
Research Article
Combined Feedback Feedforward Control of a 3-Link
Musculoskeletal System Based on the Iterative Training Method

Amin Valizadeh and Ali Akbar Akbari

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Iran

Correspondence should be addressed to Ali Akbar Akbari; akbari@um.ac.ir

Received 9 April 2021; Revised 9 September 2021; Accepted 25 September 2021; Published 8 November 2021

Academic Editor: Qiushi Zhao

Copyright © 2021 Amin Valizadeh and Ali Akbar Akbari. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The investigation and study of the limbs, especially the human arm, have inspired a wide range of humanoid robots, such as
movement and muscle redundancy, as a human motor system. One of the main issues related to musculoskeletal systems is the
joint redundancy that causes no unique answer for each angle in return for an arm’s end effector’s arbitrary trajectory. As a
result, there are many architectures like the torques applied to the joints. In this study, an iterative learning controller was
applied to control the 3-link musculoskeletal system’s motion with 6 muscles. In this controller, the robot’s task space was
assumed as the feedforward of the controller and muscle space as the controller feedback. In both task and muscle spaces,
some noises cause the system to be unstable, so a forgetting factor was used to a convergence task space output in the
neighborhood of the desired trajectories. The results show that the controller performance has improved gradually by iterating
the learning steps, and the error rate has decreased so that the trajectory passed by the end effector has practically matched the
desired trajectory after 1000 iterations.

1. Introduction

The reaching movement is accounted for a huge part of
hand movements. In all these activities, a swift and complex
process occurs in the brain, and after processing, the gener-
ated control signals are transmitted to body motors, namely,
muscles. This complex process in the brain comprises some
levels. First, the desired trajectory is determined for reaching
an object, and in the second step, the coordinates of the
specified trajectory estimated by vision are converted into
the body coordinates; in the last step, control commands
are sent to the muscular system to go through the desired
trajectory. Investigating the body’s musculoskeletal system’s
control mechanism can lead us to develop a robust control
technique that can be applied to rehabilitation robotics.
The design process and application of the actuators in such
robots are similar to the simulation of the human body’s
neural control system. Many controllers have been intro-
duced and employed to control such systems and produce
motions similar to the human movement, which are of dif-
ferent design methods and performances based on their

design space (robot task space, joint space, and muscle
space) [1, 2]. Each of these spaces has its features and com-
plexity, and as we move from the task space toward the mus-
cle space, it will be difficult to design the controller because
of the increasing space order. It should be noted that the
controller design in the muscle space should be carried out
carefully so that the forces out of the body are ignored,
and the model approaches reality. The joint redundancy
causes each angle to have no unique solution in return for
an arbitrary trajectory of the arm’s end effector [3]. Another
problem caused by redundancy is the lack of a unique solu-
tion for model forces to generate unique torque [4]. Many
optimization techniques have been proposed to overcome
this problem in classification [5], biology and robotics [6–9].

On the other hand, in everyday life, we can easily carry
out the most complex movements with the highest possible
accuracy in the presence of the same redundancies with
the least possible. One solution to overcome this complexity
is that the central nervous system activates a small group of
muscles—called muscle synergy [10]—which allows the con-
trol of body movements with less computational cost by
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reducing the required independent degrees of freedom. In
recent years, Suetani and Morimoto [11] presented an inno-
vative hypothesis under the title of “Virtual Spring-Damper
Hypothesis,” where there is no need to optimize the redun-
dancy criterion to overcome the redundancy problem. How-
ever, the previous problem is solved by applying this
hypothesis, but due to the redundancy of muscles, we will
deal with other problems that require the application of
the muscle nonlinear models. In 2013, aiming to find the
synergies of reaching and balancing movements on the mus-
culoskeletal system of the hand, Tahara et al. [12] conducted
a research study to investigate muscular integrity force data
and the data of body receptors (proprioception and vision).
The canonical correlation analysis (CCA) method, which
follows the natural behavior of the body, was used to obtain
the relation between the data related to muscles and body
receptors. In a real system, the time delay and noise should
be considered in the body’s actuator and sensor systems.
Hence, this study is aimed at examining the effects of time
delay and noise on determining the synergies of the hand’s
musculoskeletal system. The results of this study not only
can be used to understand the biological data of the motor
control system but also can be applied as an artificial con-
troller for a high-DOF robot. In this study, the motion equa-
tions for the 3-link musculoskeletal system of the human
arm and the iterative learning controller are presented in
Section 2. The results obtained from the simulation of the
ILC (iterative learning control) with the neuro-fuzzy con-
troller are discussed in Section 4. In Section 6, the remarks
concluded from this study are described.

