions and asthma among people (Mueller 
et al. 2015).

Generally, pyrethroid, neonicotinoid, and oxadi-
azine insecticides are effective and have lower mam-
malian toxicity compared with that of other groups 
of insecticides (Dalefield 2017), hence widely used. 
Frequent application of insecticides has resulted in 
resistance to many insecticide groups in the German 
cockroach (Chang et al. 2010). Although frequently 
intended to rapidly eliminate a targeted pest species, 
over time, insecticide molecules degrade to sublethal 
levels in the outside environment, thereby exhibiting 
less lethal toxicity to insects and other organisms 
(Kreutzweiser et al. 2008; Edwards 2013). 
Physiological and behavioral changes resulting from 
this issue may affect pest management (Wang et al. 
2004). Prolonged exposure to sublethal doses of 

pesticides may lead to the development of pesticide 
resistance (Hardin et al. 1995; Gressel 2011; Guedes 
et al. 2016, 2017).

Resistance evolution by pests, including the 
German cockroach, is the current challenge in insect 
control and has prompted the use of alternative 
management tactics to reduce the economic losses. 
The first case of insecticide resistance in German 
cockroach was resistance to organochlorines (DDT) 
in Texas, the United States (Heal et al. 1953), fol-
lowed by organophosphates (Grayson 1965), carba-
mates (McDonald and Cochran 1968), pyrethroids 
(Lee et al. 1996), neonicotinoids (Wen et al. 2009), 
and oxadiazines (Ko et al. 2016). Many new records 
have been reported at several locations worldwide, 
including Iran. Insecticide resistance in the German 
cockroach has been recorded in some Iranian cities 
such as Sari (Enayati and Motevali 2007), Kermanshah 
(Limoee et al. 2011), and Shiraz (Moemenbellah-Fard 
et al. 2013).

Several mechanisms have been studied in relation 
to insecticide resistance in German cockroaches. 
Valles et al. (2000) found reduced insecticide pene-
tration in resistant strains. The changes in amino 
acids responsible for insecticide binding at its site 
of action caused the insecticide to be less or even 
ineffective (Dong 1997). Moreover, one of the most 
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Table 1. R ange of applied concentrations for each insecticide (indoxacarb, imidacloprid, and lambda-cyhalothrin) to the 
field and susceptible strains of Blatella germanica using topical application method.

Insecticides AIa
Susceptible strain 

Dose / ppm
Field strain 

Dose / ppm

After treated with LD doses / ppm

LD10 LD25

Imidacloprid 
(97.00%)

30 50 120 140
70 106 258 297

160 224 549 627
368 473 1172 1325
850 1000 2500 2800

Indoxacarb 
(96.2%)

10 15 35 50
24 35 78 106
73 82 173 224

136 192 383 473
325 450 850 1000

lambda-cyhalothrin 
(97.31%)

15 20 30 40
33 45 67 87
73 100 158 190

160 224 352 413
350 500 800 900

aActive Ingredient

important resistance mechanisms in insect pests is 
the increase in detoxifying enzymes, such as cyto-
chrome P450s, esterases, oxidases, and glutathione 
S-transferases (GST) (Enayati and Motevali 2007 
Limoee et al. 2011; Kasai et al. 2014, Lin et al. 2014).

The objectives of the present study were (1) to 
determine the susceptibility of the first generation 
of German cockroaches to indoxacarb, imidacloprid, 
and lambda-cyhalothrin, where the parental strains 
were topically treated with LD10 or LD25 of indox-
acarb, imidacloprid, and lambda-cyhalothrin and (2) 
to determine the total content and activity of the 
detoxifying enzymes, P450s and GSTs in the 
first-generation colonies.

