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Abstract
The present study aimed to assess the effect of implementing Rapid Prototyping (RP) in the product development phase 
on the sustainability of a conventional supply chain. The sustainability indicators of RP utilization were identified through 
a critical literature review and consulting two experienced RP practitioners to determine the key variables regarding the 
potential impact of RP on the supply chain components, with an emphasis on sustainability pillars. A generic system 
dynamics modeling was provided to simulate the RP-adapted supply chain and measure its sustainability performance. The 
simulation results indicated that RP utilization in the design phase could decrease the number of the assembly parts and 
material consumption in conventional manufacturing, while indirectly affecting the reduction of waste generation, logistics, 
CO2 emissions, processes, and the total costs which are related to environmental and economic aspects of the sustainable 
supply chain. Findings indicated that significant increase in operational skills and knowledge as the main indicators of the 
social dimension could remarkably reduce the failure rates and increase the quality of the products. This indicator plays a 
pivotal role in operational success and could be enhanced through training programs. Social sustainability indirectly affects 
environmental and economic sustainability. This was the first model-based research to examine the potential effects of RP 
on the sustainability of a conventional manufacturing. The proposed generic model encompassed the variables that could be 
applicable in every scenario to help decision-makers change values or add more variables within specific industry settings 
and choose the applicable ones, which in turn, accelerating the RP adoption in supply chains and providing insights for 
operational decisions regarding product design stage.
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1 Introduction

Currently, competition is based on the application of sus-
tainability-oriented innovations in supply chains, which has 
attracted the attention of management experts in the research 

area regarding the application of new technologies (Dubey 
et al. 2017; Son et al. 2021). Manufacturers have become 
more obliged to minimize production costs and the adverse 
environmental effects of their products such as wastes 
and pollution in the first stages of the design process. As 
a dynamic process, the design and prototyping stage have 
a considerable impact on enhancing the sustainability of a 
supply chain (Rocha et al. 2019). On average, 80% of the 
total production costs are determined by the product design 
since this stage largely influences the machinery, tools, 
material selection, and workforce required for the production 
process (Favi et al. 2016). Therefore, utilization of innova-
tions and new technologies in design and prototyping stage 
can enhance the competitiveness of manufacturers and their 
sustainability performance (Oettmeier and Hofmann 2017; 
Yadav et al. 2020). Moreover, sustainability practices require 
proper management support and should be considered from 
the initial product design process (Khan and Yu 2020).
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Additive manufacturing (AM) is widely recognized as 
the next industrial revolution (Berman 2012). It refers to 
the process of directly producing objects from digital design 
models by joining the materials layer-by-layer, which is 
opposed to subtractive manufacturing technologies (Weller 
et al. 2015). RP is considered to be the primary applica-
tion of AM technology. RP allows the rapid iteration of the 
design and production of customized complex components 
by eliminating the limitations of conventional prototyping 
processes, thereby resulting in shorter product development 
process (Berman 2012; Attaran 2017). Considerable effort 
has been devoted to research regarding AM technologies 
(Lopez and Wright 2002; Berman 2012; Yılmaz 2020; Son 
et al. 2021) and several studies have qualitatively implied 
that AM implementation has potential effects on supply 
chain sustainability (Le Bourhis et al. 2013; Khajavi et al. 
2014; Niaki and Nonino 2018; Yadav et al. 2020). The cur-
rent literature on AM is mainly focused on the sustainability 
features of 3D printing machines (Niaki and Nonino 2017a, 
b; Sharma and Dixit 2019), their production costs and tech-
nical aspects (Piller et al. 2015; Yang and Li 2018). Accord-
ing to Ashour Pour et al. (2017) less than 10% of the AM 
literature has investigated the effects of AM on the supply 
chain costs and performance. Social sustainability aspect of 
AM has remained underdeveloped and limited knowledge 
regarding that has led to a considerable gap in literature 
(Matos et al. 2019; Matos and Jacinto 2019; Naghshineh 
et al. 2020) because it has complicated nature and is diffi-
cult to be quantified (Ma et al. 2018). However, some recent 
studies have introduced the variables associated with the 
social dimension of sustainability, which could be affected 
by the implementation of AM technologies (Pérez-Pérez 
et al. 2018; Naghshineh et al. 2020; Ribeiro et al. 2020).

Despite the popularity of RP, the diffusion and utiliza-
tion of this technology have been slower than its evolution 
and adoption (Ashour Pour et al. 2017; Zheng et al. 2019;  
Tavassoli et al. 2020). Some studies have indicated the main 
barriers to AM adoption are the shortage of trained workforce  
to utilize RP and inadequate knowledge regarding the pos-
sible effects of AM systems on supply chains (Thomas-Seale 
et al. 2018; Ituarte et al. 2019; Alabi et al. 2019; Yang et al. 
2020). It is also hard for managers to make decision about 
uncommon practices since risks and gains are difficult to 
assess, especially when little or no precedent exists. Applying 
new technologies in manufacturing systems involves com-
plexity, multiple objectives, and dynamic interactions (Wu  
et al. 2010; Rodríguez and Aguirre 2013). Furthermore, the 
expected results may be delayed, and there are numerous 
uncertainties about the benefits, costs, and required changes 
that may increase the risks involved in the adoption and uti-
lization of technological innovations.

As a complex structure, supply chain networks encom-
pass a large number of key parameters with significant 

interrelationships. The analysis of the interactions between 
indicators of sustainability and supply chain parameters is 
the key step toward determining their performance optimiza-
tion (Özbayrak et al. 2007). According to Fritz et al. (2017), 
the sustainability indicators of a supply chain should be 
examined within a specific period.

The present study aimed to quantitatively assess the key 
sustainability indicators and their behavior in a supply chain 
which implemented RP in the design phase of manufactur-
ing. Our research addresses the following research questions 
(RQs):

• RQ1: What are the key sustainability indicators in a sup-
ply chain that are affected by RP implementation?

• RQ2: How does RP implementation affect the sustain-
ability of a supply chain?

In their research regarding the gaps for further investiga-
tions on Sustainable Supply Chain Management (SSCM), 
Khan et  al. (2020) have reported that only a few stud-
ies have investigated SSCM through simulation or math-
ematical formulations, providing opportunities to academic 
researchers to further examine the subject matter. Since the 
consequences of technological implementation represent a 
dynamic process (Hekkert et al. 2007), the current research 
addresses the mentioned RQs by providing a generic model 
using the System Dynamics approach (SD), which is a com-
puter simulation modeling technique used to recognize the 
dynamic behavior of complex systems (Sterman 2000). Most 
analytical models only consider few variables. They over-
look other important factors and their dynamic behavior in 
a period of time. The predictive capability of a model could 
be enhanced by adding more variables. However, this may 
increase the complexity of the model.

SD models are considered to be a reliable approach to 
overcoming these limitations in the case of multiple inter-
connected factors within a system. SD model encompasses 
multiple components, factors, operational processes, and 
their relationships, as well as the feedback links in a supply 
chain. In addition, it can evaluate the sustainability indi-
cators affected by the implementation of RP through iden-
tification of structures and key interrelations which leads 
to changes. To the best of our knowledge and based on an 
extensive literature review, no SD modeling approaches are 
currently available for the sustainability assessment of RP 
implementation. Therefore, the current research contrib-
utes to the better recognition of the impact of RP on the 
sustainability of a conventional supply chain using a simu-
lation model. The simulation results highlight the mecha-
nisms which cause the behavior of a system and provide 
the required information to the managers who are skeptical 
about the implementation of rapid prototyping. The paper 
is structured as follows: Following the Introduction, we 
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have presented the literature review and identified the sus-
tainability indicators affected by RP utilization. Dynamic 
hypothesis, causal loop, stock and flow diagram, model vali-
dation, simulation, and the obtained results have also been 
presented. The article ends with discussion, conclusion, and 
practical implications for further research.

2  Background and literature review

This section provides research background and literature 
review regarding AM technology with an emphasis on its 
major application (i.e., Rapid Prototyping), sustainable sup-
ply chains, and the potential impact of RP on the sustain-
ability of supply chains. Afterwards, we have discussed the 
identified gaps that motivated the current research.

2.1  Rapid prototyping

Additive manufacturing is considered to be a major devel-
opment in the  4th industrial revolution and offers numerous 
production advantages (Ghadge et al. 2020). It refers to the 
layer-based manufacturing technique, which is the process 
of creating objects from the virtual Computer-Aided Design 
(CAD) data by joining the materials layer-by-layer (Weller 
et al. 2015). In conventional manufacturing, the tools or Con-
trol Numeric Computerized (CNC) machines remove pieces  
of materials from the solid pieces. The terms AM, 3D print-
ing and RP are often used interchangeably. However, major 
application of this technology is RP, which rapidly gener-
ates the prototypes of a product or its components for further 
examination before mass production (Attaran 2017). With 
the advancement of RP materials, prototypes have attained 
similar features to final products, thereby validating physical 
product testing and minimizing the costs of design change in 
the future (Chung et al. 2020). Gibson et al. (2014) found that 
compared to conventional manufacturing technologies, RP 
has some significant benefits such as visualization, verifica-
tion, iteration, optimization, and the functional testing of pro-
totypes within a shorter time. For aircraft shape optimization, 
Chung et al. (2020) utilized the RP technology to produce 
wind tunnel models. They showed that RP can significantly 
reduce the time and costs of prototyping. Some of the stud-
ies have evaluated the benefits of rapid prototyping, such as 
increase in agility of manufacturing (Vinodh et al. 2009; Berg 
et al. 2020), higher quality and innovativeness of the products 
(Friesike et al. 2019), and business competitiveness (Niaki 
and Nonino 2017a, b). Arrighi and Mougenot (2019) also 
addressed the reduction of design constraints using a modular 
digital tool based on RP. According to the obtained results, 
RP facilitates optimization of products for better function  
and customization based on the customer's desire. RP ena-
bles designers to identify design flaws at the earlier stages 

of the product development process, which could improve 
the prototyping pace and decrease the time and costs of this 
stage (Jin et al. 2017).