2. DOF Human Musculoskeletal Arm Model

The 3-DOF human musculoskeletal arm model used in this
study consisting of three solid links and six monoarticular
muscles is shown in Figure 1. Since this arm moves on the
horizontal plane, the effect of the gravity force can be
ignored. As shown in Figure 1, this model consists of six
muscles that can only apply tensile forces so that each joint
moves by some of these related muscles. Muscles are
assumed to be without weight and designed based on the
Hill model, which are directly connected to links as

fm = P�α − P A �αð ÞC + C0f g_l,
�α = �α1, �α2,⋯, �α6ð Þ ϵ R6,
P = diag p1, p2,⋯, p6ð Þ ϵ R6×6,
A �αð Þ = diag �α1, �α2,⋯, �α6ð Þ ϵ R6×6,
C = diag c1, c2,⋯, c6ð Þ ϵ R6×6,
C0 = diag c01, c02,⋯, c06ð Þ ϵ R6×6:

2
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ð1Þ

From Ref. [13], parameter fm is the muscles’ contractile
force, which is the nonlinear function of the muscle’s con-
tractile velocity and the control input produced in the cen-
tral nervous system.

Considering L1, L2 , and L3 to be the first, second, and
third links, respectively, as well as their relation angle with

respect to the x-axis, first link, and second link as θ1, θ2,
and θ3, respectively, the arm’s end effector position to the
joint angles is expressed by the following equation:

X = J
_

θð Þ =
L1 cos θ1ð Þ + L2 cos θ1 + θ2ð Þ + L3 cos θ1 + θ2 + θ3ð Þ
L1 sin θ1ð Þ + L2 sin θ1 + θ2ð Þ + L3 sin θ1 + θ2 + θ3ð Þ
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ð2Þ
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Figure 1: Schematic view of the 3-DOF musculoskeletal model for
the hand.
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where r1−6 and s1−6 represent the torque levers, as shown in
Figure 1. The following equations are obtained by taking the
time derivative of equations (2) and (3) with respect to time:

_X = J _θ, ð4Þ

_l =WT _θ: ð5Þ

_X = _x _y½ �T is the end effector velocity of the arm, _θ =
_θ _θ2

_θ3
� �T is the angular velocity of joints, and _l =
_l1 _l2 _l3 _l4 _l5 _l6

� �T represents the stretch rate of mus-
cles. Also, J ∈ R2×3 is the Jacobianmatrix that shows the relation
between the linear velocities of the arm’s end effector and angu-
lar velocities while WT ∈ R6×3 is the Jacobian matrix, which
relates the contractile rate of muscles to the angular velocity of
the joints as

J =
J11 J12 J13

J21 J22 J23

" #
,

J11 = −L1 sin θ1ð Þ − L2 sin θ1 + θ2ð Þ − L3 sin θ1 + θ2 + θ3ð Þ,
J12 = −L2 sin θ1 + θ2ð Þ − L3 sin θ1 + θ2 + θ3ð Þ,
J13 = −L2 sin θ1 + θ2ð Þ − L3 sin θ1 + θ2 + θ3ð Þ,

J21 = L1 cos θ1ð Þ + L2 cos θ1 + θ2ð Þ + L3 cos θ1 + θ2 + θ3ð Þ,
J22 = L2 cos θ1 + θ2ð Þ + L3 cos θ1 + θ2 + θ3ð Þ,

J23 = L3 cos θ1 + θ2 + θ3ð Þ,

W =
−r1 r2 0 0 0 0
0 0 −r3 r4 0 0
0 0 0 0 −r5 r6

2
664

3
775:

ð6Þ

By assuming J as a full-rankmatrix, the inverse of equations
(2) and (4) is obtained as follows:

θ =G−1
x xð Þ ∈ R2, ð7Þ

_θ = J−1 _x ∈ R2: ð8Þ

G−1
x ðxÞ represents a vector with nonlinear functions, which

shows the inverse kinematics from the task space to joint space.
Also, J−1 shows the inverse kinematics from the task space
velocity to the joint’s angular velocity. By substituting equation
(8) into equations (3) and (5), we can state that

l =Gι G
−1
x xð Þ� �

∈ R6, ð9Þ

_l =WT J−1 _x ∈ R6: ð10Þ
Equation (9) demonstrates the inverse kinematics from the

task space to the muscle space, which is applied to the control-
ler’s feedforward behavior.