Materials and methods

Cockroaches and rearing conditions

Two German cockroach strains were tested in this 
study: (1) using a vacuum apparatus similar to the 
one designed by Wright (1966), the field strain was 
originally collected from infested apartments and 
houses in the central part of Mashhad, Iran, in the 
summer of 2017. These places had frequently been 
treated with pyrethroids insecticides (local informa-
tion); (2) the susceptible strain (SS) was freely pro-
vided by the School of Public Health, Tehran 
University of Medical Sciences and has been main-
tained in the laboratory since 1975 without insecticide 
exposure. The B. germanica colonies were established 
in plastic cages (30 × 30 × 30 cm) and supplied with 
food and water ad libitum as described by Piquett 
and Fales (1952) at the Toxicology Lab, Plant 
Protection Department, Ferdowsi University of 
Mashhad, Iran. The rearing conditions consisted of 
27 ± 2 °C, 70 ± 5% relative humidity (RH), and 12:12 
(L:D) photoperiod. Adults from the fourth and fifth 
generations were employed in the bioassays.

Insecticides and chemicals

Technical grade imidacloprid (97.00%), indoxacarb 
(96.2%), and lambda-cyhalothrin (97.31%) were a 
gift from Kavosh Kimia Kerman Co., Ltd (Kerman, 
Iran). Carbon monoxide gas (CO, 99.95% purity) 
was purchased from Faran Sanat Co. (Tehran, Iran). 
Acetone, ethanol, isopropanol, Tris HC1 buffer, 
phosphate-buffered saline (PBS), glycerol, dithioth-
reitol (DTT), safranin, ethylenediaminetetraacetic 
acid (EDTA), 1-chloro-2, 4-dinitrobenzene (CDNB), 
glutathione (GSH), phenylmethylsulfonyl fluoride 
(PMSF), sodium dithionite (Na2S2O4), and other 
chemicals, which had high analytical grades (> 95% 
quality), were obtained from Kian Chemistry Co. 
(Mashhad, Iran).

Bioassay

LD Determination

Toxicity assays to specify the susceptibility of field 
and susceptible strains (600 males and 600 females 
each insecticide) to indoxacarb, imidacloprid, and 
lambda-cyhalothrin were performed with a range 
of concentrations for each insecticide (Table 1). 
Technical grade formulations of each insecticide 
were serially diluted in acetone. Selected cock-
roaches were anesthetized using CO2 (Sherman 
and Hayakawa 1961). Using a repeating micropi-
pette (Hamilton Company, Reno, NV), one micro-
liter of each insecticide dose (or 1 µl of acetone 
alone as control) was topically applied to the ven-
tral portion of each insect between the metacoxae 
according to the method described by Ko et al. 
(2016). A total of 45 cockroaches were topically 
treated with each dose. Three replications per dose 
(15 insects in each replication) were maintained 
in plastic containers (21 × 12 × 7 cm) that were 
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properly sealed with fine nylon mesh fabric cloth 
at the top for ventilation and provided with food 
and water ad libitum. Following 72 h, mortality 
was checked and corrected using Abbott’s formula 
(Abbot); afterwards, the data were pooled and 
analysed to specify LD indices, including LD10 and 
LD25 for each insecticide using a standard probit 
analysis (Le Ora 1987).

Topical application of LD10 and LD25 on  
B. germainca adults

Once LD values were determined, virgin males and 
females (3–6 days old) of the field strain were anes-
thetised using CO2; they were then separately 
treated through delivering 1 µl of LD10 or LD25 of 
lambda-cyhalothrin, imidacloprid, indoxacarb, or 
1 µl acetone in the control group using topical appli-
cation method. In the same group, four applications 
were employed with a seven-day interval between 
each. Six replications [three replications for males 
and three for females (20 insects in each replica-
tion)] with 120 individuals (60 males and 60 
females) per dose were used. Cockroaches of each 
replication were placed into a small plastic container 
(21 × 12 × 7 cm).

For each insecticide, two colonies were gener-
ated from the first generation based on the LD10 
or LD25 dose: (1) for imidacloprid, QF1M and 
ZF1M, (2) for indoxacarb, QF1N and ZF1N, and 
(3) for lambda-cyhalothrin, QF1L and ZF1L, 
which were used in subsequent bioassay 
experiments.