On the other hand, some researchers found that RP has 
some limitations such as inadequate quality standards in pro-
ducing parts (Weller et al. 2015; Li et al. 2020) and techni-
cal limitations of 3D printers (Berman 2012; Thomas-Seale 
et al. 2018). In this regard, Yılmaz (2020) developed an 
optimization model and concluded that the applied technol-
ogy could complement the production processes that are 
currently implemented. In addition, early adoption of AM 
can enhance the competitiveness of manufacturers, which is 
mainly influenced by factors such as company size (Zheng 
et al. 2019), time, and aim of use (Niaki and Nonino 2017a, 
b). Based on the aforementioned studies, it could be inferred 
that this technology is currently inefficient and cannot fully 
compete with conventional manufacturing in mass produc-
tion, while it could be used successfully in the design and 
development of new products.

2.2  RP and sustainable supply chain

Integrating the concept of sustainability with supply chain 
management has been of great interest in academic and 
practitioner fields and is becoming increasingly important 
in maintaining the competitiveness of manufacturers (Dubey 
et al. 2017). Furthermore, sustainability has become a prin-
ciple not only in production processes, but also in initial 
design stages in order to maximize supply chain profitability 
and social well-being, while minimize adverse environmen-
tal effects (Diegel et al. 2010; Hassini et al. 2012). A more 
recent definition of sustainable supply chain management 
has been proposed by Ahi and Searcy (2013), emphasizing 
on the integration of environmental, economic, and social 
considerations through supply chains in order to efficiently 
manage the materials and information associated with pro-
duction and distribution.

The economic dimension is a major driver of SSCM, 
which is traditionally assessed based on indicators such as 
flexibility, speed, total costs, and profit. Manufacturers could 
gain a competitive advantage by measuring these parameters 
over time (Fritz et al. 2017). Among these factors, cost mini-
mization is a dominant indicator in the evaluation of eco-
nomic dimension (Narimissa et al. 2020). The environmental 
dimension of SCM refers to the concepts that describe envi-
ronmental performance, aiming to minimize resource usage, 
energy, and hazardous/toxic substances. The main indicators 
of this dimension include the reduction of resource usage, 
waste generation, and pollutant emissions (e.g., greenhouse 
gases), as well as the improvement of product quality and 
durability extension (Glavič and Lukman 2007; Tajbakhsh 
and Hassini 2015). The social dimension of sustainability 
refers to the wellbeing of individuals and communities (Choi 



 N. H. Arian et al.

1 3

and Ng 2011). The measurement of social sustainability is 
more difficult compared to other dimensions due to its sub-
jectivity and intangible nature (Weller et al. 2015; Narimissa 
et al. 2020). The main indicators of social sustainability are 
work conditions, health, safety, employee empowerment, 
and staff training with the aim of improving their qualifica-
tions (Chen et al. 2015; Alabi et al. 2019).

RP is considered to be a sustainable and zero-waste 
manufacturing system owing to its capability to manufac-
ture additively without the need for subtraction processes, 
which decreases the usage of materials and energy in proto-
type production (Le Bourhis et al. 2013; Peng et al. 2018). 
Moreover, RP has distinctive features that can contribute 
to sustainable growth; for instance, RP allows the direct 
production of any complex design from 3D CAD models 
(i.e., tool-less feature), thereby supporting the customiza-
tion process without time and cost penalties (Kondoh et al. 
2017).This could also promote creativity and increase func-
tionality, which in turn leads to higher customer satisfaction 
(Arrighi and Mougenot 2019).

The reduction of assembly parts, also referred to as 
part consolidation, could potentially affect production 
costs, assembly operations, procurement, and supply 
chain components. (Greer et al. 2004; Jung et al. 2021). 
Realizing the opportunities provided by RP, Yang et al. 
(2015) proposed a part consolidation method to decrease 
parts of a triple clamp from 19 to 7 with a less weight 
by 20% and improve performance. Through Design for 
Manufacturing and Assembly (DFMA) and RP utiliza-
tion, Prakash et  al. (2014) redesigned a fluid control 
valve consisted of 18 components into eight parts with 
better function. Optimized design and customer satisfac-
tion were also reported as the main outcomes. Nie et al. 
(2020) also presented an approach that resulted in a 25% 
reduction in the production time and a 20% reduction in 
production costs using metal additive manufacturing. Fur-
thermore, they observed an important tradeoff between 
the number of the consolidated parts and the supporting 
structures, which could increase the production costs and 
time. Analyzing the total costs affected by consolidation 
through RP, Knofius et al. (2019) denoted that efforts 
to reduce assembly parts could decrease the costs of 
assembly, while exerting unexpected and indeterminate 
effects on the repair and service costs as RP often leads to 
higher total costs due to a loss of flexibility. Furthermore, 
some studies have utilized various techniques to model 
the costs of different processes of AM technologies and 
their application in different sectors and industries (Li 
et al. 2017; Yang and Li 2018; Sharma and Dixit 2019; 
Baumers et al. 2019). Through a classification review of 
the cost estimation models, Kadir et al. (2020) claimed 
that knowledge regarding AM cost models is still limited 
in several aspects. According to Some studies (Wright 

and Fulton 2005; Rinaldi et al. 2021), the main sources 
of greenhouse gas emissions are the energy consump-
tion of machines in the production process and the trans-
portations associated with the number of the suppliers 
providing raw materials and spare parts. Therefore, opti-
mization of the mentioned variables will contribute to 
the economic and environmental sustainability of supply 
chains. In this regard, Peng et al. (2018) presented an 
overview of the sustainability of AM, focusing on energy 
and environmental impacts from a lifecycle perspec-
tive. The obtained results indicated that the eco-design 
feature enabled by AM has a great potential in reduc-
ing energy and materials. Son et al. (2021) utilized the 
genetic algorithm approach and showed that the AM hub 
and part consolidation model could effectively improve 
the sustainability of the entire lifecycle, concluding that 
the combination of AM and conventional manufacturing 
could respond to the demand for customized products and 
reduce the negative environmental impact by minimizing 
production wastes. Some researchers have also investi-
gated and compared the energy consumption of various 
AM machines and their effects on environmental sustain-
ability with other manufacturing techniques (Le Bourhis 
et al. 2013; Chen et al. 2015). The results of these studies 
are often inconclusive since the economic and environ-
mental effects of AM are highly case-specific and depend 
on factors such as machine utilization, production vol-
ume, design optimization parameters, and supply chain 
configurations.

From a social perspective, some studies have pre-
dicted the potential social implications of AM (Jiang 
et al. 2017; Pérez-Pérez et al. 2018; Sharma et al. 2020). 
For instance, a critical literature review by Naghshineh 
et al. (2020) showed that the existing research on social 
domain and its indicators is quite fragmented. They pro-
vided a stakeholder-driven framework consisting of the 
indicators to measure some of the identified AM social 
impacts. In order to carry out a prospection of AM in 
terms of training and employment, Pérez-Pérez et  al. 
(2018) used the Delphi method and found that recruit-
ing technicians with specific qualifications and skills 
requires changes in the current training syllabus. Fur-
thermore, Thomas-Seale et al. (2018) assessed the barri-
ers to the adoption of AM technologies in UK industries, 
observing that the knowledge of engineers regarding 
AM was insufficient. In terms of work conditions and 
workers' health as major social indicators, Ford and 
Despeisse (2016) claimed that RP allows operators to 
avoid long-term exposure to potentially hazardous work 
environments. However, a systematic literature review 
conducted by Franco et al. (2020) showed no consensus 
regarding whether AM adoption exerts positive or nega-
tive impacts on health and safety conditions. Huang et al. 
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(2013) also reported that the health effects are essentially 
based on the type of the AM technology, handling, use, 
and disposal of the materials employed in various AM 
processes. Moreover, a clear design framework is lack-
ing for the implementation of the design process using 
AM technologies (Mellor et  al. 2014; Friesike et  al. 
2019), leading to trial-and-error in operating 3D printing 
machines and determining the optimal setting for various 
3D models. The reviewed literature in the present study 
indicated that previous studies have been focused on the 
sustainability features of AM technologies without con-
sidering the sustainability of supply chains, which must 
be taken into account by manufacturers before technol-
ogy adoption.

2.3  Gaps identified in the existing literature

Research regarding RP has been rapidly expanding and 
most of the studies have qualitatively implied the great 
potential of RP in affecting the sustainability of supply 
chains. To date, limited research has analyzed the degree 
to which these potential advantages may occur. Moreo-
ver, no findings have explained the effects of RP-enabled 
part consolidation, which is the most promising benefit 
at the early stages of design, on the sustainability indica-
tors of supply chains. In this regard, Ribeiro et al. (2020) 
reviewed critically the literature on AM sustainability, 
observing the lack of research integrating the economic, 
environmental, and social dimensions so far. According 
to Narimissa et al. (2020) and Franco et al. (2020), sys-
tematic sustainable performance assessment is essential 
to the evaluation of various supply chain segments. How-
ever, they reported lack of data on the indicators affected 
by RP in the evaluation of social sustainability. Previous 
research in this regard provides no clear discussions on 
the social sustainability of RP due to its complicated 
nature and difficulty in quantification, while the poten-
tial variables and indicators that could measure the social 
impacts of RP have been partly recognized (Naghshineh 
et al. 2020). Occupational hazards, health risks, train-
ing, skills and knowledge of workforce were among the 
indicators that have attracted the attention of manage-
ment scholars more than other indicators. The criteria 
for work conditions are rather difficult to be evaluated 
quantitatively. Thus, the novelty and main contribution 
of our research is shedding light on the training, skills, 
and knowledge of the workforce as the prominent fac-
tors being affected by RP adoption. Notably, these vari-
ables also play a key role in the successful implemen-
tation of RP. Furthermore, the current literature lacks 
consistency. A model-based research is absent on the 
explicit benefits of RP utilization in the sustainability 
of conventional supply chains. RP utilization can affect 

several constituents of the supply chain, necessitating a 
systematic view and quantitative approach to configure 
the affected segments.