By applying the principle of virtual work, the work done
by muscle torque is defined as follows:

T =Wfm ∈ R2, ð11Þ

where fm = f1 f2 f3 f4 f5 f6½ �T is the vector repre-
senting the tensile forces of muscles and T =
T1 T2 T3½ �T is the joint torque vector.

By assuming thatW ∈ R3×6 is a row full-rank matrix dur-
ing movement, the inverse of equation (11) is expressed as
follows:

fm =W+T ∈ R6, ð12Þ

W+ =WT WWT� �−1 ∈ R6×3: ð13Þ
Besides, the static relation between T and the output vec-

tor of forces applied to the arm’s endpoint in the space F
∈ R2 is expressed as follows:

T = JT F ∈ R3: ð14Þ

By substituting equation (14) into equation (13), it is
concluded that

fm =W+ JT F ∈ : ð15Þ

Equation (15) demonstrates the static inverse relation
between fm and F.

3. Iterative Learning Control

An ILC strategy of the PI type has been introduced in Refer-
ence [14] to trace an arbitrary time-dependent trajectory
using the robotic arm model. The errors related to the posi-
tion and velocity in a test are stored to be tuned for the next
test by an input correction strategy. The data stored in the
first step are multiplied by a factor and added to the input
in the next test. Implementing a simple task space feedback
control for a 2-DOF arm is considered by Tahara et al. to
address the muscle space redundancy problem on the con-
tractile output force [15]. They also studied multiple space
variables to enhance the robustness of the 2-DOF arm
exposed to sensory noises. Despite the nonlinear equations
of the human arm’s motion, the suggested method suffi-
ciently improves the system’s robustness regarding the tradi-
tional ILC methods [16]. Therefore, the proposed method is
considered in our study. As discussed in the previous sec-
tion, to compensate for the iterative learning controller’s
input, there are three representatives of the state space,
namely, muscle space, joint space, and task space. Therefore,
any space that can better compensate for the control input is
of great importance in achieving the desired performance.
Furthermore, it should be noted that many noises cause
damage to sensory information, and its huge impact on the
movement of the musculoskeletal system is inevitable.
Therefore, the system’s robustness to deal with the noise var-
ies depending on the space in which the system is modeled.

3BioMed Research International



A new control strategy based on iterative learning, which
uses the sum of state-space variables, is employed to
improve the robustness of the system against noise. In the
present paper, a case study is performed by considering the
task space and muscle space as the spaces for feedback and
feedforward behaviors, respectively. The control input of
the muscles in the ith test is defined as follows:

ui = −Wi
+ Ji

T KpΔxi − KυΔ _xi
� �

+ υi, ð16Þ

where index i represents the test number, Kp = diag ½kp1,kp2�
∈ R2×2 > 0 and Kυ = diag ½kυ1,kυ2� ∈ R2×2 > 0 are the feedback
coefficients of position and velocity in the task space, and υi
is the feedforward parameter obtained from the iterative learn-
ing process. The error of position and velocity is defined as
Δxi = xi − xd ∈ R2 and Δ _xi = _xi − _xd ∈ R2, respectively; xd and
_xd also represent the end effector’s position and velocity,
respectively. The feedforward parameter, υi ∈ R6, is not
designed in the task space similar to feedback behavior, but
it is modeled in the muscle space and updated as follows:

υi =
0, i = 1,
1 − βð Þυi−1 − ΦΔιi−1 +ΨΔ_ιi−1ð Þ, i > 1,

(
ð17Þ

where Φ = diag ½ϕ1, ϕ2,⋯, ϕ6� ∈ R6×6 > 0 and Ψ = diag ½ψ1,
ψ2,⋯, ψ6� ∈ R6×6 > 0 are the coefficient matrices of position
and velocity, respectively; besides, the position error is defined
as Διi = ιi − ιd and the velocity errors in the muscle space are
expressed as Δ_ιi = _ιi − _ιd. ιd ∈ R6 and _ιd ∈ R6 are the length of
muscles and their contraction rate relative to the position
and velocity of the end effector, respectively. These parameters
are obtained by calculating the inverse dynamic as

Διi =Gι G
−1
x xið Þ� �

−Gι G
−1
x xdð Þ� �

,

Δ_ιi =WT
i J

−1
i Δ _xi:

ð18Þ

In this study, the Gaussian noise is used as a noise which is
applied to sensory information. An error in the initial condi-
tions of two consecutive tests and dynamic oscillations due
to different types of noises causes the general system to be
unstable using the iterative learning controller. Therefore, to
overcome these noises, Suetani andMorimoto [11] introduced
a forgetting factor to update the iterative learning controller.
Using this forgetting factor ensures that the final converged
trajectory after good learning is in the desired trajectory neigh-
borhood. In equation (17), β is the forgetting factor that has to
satisfy the condition of 0 < β < 1. It is assumed that the mus-
cle’s length and end effector position and velocity signals
include Gaussian noise individually. Due to Refs. [15, 17],
the magnitude of the noise existing in the end effector’s posi-
tion and velocity is 4% of real data, and the magnitude of noise
existing in the length of the muscle and its contraction rate is
50% of the real data. This is because the data related to the end
effector’s position and velocity are obtained through observa-
tion, which is relatively accurate. However, the data related to
the muscle’s length and contraction rate are received through

the muscular bulk which has large electrical noise leading to
inaccurate results [18].

4. Results

The simulation results are presented in this section. Tables 1
and 2 demonstrate the numerical values associated with the
3-link model and the values related to the muscles’ physical
properties, respectively. Also, the coefficients of the control-
ler are listed in Table 3.

The controller is aimed at tracing a semicircular trajec-
tory. Therefore, we consider the following trajectory:

x = 0:2 + 0:1 cos tð Þ,
y = 0:55 + 0:1 sin tð Þ:

(
ð19Þ

The simulation’s total time is assumed to be T = πs, and
the hand is initially located at point ð−0:1,0:55Þ. Therefore,
during the aforementioned period, the robot is expected to
cover the semi-semicircular trajectory fully. For evaluating
the robustness of the presented model against uncertainties,
the simulation parameters have been changed by 5%. To
compare the controller’s performance with similar counter-
parts, the model control results are compared to the neuro-
fuzzy control method presented in our other paper [19]. In
the cited article, the similar given trajectory was precisely

Table 1: Numerical parameters of the model.

Length
(m)

Mass
(kg)

Inertial
moment
(kg·m2)

CoM
position
(m)

1st link 0.31 1.93 0.0141 0.165

2nd link 0.27 1.32 0.0120 0.135

3nd link 0.15 0.35 0.0010 0.075

Table 2: Geometric parameters of the muscles.

Muscle Value (m)

l1 r1 = 0:055 s1 = 0:080
l2 r2 = 0:055 s2 = 0:080
l3 r3 = 0:030 s3 = 0:120
l4 r4 = 0:030 s4 = 0:120
l5 r5 = 0:035 s5 = 0:220
l6 r6 = 0:040 s6 = 0:250

Table 3: The parameters associated with the controller.

Parameter Value

Feedback gain Kp = 8080½ �
Feedback gain Kv = 5050½ �
Learning gain Φ1 =⋯ =Φ6 = 250
Learning gain Ψ1 =⋯ =Ψ6 = 140
Forgetting factor β = 0:3
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followed by the muscle optimization, and the results con-
cluded appropriate compliances with the hand’s natural
motion. The model simulation was performed in MATLAB
version 2021a running on an Intel Core i7 (2.8GHz and
16Gb RAM). For all simulations, the variable-step MATLAB
ODEs solver ode45 with relative solver tolerance 1 × 10−4
was implemented, which took 4.817 s for the ILC controller
compared to 10.045 s for the neuro-fuzzy controller.