Resistance ratio assays

To assess the resistance ratio (RR) of QF1M, ZF1M, 
QF1N, ZF1N, QF1L, ZF1L, and field strains, 20 
individuals per replication, three replications per 
dose, and five doses each insecticide yielding > 0 
and < 100 mortality were utilized as previously 
described in topical bioassays. The treated cock-
roaches were placed into plastic containers as 
described above. Food and water were provided ad 
libitum and maintained under optimum rearing con-
ditions. After 72 h, mortality was recorded, and the 
cockroaches that did not move were considered as 
dead. Data on mortality from the three replicates 
were corrected using Abbott’s formula and then 
pooled and analysed using standard probit analysis. 
If the LD50 values of non-overlap within the 95% 
confidence interval (CI) limits of the lethal dose 
ratio did not contain one, they were considered as 
significantly different (Robertson et al. 2017).

The resistance ratio (RR) of cockroaches against 
each insecticide was computed using the formula:

	
RR

LD RS
LD SS

=
50
50

In which RS is the resistant strain (F1 from field 
strain), and SS is the susceptible strain (SS).

Cytochrome P450 preparation

Ten females per replication and three replications 
per dose (LD10 and LD25) were used. The cock-
roaches were chilled at −20 °C for 2 to 3 min and 
immediately washed out once with ethanol 70%; 
next, they were washed three times with dH2O and 
dissected out in ice-cold buffer comprising 1.15% 
KCl by cutting and removing the head, thorax, legs, 
and wings.

PMSF (1 mM) was added to the remaining abdo-
mens and then homogenized for 30 sec using a 
Teflon-pestle homogenizer and a small glass mortar 
with 5 ml of homogenization buffer (100 mM 
TrisHC1 pH 7.5, 1.15% KC1, 20% glycerol, 1 mM 
EDTA, and 0.2 mM DDT). The suspension was 
filtered using three layers of cheesecloth and cen-
trifuged at 10,000 g for 25 min at 4 °C. The super-
natant was filtered through two layers of cheesecloth 
and recentrifuged at 105,000 g for 1 h at 4 °C using 
a Beckman optima L-90k ultracentrifuge 
(BECKMAN, USA). The sediment was suspended 
in 1 ml of resuspension buffer (0.1 M PBS, pH 7.4, 
containing 0.1 mM DTT, 1 mM PMSF, 20% (v/v) 
glycerol, and 1 mM EDTA) (Scott and Lee 1993, 
1993b). The Bradford protein assay (Bradford 1976) 
was utilized to determine the protein concentration 
in the final suspension of each replication using 
the bovine serum as a reference and diluted it to 
2 mg protein.ml−1. The resulting suspensions were 
stored at −80 °C until use.

Cytochrome P450 contents were estimated via 
measur ing the di f ference spectrum of 
dithionite-reduced carbon monoxide (CO) according 
to the method proposed by Omura and Sato (1964).

The P450 source was put into both reference and 
sample cuvettes and the baseline was recorded using 
a spectrophotometer instrument ultraviolet/
visible-near infrared (UV/Vis-NIR from Researchers 
of Nanotechnology Co. Iran). In the fume hood, the 
sample content was saturated with CO by delivering 
approximately 30 to 60 bubbles in 30 sec. To enhance 
the reduction of dithionite, 1 mg of sodium dithi-
onite was added to the sample and the reference 
cells. Two cuvettes (reference and sample) were 
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covered with parafilm, and the cuvette content was 
mixed to dissolve sodium dithionite by inverting 
and re-inverting for 10 to 15 times (without shaking 
vigorously). To decrease the reduction time (from 
20 min to ∼3 to 5 min), 1.5 µM safranin was added 
to both the reference and sample cuvettes (Sandhu 
et al. 1994). The cuvettes were returned to the same 
place in the spectrophotometer device, and the wave-
lengths between 400 and 500 nm were recorded sev-
eral times over a few minutes (5–10 min). The 
resulting spectra were printed out from the spectro-
photometer instrument. Wave absorption was set to 
420, 450, and 490, and P450 concentration was then 
calculated by the formulas shown below (Guengerich 
et al. 2009):

	

( )
.