SD is an appropriate simulation method for modelling the 
sustainability of a supply chain, which is a complex system 
characterized by the nonlinear interactions of multiple fac-
tors, causal loops, and information feedback. The current 
research contributes to the model-based research regarding 
SSCM by considering the changes that RP introduces into 
the supply chain domain based on the analysis of the key 
variables patterns of the dynamic complexity, and behavior 
of a system over time. As a result, we could determine the 
range of the changes that RP offers to improve the supply 
chain sustainability, which largely depend on tactical and 
operational decision-making regarding the product design 
stage.

3  Methodology and modeling

SD is a methodology that was originally developed by 
Professor Jay Forrester at the Massachusetts Institute of 
Technology in the 1950s, applying computer simulation 
to analyze the dynamic behavior of complex, nonlinear, 
and multi-loop feedback systems. Two common usage of 
SD modeling are exploring plausible futures and study-
ing the implications of different policies. SD models are 
empirical and descriptive rather than normative. SD is a 
potent tool for focusing on feedback loops, accumulation 
processes, and delays (Größler et al. 2008). The asso-
ciations between the components of a system define the 
"structure" of that system, thereby generating dynamic 
behavior patterns over time (Angerhofer and Angelides 
2000). Thus, the model structure should provide a valid 
description of real processes (Sterman 2000). The main 
purpose of SD models is to dynamically describe, sim-
ulate, analyze complex issues and determine how and 
why the dynamic behaviors are generated so as to search 
for effective policies to improve the function of system. 
Moreover, SD measures the tendency of changes rather 
than the specific values of variables, thereby facilitating 
system analysis over time (Lee et al. 2012).

Making decision regarding the supply chain is sophisti-
cated since it encompasses suppliers, the manufacturer, dis-
tribution, and logistics. Complicated interactivities between 
each segment can influence supply chain performance. As 
support tools, simulation models contribute to the process of 
manufacturing decision-making and enable the recognition 
of the long-term impact of policies and decisions on relevant 
domains such as sustainability of the supply chain. Lack 
of research regarding SD has provided the opportunity to 
develop system dynamics in SSCM applications (Fontes and 
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Freires 2018). SD is considered to be a practical approach 
to the modeling sustainability of a supply chain, which is 
a complex system. SD uses both quantitative and qualita-
tive modeling methods (Zhang et al. 2013). Furthermore, it 
enables the modeling of multiple components, factors, and 
operational processes in a supply chain, and evaluates the 
sustainability indicators affected by the implementation of 
the new technology. As such, an analysis may vary in differ-
ent supply chains. We have proposed a model as generic as 
possible to facilitate its implementation in a wide spectrum 
of real cases.

Generic structures are useful method in transferring 
knowledge, contributing to the literature by offering 
holistic view of the system (Lane and Smart 1996). This 
generic model provides a systematic basis to develop spe-
cific customized models for actual manufacturers, thereby 
evaluating their managerial policies through simulations. 
For this purpose, its parameters should be re-configured 
depending upon specific industrial settings (Bonev 2012). 
A simple numerical example illustrates the function 
of this model. In this paper, Vensim software (version 
7.2) was applied for the system dynamics modeling and 
simulation.

3.1  System modeling

3.1.1  Indicators for the sustainability assessment

The SD model encompasses a large number of variables 
(factors) and their interactions (behaviors). The first step 

in the model development was the identification of fac-
tors and their interactions. In sustainability assessment, 
the indicators for each domain (economic, environmen-
tal and social) should be defined. To develop analytical 
models to assess sustainability, the selected indicators 
should meet the following criteria (Irfani et al. 2019; 
Sterman 2000):

1. The key indicators should be selected based on their 
significance and relevance to the scope of the research 
problem. Based on extensive literature review, the poten-
tial key sustainability indicators affected by RP utiliza-
tion in the supply chain were progressively defined and 
presented in Table 1, which was used as a basis for the 
quantitative model. It was found that total production 
costs are a dominant indicator in the evaluation of the 
economic dimension. Material consumption, waste gen-
eration, CO2 emission and product quality are among 
the most significant indicators of the environmental 
dimension and are affected by RP implementation. 
Regarding social dimension, a commonly overlooked 
aspect in RP utilization in prototyping processes is failed 
prototypes, which are associated with the shortage of 
skills and need for more iterations, which increase the 
total costs (da Silva Barros 2017). Therefore, research-
ers have emphasized the effects of RP implementation 
on skills development and training requirements (Please 
refer to Table 1).

2. Empirical validation is necessary for indicators 
collected from the literature since they need to be 

Table 1  Sustainability Indicators

Dimension Indicators Reference Definition and scope

Economic Total production costs (Li et al. 2020)
(Yang et al. 2020)
(Yang and Zhao 2018)

The financial domain was quantified in terms of the monetary value 
and included all the functions related to the income and expenditure 
of a firm. This variable is the sum of total repair cost, tooling cost, 
material purchasing cost, inventory cost, training cost for operators  
using RP, transportation cost and carbon penalty cost, which are 
indirectly influenced in the conventional supply chain through 
RP utilization. This indicator is necessary to achieve competitive 
advantage. Several studies have noted costs as the most important 
indicator in assessment of economic sustainability

Environmental Material consumption
Waste generation
CO2 emission
Product quality

(Ford and Despeisse 2016)
(Kellens et al. 2017)
(Peng et al. 2018)
(Dornfeld 2011)

Environmental domain of sustainability refers to the reduction of 
pollution and consumption of natural resources. The selected 
indicators in the present study were the variables most significantly 
influenced by RP implementation. In the current research, we 
primarily focused on "reduction" as a relative concept rather than 
an absolute quantity

Social Workforce skill and 
knowledge

(Yang et al. 2020)
(Alabi et al. 2019)
(Carter and Rogers 2008)
(Ribeiro et al. 2020)
(Taddese et al. 2020)
(Khalid and Peng 2021)

The social domain considers societal benefits and human safety. 
Knowledge is the ability of organizations to effectively learn and 
implement changes based on what they have learned. Knowledge 
consists of the training, experience, skill and insights of managers 
and workers in an organization
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relevant to practice. In the present study, a list of 
potential key variables affected by RP implemen-
tation was prepared. Afterwards, interviews were 
conducted with two experienced practitioners (more 
than six years) who had worked as senior technical 
manager of supply chains and product design direc-
tor of various manufacturers in additive manufactur-
ing because interviewing as a means of using expert 
judgment is an effective strategy in finding the key 
indicators within a system (Diker et al. 2005). The 
experts selected indicators based on their relevance, 
significance and priority.

3. Based on interview with experts, the indicators were 
selected in such a way that it was possible to simulate 
them from the available data. For this purpose, selected 
indicators had the potential to be quantified. For exam-
ple, assessing the social sustainability of RP implemen-
tation is inherently complicated. Although multiple 
indicators are associated with social dimension, it is 
difficult to quantify most of them (Mani et al. 2018). 
In the current research, the number of the iterations in 
the prototyping process and training duration (in weeks) 
were used to measure the knowledge and skills of the 
operators.

4. Literature review and experts interview revealed that 
there should be causality between the leading indica-
tors since their interaction with other key variables of 
the system over time will lead to the modification of 
the overall behavior of the system, which is referred to 
as dynamic behavior. Moreover, the selected indicators 
in system dynamics approach should assess both short-
term and long-term effects (Please refer to Figs. 1, 2, 
and 3 and their explanations).

5. General models in system dynamics approach are 
flexible. They should encompass the fundamental 
variables that could be applicable in every scenario to 
help practitioners start the process properly. Decision-
makers may also change values or add more variables 
depending on the local conditions within an industrial 
setting and choose the applicable ones. Therefore, the 
practical and technical aspects of various indicators 
should be considered for improving the quality of the 
entire system. In the present study, part consolida-
tion was considered as the main benefit of RP imple-
mentation, which could affect technical variables in 
the manufacturing systems. For instance, training 
duration in the social domain is assessed by the gap 
between the existing and required skill, which dif-
fers in various industries. Moreover,  CO2 emissions 
are measured based on the key influential factors that 
could be adjusted based on the performance of manu-
facturers. Total costs also are affected through many 

direct and indirect interrelationships among empirical 
variables.

6. In general models, selected variables and indicators 
should enable managers to recognize a broader prospec-
tive and allow decision-makers to focus on the processes 
that are most appealing or convenient. These indicators 
should also affect and optimize the model system-wide 
rather than locally since managers look forward to the 
requirements and long-term planning strategies that 
reduce the risks of new technology adoption. In the 
development of the proposed framework, we observed 
that RP implementation increases the demand for a 
qualified workforce. Furthermore, skills development 
is a social indicator that indirectly affects the sustain-
ability of an entire supply chain in terms of cost reduc-
tion and waste generation (Corsini and Moultrie 2019). 
Furthermore, material consumption and total costs were 
considered as environmental and economic dimension, 
respectively which were affected significantly by RP 
adoption.