Figure 2 depicts different trajectories that the controller
has taken over 1000 iterations to reach the desired trajectory.
As can be seen, as the controller’s performance is improved,
the error is reduced gradually. Therefore, in iteration no.
1000, the trajectory is adjusted to the desired trajectory. Such
a process is similar to learning and muscle memory that can
perfectly go through a trajectory with practice and repeti-
tion. The trajectories that both controllers have gone
through at the same time are shown in Figure 3. The results

show that the proposed controller has better performance. In
other words, if we exceed 1000 iterations in training the con-
troller, we will observe a further improvement in the controller
results. However, it should be noted that the simulation time
increases with increasing the number of iterations.

Figure 4 displays the displacement of different joints dur-
ing the movement scenario. The displacement of joints is sim-
ilar to another. The adaptive controller performance is based
on the optimization of the cost function and the iterative con-
troller performance on learning; hence, Figure 4 designates
that the proposed controller performance is acceptable com-
pared to the adaptive controller’s performance using the
neuro-fuzzy adaptive controller.

Finally, the magnitude of forces applied to each muscle
during the desired trajectory is illustrated in Figure 5. The
neuro-fuzzy controller uses muscle optimization; therefore,
its force diagrams are much more ideal. On the other hand,
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Figure 2: The trajectories passed by the model per 1000 iterations.
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Figure 3: Comparison of trajectories covered by the neuro-fuzzy adaptive controller and ILC.

5BioMed Research International



the ILC controller has a more smooth bell-shaped profile sim-
ilar to the agonist-antagonist paired muscles involved in the
natural movements of the human body. However, both con-

trollers have similar patterns. In addition, muscle forces in
both methods are in the adequate range for the human body,
where the ILC method has almost fewer force values.
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Figure 4: Comparison of joint displacement between the neuro-fuzzy adaptive controller and ILC.
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Figure 5: Comparison of the generated forces using the neuro-fuzzy adaptive controller and ILC.
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5. Discussion

The controller has two pieces, the first of which is feedback
input comprising task space variables, while the other part
is the feedforward input, which is made up of muscle space
parameters gained through the iterative learning algorithm.
Although all controller gains are tuned in all iterations, the
simulation results demonstrated that the hand endpoint in
the first iteration is significantly different from the 1000th

iteration. Despite the nonlinear equations of muscles, the
controller could pass through the desired trajectory after
the 1000th iteration. In addition, the path tracking error
has considerably been mitigated by increasing the repeti-
tion number. The use of different variable spaces in con-
junction with the learning algorithm was the primary
reason for the sufficient accuracy of path tracking in the
proposed controller.

Furthermore, the travel time of the simulation was
reduced to half using the ILC controller, compared to the
neuro-fuzzy one following the 1000th repetition of the
desired path. Force values for the given path were also in
the sufficient force ranges of the human hand muscles. In
most muscles, the endpoint passed through the given trajec-
tory with a much lower force than the neuro-fuzzy control-
ler. These results characterize the efficiency of this controller
for musculoskeletal modeling in the human body. As a
future study, we intend to conduct movement trials in actual
and uncontrolled conditions using EMG signals plus effec-
tive technologies such as user-friendly contactless path rec-
ognition to increase the method’s productivity [5].

6. Conclusion

The controller’s performance was improved by iterating
learning, and subsequently, the related error was reduced
so that the final trajectory that has gone through simulation
is practically adjusted to the desired trajectory. Such a pro-
cess is similar to learning and muscle memory that can lead
to perfectly going through a trajectory with practice and rep-
etition. The quantitative comparison between the iterative
learning controller and neuro-fuzzy controller results sug-
gested that the proposed controller has a better performance.
In other words, if we exceed 1000 iterations in training the
controller, we will observe a further improvement in the
controller results. However, it should be noted that the time
required for solving the problem increases by increasing the
number of iterations. By comparing the forces generated in
the muscles for both controllers, it was observed that the
maximum value of these forces for the current controller
was less than that of the adaptive controller, although the
average of generated force is higher for the current control-
ler. Considering that the muscle forces’ optimization is one
of the design indicators in adaptive controllers, it was not
considered in the proposed method. Here, it was important
that the controller can successfully guide the model on the
desired trajectory in the presence of system uncertainties,
and the forces applied to the muscles are in the desired
range.
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