� �A A
nmol of P per ml450 490

4500 091
�

�

when there was a difference between the baseline 
spectrum in the absorbance at 450 and 490 nm, we 
used the correction equation as below:

A A A A
observed450 490 450 490

4500 091

�� � � �� ��� �� �baseline nmol P
)

.
oof per ml

when the P450 had denatured forms, the following 
equation had been used to estimate cytochrome 
P450 content:

nmol of P per ml

the

450 0 041

420 490

from first formula

A A
� �� �� �

� �� �
.

� ooretical

�

�

A A A A

A A
obnserved theoretical

b

420 490 450 490

420 490

�� � � �� �
� �� � aaseline

�

�
�
�

�

�
�
�
�

0 110
450

.
nmol of P per ml

In which ΔA450= absorbance at 450 nm, ΔA490= 
absorbance at 490 nm, 0.091= extinction coefficient 
at 450 nm.

All spectrophotometric procedures were con-
ducted at 20 to 25 °C.

The differences in P450 concentrations among F1 
(QF1M, ZF1M, QF1N, ZF1N, QF1L, and ZF1L), 
field, and SS strains were estimated by one-way anal-
ysis of variance (ANOVA); furthermore, the means 
of treatments were compared by running a post-hoc 
Tukey test at 95% CI. The significance level was 
P ≤ 0.05. The Minitab™ 17 computer software was 

used to analyse all listed data (MINITAB Inc., State 
College, PA, USA).

GST preparation

The same method described above was employed to 
prepare the protein samples for GST activity. Ten 
females of the F1 strain per replication were homog-
enized using a small glass mortar and a Teflon-pestle 
homogenizer for 30 sec in 5 ml of ice-cold 0.1 M 
sodium phosphate buffer with a pH of 7.5. The 
resulting suspension was filtered through three layers 
of cheesecloth and centrifuged at 10,000 g for 15 min 
at 4 °C. The supernatant solution was re-filtered 
through glass wool and recentrifuged at 105,000 g 
at 4 °C for 1 h using the Beckman optima L-90k 
ultracentrifuge (BECKMAN, USA) (Qin et al. 2013). 
The resulting supernatant was considered as the 
source of the GSTs. Following dilution, the final 
protein concentration was 2 mg.ml−1 using Bradford 
protein assay and bovine serum albumin (BSA) as 
a standard. The sample was stored at −80 °C 
until use.

The activity of the GST enzyme toward 
1-chloro-2,4-dinitrobenzene (CDNB) was examined 
in 96-well polystyrene plates. Therefore, 0.25% 
Polysorbate-20 was used to wash the plate wells 
prior to use (Habig et al. 1974) with 100 µl of the 
mixture A, which contained 10 µl of the final super-
natant, 8 mM GSH, and 100 mM PBS; 15% glycerol 
at pH 8.0 was loaded into the wells and incubated 
at room temperature for 3 min. Furthermore, 200 µl 
of the mixture B (100 mM PBS, 1 mM CDNB, 15% 
glycerol) was added to the mixture A and shaken 
for 5 sec. The optical density (OD) was measured at 
340 nm every 1 min for 5 min using a microplate 
reader, stat fax 2100 (Awareness Technology, USA). 
The activity of GST was calculated according to the 
following equation:

GST Activity
ODA min ReactionVolume

ml cm
�

�
�

�

� �

� 340
0 0096 100

1

1 1. � 00 0 2893ml cm V
D

� �
�

.

In which V= the sample volume added to well (ml), 
0.0096 = the extinction coefficient for CDNB con-
jugate at 340 nm, and D = the dilution factor of the 
original sample.

Activities of GST were expressed as µM/min/ml 
protein. The data of GST activities were subjected 
to one-way ANOVA analysis, and the means of 
enzyme activity were compared by the post-hoc 
Tukey test at 95% CI.
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Results

Dose toxicity assays and topical application of LD10 
and LD25 on field strain were analysed. The LD50s 
ranged from 227.17 to 300.86 ppm for imidacloprid, 
from 92.96 to 131.92 ppm for indoxacarb, and from 
112.36 to 159.40 ppm for lambda-cyhalothrin (Table 2). 
RRs between field and SS strain for these insecticides 
were 1.35, 1.44, and 1.410, respectively (Table 2).