3.1.2  Dynamic hypothesis and causal loop diagram (CLD)

The core of SD approach is the feedback structure in the 
system, which is the aim of building CLD (Sterman 2000). 
CLD is the graphical visualization which represents differ-
ent feedback processes and interactions among variables 
of the system and is useful for the conceptualization and 
depiction of its structure (Morecroft 1982). CLDs present 
information in visual context which is easy to understand. 
Based on the selected indicators, the causal relationships 
within each dimension were identified. The set of vari-
ables in CLD are linked together by arrows. The relation-
ships are labeled as positive (+) or negative (−). The posi-
tive (+) sign implies that an increase in cause leads to an 
increase in effect above what it would have otherwise have 
been. Likewise, the negative (−) sign denotes the opposite 
(Sterman 2000). These mechanisms create either positive 
(reinforcing) or negative (balancing) feedback loops. The 
loops are represented in the figures by R and B, respec-
tively. The interaction of both types of loops jointly deter-
mines the dynamics of the system. According to Sterman 
(2000) balancing and reinforcing feedback loops are the 
result of uncertainties in the innovation process that affect 
the whole structure of a system. Figures 1, 2, and 3 repre-
sent the CLDs of this research and the integrated CLD is 
provided in Appendix 1. The identified feedback loops in 
the CLDs can assess the impact of the RP utilization on 
the sustainability indicators. CLDs served as a frame to 
develop the stock and flow diagram, which is discussed in 
the following section.
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Figure  1 illustrates the effect of RP utilization on  
the product development phase in manufacturing pro-
cesses. This CLD is built on the assumption that the main 
advantage of rapid prototyping is the consolidation of vari-
ous parts and their integration into one component, which 
eventually leads to changes in different key variables of  
a manufacturing system. The interrelationships among the 
variables in feedback loops are discussed in detail in the 
following paragraphs:

R1 : The implementation of RP projects with the aim of 
consolidation reduces the number of the assembly parts 
in manufacturing, thereby resulting in lower material con-
sumption for the production of these parts in mass pro-
duction and decreased material purchasing costs. As a 
result, the total costs would decrease, which in turn 
increases the profit and investment to run more prototyp-
ing projects.
R2 : Reducing the number of assembly parts lowers 

inventory costs, thereby decreasing the total costs and 

reinforcing more RP projects to be implemented similar 
to the previous loop.
B1 : Consolidation increases the geometric complexity 

of the parts and enhances the tooling and total costs. On 
the other hand, profit reduction will decrease the num-
ber of RP projects and hinder the associated benefits.
B2 : Increasing the geometric complexity of assembly 

parts decreases the reliability of the components (Yang 
and Zhao 2018; Jung et al. 2021), which is considered  
to be a limiting factor in continuous part reduction and 
restricts RP projects. The reliability of a component 
refers to the likelihood that a component could function 
without failure, which is correlated with the geometric 
complexity of the parts (Fagade et al. 1998). According 
to Knofius et al. (2019), consolidation might increase 
repair costs since the replacement of sub-components 
becomes impossible, and the component should be 
replaced entirely; consequently, the total costs will 
increase.

Fig. 1  Manufacturing CLD
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Figure 2 shows the reinforcing loops consisting of the 
key variables associated with the suppliers and logistics 
of a supply chain, which are affected by RP utilization.

R1 : Since various components of a product require 
different materials, extensive ordering from different 
suppliers is essential. Therefore, reducing material con-
sumption through consolidation could decrease the sup-
plier base for purchasing various materials, while also 
reducing the supplier lead time and time to market, 
thereby enhancing profits
R2 : Consolidation through RP projects decreases 

material consumption and the number of the material 
suppliers. Therefore, the frequency of transportation for 

material purchasing and transportation costs will 
decrease, thereby reducing the total costs and increasing  
profit and RP projects.
R3 : Minimizing waste production in material process-

ing is another outcome of reducing material consump-
tion. As a result, the number of long-distance disposal 
transportations, transportation costs, and total costs will 
decrease, thereby increasing the number of RP projects.
R4 : With the decreased frequency of transportation 

for waste disposal and raw material, total fuel consump-
tion will decrease as well. Consequently,  CO2 emission 
(Dornfeld 2011), carbon penalty costs, and total costs 
will also decrease.

Fig. 2  Suppliers and Transpor-
tations CLD
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Figure 3 illustrates the effects of RP implementation 
on the social sustainability indicators. In prototyping pro-
cesses, a commonly overlooked aspect is failed prototypes, 
which are associated with a lack of skilled operators and 
designers and lead to higher costs due to more iterations 
(da Silva Barros 2017). Feedback loops show the extent 
to which operators’ skills and knowledge increase as a 
result of RP implementation. The proper application of the 
RP technology with the aim of reducing failed prototypes 
forces employees to be updated and develop new skills, 
and the skills of operators increase through trial-and-error 
and part-time training. In the current research, the feed-
back loops indicated that operators’ skills not only were 
affected positively by RP implementation but also were 
enabler for successful RP implementation in sustainable 
supply chain. As a result, the proposed indicator is consid-
ered an essential strategy in the proposed model.

R1 : This reinforcing loop shows the role of iterations for 
prototyping in workforce skills development. The skills 
of operators could be enhanced through trial-and-error in 
each iteration to result in the discovery of design flaws at 

the early stages of prototyping. Furthermore, this process 
improves the quality of the products and customer satis-
faction, thereby increasing profit. These benefits encour-
age the implementation of more rapid prototyping pro-
jects.
B1 : As mentioned earlier, consolidation may decrease 

the reliability of assembly parts, thereby necessitating 
more iterations in the prototyping phase. In the RP 
workflow, the assembly parts that are built through 3D 
printing should have acceptable quality in order to pass 
functional tests, which ensure their appropriateness for 
mass production. RP operators are responsible for 
assessing the quality of these parts. In case of rejec-
tion, the failed prototypes in prototyping phase will 
increase, and the components will have to be re-built. 
Part-time training is essential to the development of 
workforce skills since the lack of qualified experts is a 
crucial barrier to successful RP implementation 
(Colletti 2016; Ghadge et al. 2020; Li et al. 2020). 
Therefore, RP implementation prompts operators to 
participate in training and professional requalification 
to develop new skills (Naghshineh et al. 2020).

Fig. 3  Workforce Skill CLD
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3.1.3  Stock and flow diagram (SFD)

Stock and flow diagram is the quantitative form of CLD. 
SFD is used to establish the mathematical equations in 
order to run various simulations of the model, analyz-
ing the dynamic behavior of the system. There are four  
types of variables in SFD: (1) flow, (2) stock, (3) con-
verter (or auxiliary) and (4) connectors. Stock variables 

are the states of the system and refer to the accumula-
tions in the system. Stock variables are accumulated or 
depleted depending by flows (change rates) across time. 
Flow variables represent the rates at which stock vari-
ables change. Converters are represented by general vari-
ables, acting as intermediate variables in calculations. 
Connectors are shown by simple arrows and represent the 
cause and effect directions. Stocks are usually quantities 
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Fig. 4  SFD for Rapid Prototyping Process



 N. H. Arian et al.

1 3

while flows must be measured in the same units per time 
period (Sterman 2000). Stock variables are generally rep-
resented as a box whereas the flow variables are repre-
sented as a valve on the pipe connected to the box. For 
example, in this model workforce skill is considered as 
a stock variable because it is accumulated through itera-
tions and training over time. Therefore, two latter men-
tioned variables are flow variables. Due to the high  
number of variables and their complex interrelation-
ships, SFD of this research is presented in 2 subsystems,  
namely rapid prototyping process and benefits of RP  
implementation (Figs. 4 and 5).

Subsystem A: rapid prototyping process Figure 4 illustrates 
the RP utilization in the design and product development 
phase. In the current research, the proposed model assumes 
that a manufacturer utilizes RP to redesign assembly parts 
with the aim of consolidation. Therefore, the total number 
of assembly parts will decrease if more RP projects are run 
in the design phase. Initially, designs are prepared, and pro-
totypes are built by a 3D printing machine. It is assumed 
that the manufacturer will be capable of running three pro-
totyping projects within one year, followed by other pro-
jects in the future. Therefore, the stock of the RP proto-
types will increase through the iteration rate, which is the 
sum of the prototypes built during three projects and the 
second phase (iterations in future projects). RP prototypes 
may be rejected or accepted after functional tests through 
comparison with the desired quality. In case of rejection, 
the components have to be re-built. This process is repeated 
after discovering errors and design flaws. Simultaneously, 
the model shows the skill development of the operators who 
are involved in the projects. The skill of the operators could 
increase through training programs and self-learning (trial-
and-error with numerous iterations). In addition, the need 
for training is determined by a skills gap, which is measured 
based on the comparison of the current status and the accept-
able level of skills. Improving the skills of operators will 
decrease the time required to detect errors, thereby helping 
the operators to discover more design flaws and increase the 
quality of the products. The model also shows variables such 
as the number of the operators, training costs, and training 
duration in processes.

Subsystem B: benefits of RP implementation Figure 5 shows 
the long-term effects of RP implementation on the main seg-
ments of a conventional supply chain. The proposed model 
encompasses variables such as geometric complexity, tool-
ing cost, repair cost, transportation cost, number of material 
supplier, amount of CO2 emission, frequency of transpor-
tations, and reliability of components, etc. Note that dou-
ble lines across the arrows indicate delay flows. Logically, 
effects of the reduced number of assembly parts on the total 

material consumption in mass production, number of the 
suppliers, and total inventory costs often involve significant 
delays. The figure also demonstrates variables such as aver-
age distance to material suppliers, average distance to the 
waste disposal sites, and their effects on the total fuel con-
sumption and transportation costs. The interaction between 
the variables has been discussed in detail in the previous 
section regarding CLDs. Some auxiliary variables have also 
been provided in the figure, which were required for the 
mathematical equations (please refer to Appendix 2).

Finally, we listed a number of assumptions throughout the 
analysis in order to simplify the system and facilitate the mod-
eling process by focusing on the most important factors in this 
regard:

• Each assembly part is produced 5,000 times.
• Simulation period is 520 weeks (10 years).
• Post-processing related to prototyping is not considered.
• Part-time training is implemented for the technicians 

that are familiar with subtractive manufacturing pro-
cesses in order to enhance their skills in the RP field. 
The key advantage of this policy is flexibility for the 
participants, briefer absences on the job, and lower 
costs of recruiting new professional staff.

• We only considered  CO2 emissions through the logistic 
operation, and the produced emissions in the manufactur-
ing or 3D printing processes were disregarded.