Resistance bioassay

The analysed data demonstrated that compared to 
the susceptible strain (SS), the first-generation 
groups of the collected field strain, previously treated 
with sublethal doses of imidacloprid, indoxacarb, or 
lambda-cyhalothrin (i.e., QF1M, ZF1M, QF1N, 
ZF1N, QF1L, and ZF1L), were resistant to these 
insecticides. Therefore, the insecticide resistance in 
these strains was low-intensity (< 5-fold) to imida-
cloprid, indoxacarb, and lambda-cyhalothrin depend-
ing on LD50 values with 95% CI (3.290-, 3.766-, 

2.724-, 3.453-, 2.056-, and 2.484-fold, respectively). 
Additionally, the RR values of field strain towards 
these insecticides were 1.40-fold compared to the 
susceptible strain (SS). However, the strains treated 
with LD25 of these insecticides exhibited resistant 
levels higher than those treated with LD10 compared 
to the field or SS strain (Table 2).

Cytochrome P450s and glutathione 
S-transferees assays

Statistical differences were observed in the total 
P450 content (F = 44.55; df = 7; P < 0.001) and in 
the GST activity (F = 23.47; df = 7; P < 0.001) 
among the strains (Tables 2 and 3). All strains 
exposed to the LD25 dose (regardless of the insec-
ticide) showed a higher total P450 content when 
compared to field or SS strains (Table 3). Two of 
the three strains exposed to LD10 had a higher 
total P450 content as compared to the field strains 
(Table 3).

Table 2. T oxicity of three insecticides to eight strains of Blatella germanica using topical application method.

Insecticide Na
Cockroach 

strain Slope ± SEb X2(df )

Lethal dose (ppm)c

RR50dLD50 (95%CI)

Imidacloprid 300 QF1M 2.40 ± 0.23 2.047(3) 631.84 (534.37-749.99) 3.290
300 ZF1M 2.56 ± 0.24 2.203(3) 723.24 (616.26-852.39) 3.766
300 field 2.54 ± 0.20 2.635(3) 261.01 (227.17-300.86) 1.359
300 SS 2.09 ± 0.20 2.306(3) 192.02 (158.93-233.40) 1.000

Indoxacarb 300 QF1N 2.08 ± 0.21 2.238(3) 209.49 (173.75-254.36) 2.724
300 ZF1N 2.54 ± 0.31 2.754(3) 265.60 (214.59-319.80) 3.453
300 field 2.30 ± 0.22 0.772(3) 111.23 (92.96-131.92) 1.446
300 SS 2.15 ± 2.14 2.636(3) 76.90 (63.61-93.20) 1.000

Lambda-cyhalothrin 300 QF1L 2.08 ± 0.20 1.857(3) 197.13 (163.13-240.11) 2.056
300 ZF1L 2.52 ± 0.33 1.351(3) 238.19 (189.48-288.68) 2.484
300 field 2.50 ± 0.27 1.942(3) 135.20 (112.36-159.40) 1.410
300 SS 2.43 ± 0.23 2.056(3) 95.88 (81.03-114.20) 1.000

anumber of insects per insecticide test (60 insect × 5 concentrations).
bslope is parameter model.
cLethal dose (ppm AI insecticide/g insect) estimated by (mean ± SEM) of insect body per each group QF1M = 0.0482 ± 0.0018, ZF1M = 0.0434 ± 0.0010, 

QF1N = 0.0464 ± 0.0019, ZF1N = 0.0416 ± 0.0010, QF1L = 0.0402 ± 0.0014, ZF1L = 0.043 ± 0.0015, and field = 0.0517 ± 0.000.0010 and SS = 
0.0355 ± 0.0011.

dRR resistant ratio at LD50 = LD50 tested strain ÷ LD50 susceptible strain and their 95% confidant interval.

Table 3.  Cytochrome P450s content enzyme in first-generation treated cockroaches with insecticidal sublethal dose i.e., (LD10 
or LD25), as well as, in collected cockroaches (NG), and susceptible strain (SS).

Insecticide
Cockroach 

straina

Mean ± St. Dev.