• (1) Truck capacity for material purchasing is 22000 
Kilograms (Kg), (2) truck capacity for waste disposal is 
15000 kg, (3) number of material supplier is 1/5 of total 
assembly parts

• All the assembly parts are produced by one manufacturer. 
Therefore, consolidation will only decrease the material 
supplier base.

3.1.4  Mathematical formulation

In order to simulate the SFD model, it should be translated 
to different equations. Note that the exact values of the 
parameters were not as important as the recognition of the 
changes in the behavior of the system in various scenarios. 
Moreover, the generality of the model provides the oppor-
tunity for decision makers to change and customize values 
within different products and industries (Poles 2013) since 
numbers lack significance in the SD simulation, while the 
trend analysis is prioritized. However, numbers should be 
close to real situations (Boateng et al. 2017). In this generic 
SD model, assumptions, equations and constant parameters 
for exogenous variables were derived from extensive search 
in secondary data sources (e.g. scientific papers, academic 
articles, business reports and case studies). The most criti-
cal relations were assessed based on discussion with two 
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experienced practitioners and some equations were written 
by common logic. Some of the equations regarding the 

important variables were presented in Table 2 (Main equa-
tions are provided in Appendix 2).
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Fig. 5  SFD for Benefits of RP implementation
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3.2  Model validation

According to Barlas (1989) structural and behavioral 
validity tests are essential to the validation of system 
dynamic models. Structural validity evaluates the struc-
ture of a model to be representative of real structures. 
Behavioral validity assesses the capability of a model 
for the production of an acceptable output behavior. 
Structure validation is achieved by the comparison of 
model equations with the available theory and real sys-
tem relationships. Behavior validation is achieved by 
determining whether the behavior patterns generated 
by the model are close to the major patterns exhibited 
by the real system, along with the examination of the 
model behavior under different circumstances. Due to 
the long-term orientation of the model in the behavior 
validity tests, emphasis should be placed on the pattern 
prediction rather than point prediction (Barlas 1989). 
Moreover, interviewing as a means of using expert judg-
ment is regarded as an effective strategy in model vali-
dation (Diker et al. 2005). For this purpose, we reviewed 
the industrial case reports and relevant prior research in 
order to validate the model structure. In addition, inter-
views were conducted with two experienced practition-
ers who work for more than six years as senior techni-
cal manager for the supply chain and product design 
director of different manufacturers in additive manu-
facturing. We enquired these experts about their opinion 
regarding CLDs and SFD to ensure that the model met 
their assumptions and mental maps since each model 
element must have a counterpart in the real world, and 
the behavior of the model should reflect historical data 
(Sterman 2000). Afterwards, we discussed our findings 
with these experts, and they confirmed that RP utiliza-
tion most significantly affects the proposed indicators 
that are feasible in any industrial contexts. They also 
confirmed that model structure could provide a valid 
description of the real processes, and model prediction 
was sufficiently similar to the actual behavior of system. 
Therefore, the model considered valid and accurate for 
forecasting purposes. Finally, the two most significant 
and practical indirect structural tests (extreme condition 
and behavior sensitivity analysis) were applied to ensure 
the validity of the model.

3.2.1  Extreme conditions test

Extreme conditions test is used to determine whether 
the model behaves appropriately when the inputs take 
on extreme values, such as zero or infinity (Sterman 
2000). Through this test, extreme values were assigned 
to the selected parameters in order to compare the gen-
erated behavior with the predicted behavior of the real 

system under extreme conditions. Sensitivity testing is 
the process of changing assumptions about the value 
of the constants in a model and examining the result-
ing output. The sensitivity test was applied in order to 
search for errors in models, and recognize the relation-
ships between the inputs and outputs (the link between 
structure and behavior), and examine the robustness of 
the outcomes for a base case scenario. It is often recom-
mended to test the sensitivity of a model to small and 
even extremely large parameter changes. If the model 
could be run at the maximum values with no error, 
the robustness of structure would be confirmed (Pruyt 
2013). Two extreme condition tests are presented in this 
section.

Extreme conditions test1: a sudden drop in the part reduc-
tion rate In the base run, the decreased rate of the total 
assembly parts was affected by both variables of reduc-
tion per first three projects (first year of the simulation) and 
reduction per other projects. Suppose that suddenly and 
unexpectedly, the reduction rate drops to zero after 1 year. 
What would happen to the behavior of the system?

Apparently, if there is no reduction rate for other projects 
run, number of the assembly parts will remain constant. The 
behavior resulted from the model matched to our expecta-
tion (Fig. 6). So, the model passed the extreme condition 
test 1. This test confirmed that the model structure yielded 
meaningful behavior under extreme parameter values and 
this behavior was in line with the empirical and theoretical 
evidence.

Extreme conditions test2: eliminating distance in supply 
chain processes In this test, we assumed that the value of 
the distance parameter decreased to zero for both material 
purchasing and waste disposal. In this extreme scenario, 
no fuel consumption and carbon emissions are expected. 
The behavior resulted from the model successfully met 
our expectation under this extreme test and demonstrated 
the robustness of the structure. The result is shown in 
Fig. 7.

3.2.2  Sensitivity analysis

Sensitivity tests primarily indicate that without cer-
tainty regarding the exact values of the parameters, the 
conclusions drawn from the model could be supported. 
Through this test, the modeler’s uncertainty about the 
behavior decreases because it shows that changes in 
the parameter value does not produce extreme reaction. 
Due to the large number of variables and their complex 
interrelationships, a comprehensive sensitivity analysis 
is not possible since it requires testing all combinations 
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of assumptions over their possible range of uncertainty. 
Two sensitivity analysis tests were executed as described 
below.

Sensitivity analysis test 1: value of distance to the dis-
posal site In the base run test it was assumed that dis-
tance to the waste disposal sites equals 4000 Kilometers. 
As no data were available to estimate this parameter 
accurately, we ran the model with the value of 1,000 in 

sensitivity analysis test to determine possible changes 
in behavior. A set of behaviors with a similar pattern 
resulting from the two runs is illustrated in Fig. 8. This 
test indicated that some differences are obvious in the 
behavior of model due to changes in the value of param-
eters. However, the general behavior is relatively insen-
sitive to changes in parameters. (Note that total distance 
travelled by vehicles for waste disposal = frequency of 

Fig. 6  The system behavior in 
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transportation for waste disposal * distance to the dis-
posal site).

Sensitivity analysis test 2: Duration of training In simu-
lation of base (current) model, we initially assumed the 
training duration of 15 weeks for each operator. Then we 
changed it to 30 weeks. As shown in Fig. 9, the behavior 
pattern of the skill in both runs did not change greatly. 
The only difference was that it took the system longer to 
reach an acceptable level of skills with a shorter training 
duration, which corresponded to real situations.

4  Simulation and results

In this section, model behavior is analyzed through a graphi-
cal presentation using Vensim. Time horizon for simulation 
was set at 520 weeks (10 years), assuming that during this 
specific timespan, a firm would be capable of running three 
prototyping projects within one year, followed by other pro-
jects in the coming years. The effects of RP utilization on 
the supply chain sustainability were simulated. Figure 10 
illustrates the total number of the assembly parts after RP 
utilization in the design phase of the product development, 

Fig. 8  The comparison of the 
model behavior in sensitivity 
analysis test 1
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demonstrating descending goal-seeking behavior. Therefore, 
it is concluded that RP utilization could decrease the number 
of assembly parts. However, the balancing loops encompass-
ing variables such as the tooling costs, and reliability of the 
components reduced the speed of the process over time. In 
other words, the geometric complexity of the parts as a lim-
iting factor must be considered in the consolidation process 
because it plays a key role in the tooling costs and reliability 
of the parts.

4.1  Sustainability indicators

4.1.1  Economic dimension

Figure 11 shows the behavior of the total costs in simulation 
period. Notably, the average repair and tooling cost for each 
part increased due to the increased geometric complexity of the 
parts. However, total cost keeps on decreasing due to the reduc-
tion in number of assembly parts and other costs in the system.

Fig. 11  Simulated dynamic 
behavior of total cost Total costs
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behavior of total number of 
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The S-shaped limited growth behavior of the average 
repair cost per assembly part could be attributed to the 
increase in complexity and unreliability of the compo-
nents, which is in line with expert opinions and the lit-
erature in this regard. Initially, the growth behavior was 
exponential, then gradually plunged to reach the system 
equilibrium level; as a result, the outcome resembled an 
extended S. The total repair costs indicated S-shaped 
growth with an overshoot behavior and a slight reduction 
after the determined period, which was due to the fact 
that the total number of the assembly parts also decreased 
over the period. Similarly, such behavior is observed in 
the average tooling costs per part. According to expert 
opinions, tooling costs mainly depend on the geometric 
complexity of the parts. Although complexity enhance-
ment could increase the total tooling costs, reduction in 
the number of assembly parts could limit its upward trend 
(see Figs. 12, 13, 14, and 15).

4.1.2  Environmental dimension

Quality of products Quality of products increased exponen-
tially, which was affected significantly by skill of operators. 
As their skill increases through iterations and training, they 
can discover more design flaws, contributing to quality of 
products. Figure 16 indicates that quality of products has 
quadrupled through RP utilization.

Total material consumption and waste generation A sub-
stantial reduction was observed in the assembly parts, as 
well as the material consumption in the production process; 
this also reduced waste generation during material process-
ing, as shown in Figs. 17 and 18.

CO2 emission According to the findings, the reduction in 
the number of parts leads to the reduction of the suppliers 
of raw materials and the frequency of transportation in the 
supply chain. As mentioned earlier, transportation is one of 
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the main sources of  CO2 emissions. The simulation results 
demonstrated at least 35% decrease in fuel consumption and 
 C02 emissions. Figure 19 illustrates the descending behavior 
of mentioned variables.