P450 nmol/mlb Theoreticalc Observedd Real P450e Final P450 nmol/mlf

Imidacloprid QF1M 1.758 ± 0.000 −0.07209 ± 0.002 −0.05 0.2008 ± 0.000 1.205 ± 0.000 BC
ZF1M 1.6850 ± 0.0634 −0.06908 ± 0.002 −0.05 0.2644 ± 0.023 1.5864 ± 0.1419  A

Indoxacarb QF1N 1.5751 ± 0.0634 −0.06608 ± 0.002 −0.05 0.2234 ± 0.023 1.3407 ± 0.1419  AB
ZF1N 1.9414 ± 0.0634 −0.0796 ± 0.002 −0.05 0.2691 ± 0.023 1.6144 ± 0.1419  A

Lambda-cyhalothrin QF1L 1.7949 ± 0.0634 −0.07359 ± 0 −0.05 0.2145 ± 0.0236 1.2867 ± 0.1419  AB
ZF1L 1.9414 ± 0.0634 −0.0796 ± 0.002 −0.05 0.2691 ± 0.0236 1.6144 ± 0.1419  A

Without insecticide field 1.3919 ± 0.0567 −0.05632 ± 0.002 −0.04 0.15518 ± 0.021 0.9311 ± 0.1269  C
Without insecticide SS 0.6960 ± 0.0567 −0.02778 ± 0.001 −0.02 0.07759 ± 0.021 0.4655 ± 0.1269  D
aInsect strains that were treated with sublethal doses(i.e,LD10 or LD25) of Imidacloprid (QF1M and ZF1M), Indoxacarb (QF1N and ZF1N), and 

Lambda-cyhalothrin (QF1L and ZF1L) respectively, as well as, collected strain (NG) and susceptible strain (SS).
bP450 = (ΔA450 — ΔA490) ⁄ 0.091= nmol of P450 per ml protein.
cTheoretical (A420–A490)= P450 x −0.041.
dObserved = A420–A490.
eReal P450 = (Observed – Theoretical – baseline) / 0.110 = nmol of P450 per ml protein.
FFinal P450 = Real P450 x Dilution = nmol of P450 per ml protein.
Means followed by the same letters within the same column are not significantly different.
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All strains exhibited a higher GST activity than 
the SS strain (Table 4). The strains exposed to LD25 
showed a higher GST activity in comparison to the 
field strain (Table 4).

Discussion

One of the limitations associated with managing 
insect pest, such as the German cockroach, is the 
development of insecticide resistance, which is con-
sidered as a serious challenge. The development of 
insecticide-resistant phenomena is a result of several 
physiological modifications and biochemical changes 
in an insect’s in vivo system. Therefore, the mech-
anism of insecticide resistance in the German cock-
roach typically involves the modification of the 
target site and/or resistant metabolism (metabolic 
detoxification) (Pridgeon et al. 2002; Chai and Lee 
2010). Generally, the physiological changes are genet-
ically transferred from one generation to the next. 
However, a molecular test on insecticide resistance 
showed that the responsible gene of insecticide resis-
tance more frequently appeared in the resistant phe-
notype (Ffrench-Constant 2013).

Field strain cockroaches were collected from 
infested houses and apartments in the central part 
of Mashhad, Iran; these insects had been frequently 
treated with pyrethroids insecticides (local informa-
tion) and then reared in the Toxicology Lab, Plant 
Protection Department, Ferdowsi University of 
Mashhad, Iran (see Materials and Methods). Many 
of the previous studies showed that topical appli-
cation was more suitable for susceptibility bioassay 
studies appropriate (Choo et al. 2000; Ladonni 
2001); therefore, the topical application method was 
used in the present study.

Based on our results, sublethal doses of imida-
cloprid, indoxacarb, and lambda-cyhalothrin induced 
multiple biochemical changes in adults of B. ger-
manica when topically treated several times. We also 

focused on the induction of insecticide tolerance in 
an insect population following multiple exposures 
to sublethal doses of insecticide. Additionally, the 
same mechanism can evolve to other insecticides 
classes with the same mode of action (Zhu et al. 
2016). Therefore, when the resistant bioassays were 
conducted on the first generation of cockroaches, 
the adult cockroaches were found to show low resis-
tance to the same insecticide after initially treating 
the parental strain with the LD10 or LD25 of those 
insecticides. As a result, there were significant dif-
ferences in terms of LD50s among strains (Table 2) 
compared to the parental strain (field strain) and 
SS. The foregoing strains had a low-intensity insec-
ticide resistance (< 5-fold) (World Health 
Organization 2016) to these insecticides depending 
on the LD50 values with 95% CI; however, this shows 
the impact of an insecticidal sublethal dose (quantity 
and quality) of several times on the development of 
insecticide resistance. The RRs at LD50 increased 
after exposure to insecticides in F1 when compared 
to SS, which is in line with the previous results 
obtained by Ko et al. (2016) depending on the sub-
lethal dose value that was previously used. In other 
words, the RR50 values of QF1M (3.290), QF1N 
(2.724), and QF1L (2.056) strains were less than 
ZF1M (3.766), ZF1N (3.453), and ZF1L (2.484), 
which is consistent with (Hardin et al. 1995; Gressel 
2011; Amarasekare et al. 2016; Guedes et al. 2016, 
2017; Ko et al. 2016).

Moreover, the resistant ratios at LD50 of field 
strain toward indoxacarb, lambda-cyhalothrin, and 
imidacloprid insecticides were approximately ∼1.4 
fold compared to the susceptible strain (SS) (Table 
2). Although indoxacarb and imidacloprid insecti-
cides were not used to control German cockroach 
or other household pests in collection areas. In con-
trast, pyrethroids that have been applied frequently 
in control household pests including German cock-
roach (local information); based on the results, the 

Table 4. G lutathione S-transferase activity in first-generation treated cockroaches with insecticidal sublethal dose i.e., (LD10 
or LD25), as well as, in field and susceptible strain (SS).

GSTs Sourcea Nb

Mean ± St. Dev.

ΔA340 nmc GST µM/min/mld

QF1M 4 0.04713 ± 0.00217 84.830 ± 3.91 BC
ZF1M 4 0.05417 ± 0.00289 97.500 ± 5.2 AB
QF1N 4 0.04829 ± 0.00394 86.920 ± 7.1 BC
ZF1N 4 0.05754 ± 0.00117 103.58 ± 3.15 A
QF1L 4 0.04967 ± 0.00464 89.400 ± 8.36 ABC
ZF1L 4 0.05779 ± 0.00541 104.03 ± 10.49 A
field 4 0.04442 ± 0.00302 79.950 ± 5.44 C
SS 4 0.03137 ± 0.0016 56.630 ± 3.09 D
aGST enzyme source from insect strains that were treated with sublethal doses(i.e,LD10 or LD25) of Imidacloprid (QF1M and ZF1M), Indoxacarb 

(QF1N and ZF1N), and Lambda-cyhalothrin (QF1L and ZF1L) respectively, as well as, field strain and susceptible strain (SS).
bNumber of replications per each strain
cΔ A340 /min = A340 (final read) — A340 (initial read)/ reaction time(min)
dGST activity = Δ A340 min-1x 0.036 x D / V = (µmol/min/ml). Means followed by the same letters within the same column are not significantly 

different.
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adults of the field strain were tolerated those 
insecticides.

Cross-resistance is an important and common 
phenomenon in resistant strains of German cock-
roach; the prolonged exposure to insecticide can 
develop physiological resistance of insects to the 
same or other insecticides. Also, elevated tolerance 
to some insecticides can induction into elevated 
cross-tolerance to other insecticides that have the 
same or different modes of action (Hua et al. 2014). 
Liang et al. (2017) detected continuous providing 
with fipronil baits to German cockroach raised 
cross-resistance to indoxacarb.  Although 
beta-cyfluthrin, acetamiprid, indoxacarb, fipronil, 
lambda-cyhalothrin, and bifenthrin are different 
insecticides, the field strains of German cockroach 
displayed differing resistance levels to them (Fardisi 
et al. 2017). In another study, Hu et al. (2020) found 
that a high level of cytochrome P450 in resistant 
strains of German cockroach to deltamethrin played 
an important role in developing cross-resistance to 
indoxacarb, imidacloprid, and fipronil.