4.1.3  Social dimension

Skill of operators As depicted in Fig. 20, several iterations 
to find an appropriate design lead to self-learning through 
trial-and-error. Moreover, training programs could improve 
the skills of the operators. Goal-seeking behavior regard-
ing this variable is generated since the process of building 
prototypes continued until reaching the acceptable quality; 
in other words, the system achieved its goal and stabilized. 
Figure 21 illustrates the failed prototypes in the prototyp-
ing process, and the graph shows an oscillation behavior 
since the workforce with fewer skills failed in building the 
prototypes during the initial projects. Furthermore, an oscil-
lation occurred in the process between the two stocks (i.e., 
operators' skills and failed prototypes), and the degree of 
oscillation was affected by a delay in the system. By increas-
ing the operator's skill after one year, the rate of the failed 

prototypes decreased. Therefore, it could be concluded that 
the skills of the operators play a pivotal role in reducing 
failed part in the prototyping process.

5  Discussion

RP implementation in the design phase of products has 
potential effects on the sustainability pillars. The existing 
research qualitatively has implied the possible effect of RP 
on supply chains. SD moldels provide an appropriate frame-
work to help decision makers in recognizing the behavior of 
a system within a specific period. Organizations can cope 
with the uncertainty of new technologies through learn-
ing and knowledge management (Sterman et al. 2015). The 
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present study aimed to bridge the gap in literature by pro-
viding a simulation model that could practically and quan-
titatively increase the knowledge of managers and asses the 
prospected benefits in different segments of a supply chain, 
thereby assisting the decision-making process regarding 
technology implementation. For this purpose, a generic 
model was developed with an emphasis on measuring the 
sustainability of the supply chain based on key indicators. 
Provided simulation model can practically and quantita-
tively increase knowledge of managers and asses the pros-
pected benefits to different segments of a supply chain. The 
main factors considered in the simulation of the model were 
the total costs, material consumption and waste generation 
during production, quality of the products,  CO2 emissions 
through the transportations in the supply chain, and skills of 
the operators working with 3D printing machines.

According to the simulation results, part consolidation 
is the main benefit of RP implementation and has numer-
ous effects on several constituents of the supply chain. 
In addition, design stage significantly influences costs as 
an economic domain of sustainability through multiple 

segments of the supply chain. Total costs are affected by 
variables such as costs of material purchasing, inventory, 
tooling, component repair, transportation, and carbon pen-
alty through several short-term and long-term feedback 
loops. By determining the effects of the total costs through 
RP adoption at various stages of SC, this research deepens 
our understanding of the complex nature of SC, thereby 
providing insight into having a systematic perspective. 
The total costs of a system will decrease if more RP pro-
jects are run in the design phase since no tooling will be 
required in RP, and the designers will be able to conduct 
various iterations without cost penalties (with the excep-
tion of the failed prototypes in the prototyping process). 
This finding is in line with literature regarding potential 
benefits of RP implementation reported previously (Li 
et al. 2017, 2020; Yang and Zhao 2018; Yang et al. 2020).

RP enables design optimization which minimizes waste 
generation and material consumption, thereby decreasing the 
number of the suppliers providing raw materials and spare 
parts, shortening the supply chain by eliminating unnecessary 
actors, and reducing the logistics and long-distance transpor-
tation. As a result, logistics and  CO2 emissions will decrease, 
contributing to economic and environmental sustainability. 
In other words, RP improves product development processes 
and decreases the number of stages in a conventional supply 
chain, which will in turn reduce supply chain complexity and 
costs. These findings are consistent with the contention of the 
previous studies in this regard (Niaki and Nonino 2017a, b; 
Yang and Zhao 2018; Rinaldi et al. 2021). Correspondingly, 
part consolidation increases the geometric complexity and 
tooling costs in mass production. The replacement of sub-
components is not possible due to consolidation, forcing the 
replacement of the entire defective part, which increases the 
repair costs. This finding complements pervious research car-
ried out in this regard (Knofius et al. 2019).

One of the main barriers to RP implementation is a lack of 
professionals in design and 3D machine operating (Thomas-
Seale et al. 2018; Seidel and Schätz 2019; Matos and Jacinto 
2019). Implementing new technologies in an organization 
requires organizational learning and proper training programs. 
RP adoption changes the work structure and requirements for 
the development of new skills, which is a social sustainabil-
ity indicator. Simulation results indicated that designers who 
are unfamiliar with RP processes may experience numerous 
failures, which will in turn increase the iteration rate in pro-
totyping phase, waste production during the printing process 
and RP material consumption. Our findings shed light on the 
role of part-time training and iterations (learning by doing) in 
knowledge development, which significantly reduce the rate of 
failure, production stages, printing duration, and material waste 
by discovering design flaws at an earlier phase. Skill develop-
ment also contributes to the quality of products. The present 
study complements previous research findings (Friesike et al. 
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2019; Ghadge et al. 2020). The findings of the current research 
are in line with the human capital theory, which refers to invest-
ment in human skills through on-the-job training and ‘learn-
ing by doing’ with aim of increasing labor productivity, which 
influences the overall sustainability of organizations (Šlaus and 
Jacobs 2011). The results also indicated that workforce skills 
development is both a goal in itself and a means to success-
ful RP implementation in a sustainable supply chain. Hence, 
it could be inferred that the social domain also influences the 
manufacturing indirectly through the financial and environ-
mental domains. Such measures could guarantee success in the 
short-term and long-term use of the technology (Colletti 2016; 
Thomas-Seale et al. 2018; da Silva Barros 2017).

6  Conclusion and direction for further 
research

An innovation process is highly complex and unpredictable 
depending on multiple variables and their interactions. Inno-
vation and technology management are dynamic and complex 
phenomena that evolve over time. Decision regarding the adop-
tion of new technologies is often made with uncertainty about 
cost and benefit. Khan and Yu (2020) reported that the success-
ful implementation of innovations such as sustainable practices 
depends on the support and awareness of the senior managers. 
Sustainable technologies will affect not only a single firm, but 
also the entire supply chain, thereby necessitating each segment 
to manage the new changes and uncertainties (Jiang et al. 2017). 
Making decision in the uncertain world of business, managers 
must have adequate knowledge and a systems-oriented perspec-
tive about the interactions, nonlinearities, and feedbacks among 
supply chain entities, which often involve significant delays. SD 
models are recognized as learning models since they consider 
complex factors and time lags in decision-making processes 
(Rodríguez and Aguirre 2013). As a strategic management tool, 
SD models encompass the uncertainty, structure, and complex 
concepts that help decision-makers to increase their knowledge 
about RP adoption. In the current research, the key motivation 
to use an SD model for RP adoption was to allow managers to 
understand future changes, explore the effects of different deci-
sions, and learn about factors that may influence outcomes. Our 
findings demonstrate the long-term impact of RP adoption by 
providing a holistic view of the system and the challenges that 
need to be overcome, developing the knowledge of manufac-
turers within the context of Industry 4.0. An important insight 
derived from the simulation was that RP adoption leads to 
organizational changes, shortens logistics chains, and decreases 
the number of suppliers, thereby reshaping the SC structure to 
be flattened, increasing the flexibility and resilience of the SC 
operations, and reducing the complexity of management.

RP adoption has several managerial implications 
such as configuration in design processes, suppliers, and 

logistic chains. The findings revealed that geometric com-
plexity of the parts as a limiting factor plays a key role  
in tooling costs and the reliability of the parts and must be 
considered in the consolidation process. Therefore, designers 
should consider the trade-off between environmental and eco-
nomic benefits. Another important contribution of our model 
is introducing the technical and operational variables that indi-
cate the inconclusive effects of RP adoption. According to the 
simulation results, successful RP implementation is highly  
dependent on the operator's knowledge. A lack of design 
guidelines increases iterations, failed prototypes, and costs. 
Therefore, it is suggested that managers invest in technology-
based training to increase operators’ skills and maximize 
economic and environmental benefits by reducing the total 
costs and waste generation. According to Niaki and Nonino 
(2018), the technicians who are familiar with digital manu-
facturing systems (e.g., CNC machines) could be trained 
through specific educational courses as they are more likely 
able to learn the operating of AM technologies. Some AM-
related skills include designing models for 3D printing, mate-
rial selection, material specification/properties, material 
reuse, process selection, testing, measurement, and machine 
maintenance (Despeisse et  al. 2017). Skill improvement  
is highly effective in operational success.

By using the proposed model in the current research, man-
agers will be able to determine intended, unintended, short-
term, and long-term consequences and identify the benefits 
of RP to decide whether switching from conventional meth-
ods to RP is worthwhile in the product development and 
design phases. The current research is among the first studies 
to provide a generic simulation model within a technology 
implementation context. The primary benefit of the proposed 
generic model is that it is potentially applicable to a wide 
range of industries. Furthermore, the flexibility of the model 
enables adjustments, expanding boundaries, and more sophis-
tication, which improve its utility and help managers with 
long-term strategic planning, policy evaluation, and scenario 
analysis. Our general model could also be used as a reference 
to develop specific customized models for actual manufactur-
ers to evaluate their managerial policies and conduct risk-free 
experiments through simulation. Notably, model validity tests 
confirmed the significant structural flexibility of the proposed 
model, and its parameters could be reconfigured in any case 
with an emphasis on the firm’s costs and profits. In the present 
study, we used numerical examples to examine the potential 
applicability of our model. We believe that our findings lay the 
groundwork for industrial RP applications since recognizing 
the benefits of these technologies will largely influence the 
adoption process in the long run.

The proposed model did not encompass variables such 
as assembly time/costs, assembly complexity, and other 
factors associated with the manufacturing process in order 
to limit the scope of the study. Although these factors 
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might significantly affect the supply chain performance, 
they largely depend on specific business cases and are not 
proper for generic models. Moreover, the unavailability of 
some reference values or empirical data were the main lim-
itations of the current research, and further investigation is 
recommended to develop and expand the proposed model.