Several researchers have established that metabolic 
resistance is a result of cytochrome P450s biochem-
ical reactions in resistant strains. All resistance 
strains of German cockroach to pyrethroids contain 
a high level of cytochrome P450 and hydrolases; it 
is evidence that it has been involved in the biodeg-
radation of insecticides, rendering them ineffective 
to insects (Wei et al. 2001). On the other hand, the 
biotransformation studies of indoxacarb indicated 
that oxadiazine ring-opened metabolite formation is 
cytochrome P450-dependent; it may play a role in 
indoxacarb resistance (Gondhalekar et al. 2016)

Furthermore, understanding the roles of enzymes 
in insecticides resistance is important for adopting 
an appropriate strategy for insecticide resistance 
management and enhancing integrated pest manage-
ment (IPM) against the German cockroach with new 
application techniques. We used an indirect assay 
to measure the level and activity of detoxification 
enzymes according to Hemingway (1998); such 
methods, however, are considered important in 
insecticide resistance to estimate the differences in 
the values of these enzymes in biochemical assays 
until now.

The results of biochemical assays clearly showed 
that both cytochrome P450 contents and 
glutathione-S-transferase (GSTs) activities increased 
in the field strain compared to the SS. These meth-
ods rapidly detected insecticide resistance in German 
cockroach populations. The present study also 
focused on detoxification enzymes (P450s and GSTs) 
that play a major role in insecticide resistance in 
the German cockroach; in addition, the biochemical 

assays resulted in a good understanding of the resis-
tant levels in B. germanica after comparing the total 
content or activity of those enzymes to the SS. The 
ratio of the enzymes was 2.00 and 1.41-foldcompared 
to SS. The total P450 content and GST activities of 
the first-generation strains (ZF1N, ZF1L, ZF1M, 
QF1N, QF1L, and QF1M) also increased compared 
to parental strain (field strain) and SS. As a result, 
the ratios of total P450 content were 3.470, 3.470, 
3.410, 2.881, 2.765, and 2.591 fold compared to SS 
strain respectively (Table 2). The high level of GST 
and ratios were 1.82, 1.83, 1.72, 1.53, 1.57, and 1.49 
fold compared to SS strain respectively.

The increase in the total content and activities of 
P450 and GST enzymes were clearly demonstrated 
in the development of insecticide resistance in 
German cockroaches (Scharf et al. 1997; Vontas et al. 
2000b; Pridgeon et al. 2002; Habes et al. 2006; 
Enayati and Motevali 2007; Lin et al. 2014). Many 
researchers have observed that these enzymes work 
to detoxify insecticides in vivo, reduce their impact, 
and make insecticides more soluble in water. Finally, 
these compounds are easily excreted outside the 
insect’s body. Chai and Lee (2010) reported the resis-
tance/tolerance of six insecticides from different 
groups includes pyrethroids, neonicotinoid, and oxa-
diazine in B. germanica, suggesting the sharing of 
cytochrome P450 and esterase enzymes to award the 
cockroach tolerance or resistance to insecticides. 
Enayati and Motevali (2007) found that the GST, 
cytochrome P450, and esterases were elevated in the 
resistant German cockroach compared with the sus-
ceptible cockroach.

Insecticides are widely applied for their short-term 
efficacy against insect pests, but problems of their 
indirect and sublethal effects have been disregarded. 
The sublethal effects of insecticides may induce 
behavioural and physiological changes in cock-
roaches, causing resistance evolution over time. 
Accordingly, insecticide-induced resistance is an 
interesting topic, which might be conducive to elu-
cidating insecticide-induced outbreaks of the German 
cockroach and other insect species. To determine 
the essential mechanisms of resistance to insecti-
cides, more research should be done into the sub-
lethal effects of insecticides on the development of 
insecticide resistance and its pattern of cross-resistance 
to neurotoxic insecticides.
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