Appendix 1 Integrated causal loop diagram
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Fig. 22 Integrated causal loop diagram.
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Appendix 2 Equations

Acceptable skill level = 100%
Average tooling cost = complexity* Price increase per 

complexity
(Based on the model purpose, it is assumed that increase 

in geometric complexity will increase tooling costs)
Average order lead time = 1 week
(It is assumed that average order supplier lead time is 

one week)
Total fuel consumption = (fuel consumption per km for 

material supplying*total km for material purchasing trans-
portation) + (total km for waste disposal*fuel consumption 
per km for waste disposal)

Quality = INTEG (increase,0)
Increase through iterations = time to increase look up (RP 

prototypes)
time to increase look u p([ (0, 0)- (12 0,1 0)] ,(0 ,0. 1), (5, 0.3), 

(8.8 073 4,0 .70 175 5), (13 .76 15, 1.3 596 5), (19 .37 61, 1.5 789  
5), (29 ,1. 666 67) ,(3 0,1 .5) ,(3 5,1 .4) ,(4 0,0 .9) ,(45.107,0.7456 
14),(48,0.5),(50,0.2),(120,0))

(Increase in skill of operators through iterations is 
based on the time and number of prototypes they make)

Discover = RP failed prototypes /time to detect
Increase through training = (training requirement*c)/

personnel*duration
RP Prototypes = INTEG (iteration rate + second phase-

rejection rate)
(This is the sock variable which is sum of the input rates 

and output rates)
Transportation cost = (total km for waste disposal + total 

km for material purchasing transportation)*average extra 
cost for transportation per Km + total fuel cost

Frequency of transportation for material purchas-
ing = number of material supplier*(total material con-
sumption in production/truck capacity)

Fuel consumption per km for material supplying = 
 48L/100KM

Fuel consumption per km for waste disposal = 
32L/100kM

Iteration rate = iteration for first project + iteration for sec-
ond project + iteration for third project.

Skill gap = acceptable skill level-operator skill
Average material consumption per assemble part = 0.3 kg
Number of material supplier = DELAY1 (1/5*total of 

assemble parts, 52)
Supplier lead time = average order lead time*number of 

material supplier
Design = IF THEN ELSE (New designs released > 0, 

discover-iteration rate, 0)

Frequency of transportation for waste disposal = waste 
generation in material processing during production/truck 
capacity 2

Total distance (km) for waste disposal = frequency of 
transportation for waste disposal*distance to the disposal site

Total material consumption in production = DELAY1 
(total of assemble parts*production number*average mate-
rial consumption per assemble part, 53)

Decrease rate = reduction per project in first 
year + DELAY1 (reduction per other project, 53)

Total repair cost = total of assemble parts*production 
number*average repair cost per unit

Total tool cost = total of assemble parts*average tooling 
cost per unit

Total waste in material processing during produc-
tion = total material consumption in production*waste

Training cost = training requirement*cost per training 
duration*personnel

Training requirement = skill gap/adj time
Material purchasing cost = average cost per one kg 

material*total material consumption in production
Operator skill = INTEG (increase through itera-

tions + increase through training,
Total cost = redesign cost + carbon penalty cost + material 

purchasing cost + total tool cost + training cost + transporta-
tion cost + inventory cost

Total fuel cost = total fuel consumption*fuel cost per liter

References

Ahi P, Searcy C (2013) A comparative literature analysis of definitions 
for green and sustainable supply chain management. J Clean Prod 
52:329–341

Alabi MO, De Beer D, Wichers H (2019) Applications of additive man-
ufacturing at selected South African universities:Promoting addi-
tive manufacturing education. Rapid Prototyp J 25(4):752–764

Angerhofer BJ, Angelides MC (2000) System Dynamics Modelling in 
Supply Chain Management: Research Review. Paper Presented 
at the 2000 Winter Simulation Conference, Orlando, FL

Arrighi PA, Mougenot C (2019) Towards user empowerment in product 
design: A mixed reality tool for interactive virtual prototyping. J 
Intell Manuf 30(2):743–754

Ashour Pour M, Zanoni S, Bacchetti A, Zanardini M, Perona M (2017) 
Additive manufacturing impacts on a two-level supply chain. Int 
J Syst Sci: Oper Logist 1–14

Attaran M (2017) The rise of 3-D printing: The advantages of addi-
tive manufacturing over traditional manufacturing. Bus Horiz 
60(5):677–688

Barlas Y (1989) Multiple tests for validation of system dynamics type 
of simulation models. Eur J Oper Res 42(1):59–87

Baumers M, Wildman R, Wallace M, Yoo J, Blackwell B, Farr P, Roberts 
CJ (2019) Using total specific cost indices to compare the cost 



Assessment the effect of rapid prototyping implementation on supply chain sustainability:…

1 3

performance of additive manufacturing for the medical devices 
domain. Proceedings of the Institution of Mechanical Engineers, 
Part B: Journal of Engineering Manufacture 233(4):1235–1249

Berg V, Birkeland J, Nguyen-Duc A, Pappas IO, Jaccheri L (2020) 
Achieving agility and quality in product development-an empiri-
cal study of hardware startups. J Syst Softw 167:110599

Berman B (2012) 3-D printing: The new industrial revolution. Bus 
Horiz 55(2):155–162

Boateng P, Chen Z, Ogunlana SO (2017) Megaproject Risk Analy-
sis and Simulation: A Dynamic Systems Approach. Emerald 
Publishing Limited

Bonev M (2012) Managing reverse logistics using system dynamics: 
A generic end-to-end approach. Diplomica Verlag

Carter CR, Rogers DS (2008) A framework of sustainable supply 
chain management: Moving toward new theory. Int J Phys Dis-
trib Logist Manag 38(5):360–387

Chakravarty TK, Panigrahi SK (1996) Strategies for solid waste man-
agement in SAIL steel plants. Nmlindia 52–62

Chen D, Heyer S, Ibbotson S, Salonitis K, Steingrímsson JG, Thiede 
S (2015) Direct digital manufacturing: definition, evolution, 
and sustainability implications. J Clean Prod 107:615–625

Choi S, Ng A (2011) Environmental and economic dimensions of 
sustainability and price effects on consumer responses. J Bus 
Ethics 104(2):269–282

Chung HS, Kim SP, Choi Y (2020) Using additive manufactured 
parametric models for wind tunnel test-based aerodynamic 
shape optimization. Rapid Prototyp J

Colletti RC (2016) A study of positions available in additive 
manufacturing/3D printing and the education and skill require-
ments for these positions. Eastern Michigan University

Corsini L, Moultrie J (2019) Design for social sustainability: Using 
digital fabrication in the humanitarian and development sector. 
Sustainability 11(13):3562

da Silva Barros K (2017) Identification of the environmental impacts 
contributors related to the use of Additive Manufacturing tech-
nologies (Doctoral dissertation, Université Grenoble Alpes)

Despeisse M, Baumers M, Brown P, Charnley F, Ford SJ, Garmulewicz 
A, Rowley J (2017) Unlocking value for a circular economy through 
3D printing: A research agenda. Technol Forecast Soc Chang 
115:75–84

Diegel O, Singamneni S, Reay S, Withell A (2010) Tools for sustain-
able product design: additive manufacturing. J Sustain Dev 
3(3):68–75

Diker V, Luna-Reyes LF, Andersen DL (2005) Interviewing as a 
strategy for the assessment of system dynamics models. 23rd 
International Conference of the System Dynamics Society, 
Boston, MA

Dornfeld D (2011) Leveraging manufacturing for a sustainable future. 
In Glocalized Solutions for Sustainability in Manufacturing, 
Springer, Berlin, Heidelberg, pp 17–21

Dubey R, Gunasekaran A, Papadopoulos T, Childe SJ, Shibin KT, 
Wamba SF (2017) Sustainable supply chain management: 
Framework and further research directions. J Clean Prod 
142:1119–1130

Fagade A, Kapoor D, Kazner D (1998) A discussion of design and manu-
facturing complexity. Modelling in mechanical engineering and 
mechatronics: towards autonomous intelligent software models

Favi C, Germani M, Mandolini M (2016) Design for manufacturing and 
assembly vs. design to cost: Toward a multi-objective approach 
for decision-making strategies during conceptual design of com-
plex products. Procedia CIRP 50:275–280

Fontes CHDO, Freires FGM (2018) Sustainable and renewable energy 
supply chain: A system dynamics overview. Renew Sustain 
Energy Rev 82:247–259

Ford S, Despeisse M (2016) Additive manufacturing and sustainability: 
An exploratory study of the advantages and challenges. J Clean 
Prod 137:1573–1587

Franco D, Ganga GMD, de Santa-Eulalia LA, Godinho Filho M (2020) Con-
solidated and inconclusive effects of additive manufacturing adoption: 
A systematic literature review. Comput Ind Eng 148:106713

Friesike S, Flath CM, Wirth M, Thiesse F (2019) Creativity and 
productivity in product design for additive manufacturing: 
Mechanisms and platform outcomes of remixing. J Oper Manag 
65(8):735–752

Fritz MM, Schöggl JP, Baumgartner RJ (2017) Selected sustainability 
aspects for supply chain data exchange: Towards a supply chain-
wide sustainability assessment. J Clean Prod 141:587607

Ghadge A, Kara ME, Moradlou H, Goswami M (2020) The impact of 
Industry 4.0 implementation on supply chains. J Manuf Technol 
Manage 31(4):669–686

Gibson I, Rosen DW, Stucker B (2014) Additive manufacturing tech-
nologies, vol 17. Springer, New York

Glavič P, Lukman R (2007) Review of sustainability terms and their 
definitions. J Clean Prod 15(18):1875–1885

Greer JL, Jensen DD, Wood KL (2004) Effort flow analysis: A meth-
odology for directed product evolution. Des Stud 25(2):193–214

Größler A, Thun JH, Milling PM (2008) System dynamics as a struc-
tural theory in operations management. Prod Oper Manag 
17(3):373–384

Hassini E, Surti C, Searcy C (2012) A literature review and a case study 
of sustainable supply chains with a focus on metrics. Int J Prod 
Econ 140(1):69–82

Hekkert MP, Suurs RA, Negro SO, Kuhlmann S, Smits RE (2007) 
Functions of innovation systems: a new approach for ana-
lysing technological change. Technol Forecast Soc Chang 
74(4):413–432

Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufactur-
ing and its societal impact: a literature review. Int J Adv Manuf 
Technol 67(5–8):1191–1203

Irfani DP, Wibisono D, Basri MH (2019) Integrating performance 
measurement, system dynamics, and problem-solving methods. 
Int J Prod Perform Manage

Ituarte IF, Kretzschmar N, Chekurov S, Partanen J, Tuomi J (2019) 
Additive manufacturing validation methods, technology transfer 
based on case studies. In Additive Manufacturing–Developments 
in Training and Education, Springer, Cham, pp 99–112

Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive 
manufacturing: A Delphi study on economic and societal impli-
cations of 3D printing for 2030. Technol Forecast Soc Chang 
117:84–97

Jin Y, Jin Y, Ji S, Ji S, Li X, Li X, Yu J (2017) A scientometric review 
of hotspots and emerging trends in additive manufacturing. J 
Manuf Technol Manag 28(1):18–38

Jung S, Laureijs RE, Combemale C, Whitefoot KS (2021) Design for 
nonassembly: Current status and future directions. J Mech Des 
143(4):040801

Kadir AZA, Yusof Y, Wahab MS (2020) Additive manufacturing cost 
estimation models—A classification review. Int J Adv Manuf 
Technol 107(9):4033–4053

Kellens K, Baumers M, Gutowski TG, Flanagan W, Lifset R, Duflou 
JR (2017) Environmental dimensions of additive manufacturing: 
Mapping application domains and their environmental implica-
tions. J Ind Ecol 21(S1):S49–S68

Khajavi SH, Partanen J, Holmström J (2014) Additive manufacturing 
in the spare parts supply chain. Comput Ind 65(1):50–63

Khalid M, Peng Q (2021) Sustainability and environmental impact of 
additive manufacturing: A literature review. Comput-Aided Des 
Appl 18:1210–1232



 N. H. Arian et al.

1 3

Khan SAR, Yu Z, Golpîra H, Sharif A, Mardani A (2020) A state-
of-the-art review and meta-analysis on sustainable supply chain 
management: Future research directions. J Clean Prod 123357

Khan SAR, Yu Z (2020) Assessing the eco-environmental perfor-
mance: An PLS-SEM approach with practice-based view. Int J 
Logist Res Appl 1–19

Knofius N, van der Heijden MC, Zijm WH (2019) Consolidating spare 
parts for asset maintenance with additive manufacturing. Int J 
Prod Econ 208:269–280

Kondoh S, Tateno T, Kishita Y, Komoto H, Fukushige S (2017) The 
potential of additive manufacturing technology for realizing a 
sustainable society. In Sustainability through innovation in prod-
uct life cycle design, Springer, Singapore, pp 475–486

Lane DC, Smart C (1996) Reinterpreting generic structure: Evolution, 
application and limitations of a concept. Syst Dynam Rev: J Syst 
Dynam Soc 12(2):87–120

Le Bourhis F, Kerbrat O, Hascoët JY, Mognol P (2013) Sustainable 
manufacturing: Evaluation and modeling of environmental 
impacts in additive manufacturing. Int J Adv Manuf Technol 
69(9–12):1927–1939

Lee S, Geum Y, Lee H, Park Y (2012) Dynamic and multidimensional 
measurement of product-service system (PSS) sustainability: 
A triple bottom line (TBL)-based system dynamics approach. J 
Clean Prod 32:173–182

Li Y, Jia G, Cheng Y, Hu Y (2017) Additive manufacturing technology 
in spare parts supply chain: A comparative study. Int J Prod Res 
55(5):1498–1515

Li X, Jia X, Yang Q, Lee J (2020) Quality analysis in metal additive 
manufacturing with deep learning. J Intell Manuf 1–15

Lopez SM, Wright PK (2002) The role of rapid prototyping in the 
product development process: A case study on the ergonomic 
factors of handheld video games. Rapid Prototyp J 8(2):116–125

Ma J, Harstvedt JD, Dunaway D, Bian L, Jaradat R (2018) An explora-
tory investigation of Additively Manufactured Product life cycle 
sustainability assessment. J Clean Prod 192:55–70

Mani V, Gunasekaran A, Delgado C (2018) Supply chain social sus-
tainability: Standard adoption practices in Portuguese manufac-
turing firms. Int J Prod Econ 198:149–164

Matos F, Godina R, Jacinto C, Carvalho H, Ribeiro I, Peças P (2019) 
Additive manufacturing: Exploring the social changes and 
impacts. Sustainability 11(14):3757

Matos F, Jacinto C (2019) Additive manufacturing technology: map-
ping social impacts. J Manuf Technol Manage

Mellor S, Hao L, Zhang D (2014) Additive manufacturing: A frame-
work for implementation. Int J Prod Econ 149:194–201

Morecroft JD (1982) A critical review of diagramming tools for con-
ceptualizing feedback system models. Dynamica 8(1):20–29

Naghshineh B, Ribeiro A, Jacinto C, Carvalho H (2020) Social impacts 
of additive manufacturing: A stakeholder-driven framework. 
Technol Forecast Soc Change 120368

Narimissa O, Kangarani-Farahani A, Molla-Alizadeh-Zavardehi S 
(2020) Evaluation of sustainable supply chain management per-
formance: Indicators. Sustain Dev 28(1):118–131

Niaki MK, Nonino F (2017a) Impact of additive manufacturing on 
business competitiveness: A multiple case study. J Manuf Tech-
nol Manag 28(1):56–74

Niaki MK, Nonino F (2017b) Additive manufacturing manage-
ment: a review and future research agenda. Int J Prod Res 
55(5):1419–1439

Niaki MK, Nonino F (2018) Selection and implementation of additive 
manufacturing. In The Management of Additive Manufacturing, 
Springer, Cham, pp 193–220

Nie Z, Jung S, Kara LB, Whitefoot KS (2020) Optimization of part 
consolidation for minimum production costs and time using addi-
tive manufacturing. J Mech Des 142(7)

Oettmeier K, Hofmann E (2017) Additive manufacturing technology 
adoption: An empirical analysis of general and supply chain-
related determinants. J Bus Econ 87(1):97–124

Özbayrak M, Papadopoulou TC, Akgun M (2007) Systems dynamics 
modelling of a manufacturing supply chain system. Simul Model 
Pract Theory 15(10):1338–1355

Peng T, Kellens K, Tang R, Chen C, Chen G (2018) Sustainability of 
additive manufacturing: An overview on its energy demand and 
environmental impact. Addit Manuf 21:694–704

Pérez-Pérez M, Gómez E, Sebastián MA (2018) Delphi prospection on 
additive manufacturing in 2030: Implications for education and 
employment in Spain. Materials 11(9):1500

Piller FT, Weller C, Kleer R (2015) Business models with additive 
manufacturing opportunities and challenges from the perspec-
tive of economics and management. In Advances in Production 
Technology, Springer, Cham, pp 39–48

Poles R (2013) System Dynamics modelling of a production and inven-
tory system for remanufacturing to evaluate system improvement 
strategies. Int J Prod Econ 144(1):189–199

Prakash WN, Sridhar VG, Annamalai K (2014) New product develop-
ment by DFMA and rapid prototyping. ARPN J Eng Appl Sci 
9(3):274–279

Pruyt E (2013) Small system dynamics models for big issues: Triple 
jump towards real-world complexity

Ribeiro I, Matos F, Jacinto C, Salman H, Cardeal G, Carvalho H, Peças 
P (2020) Framework for life cycle sustainability assessment of 
additive manufacturing. Sustainability 12(3):929

Rinaldi M, Caterino M, Fera M, Manco P, Macchiaroli R (2021) Tech-
nology selection in green supply chains-the effects of additive 
and traditional manufacturing. J Clean Prod 282:124554

Rocha CS, Antunes P, Partidário P (2019) Design for sustainability 
models: A multiperspective review. J Clean Prod 234:1428–1445

Rodríguez JC, Aguirre MG (2013) System dynamics modeling and the 
study of technological change. Cimexus 7(2):13–28

Seidel C, Schätz R (2019) Continuing Education and Part-Time Train-
ing on Additive Manufacturing for People in Employment—an 
Approach Focused on Content-Related and Didactical Excel-
lence. In Additive Manufacturing–Developments in Training 
and Education, Springer, Cham, pp 15–33

Sharma F, Dixit US (2019) Fuzzy set based cost model of additive 
manufacturing with specific example of selective laser sintering. 
J Mech Sci Technol 33(9):4439–4449

Sharma A, Jamwal A, Agrawal R, Jain JK (2020) Indicators to Sustain-
able Supply Chain Management in Indian Additive Manufactur-
ing Industries. In Proceedings of National Conference on Recent 
Advancement in Engineering, Udaipur

Šlaus I, Jacobs G (2011) Human capital and sustainability. Sustain-
ability 3(1):97–154

Son D, Kim S, Jeong B (2021) Sustainable part consolidation model for 
customized products in closed-loop supply chain with additive 
manufacturing hub. Additive Manuf 37:101643

Sterman JD (2000) Business Dynamics: Systems Thinking and Mod-
eling for a Complex World. Irwin McGraw-Hill, Boston

Sterman J, Oliva R, Linderman KW, Bendoly E (2015) System dynam-
ics perspectives and modeling opportunities for research in oper-
ations management. J Oper Manag 39:40

Taddese G, Durieux S, Duc E (2020) Sustainability performance 
indicators for additive manufacturing: A literature review 
based on product life cycle studies. Int J Adv Manuf Technol 
107(7):3109–3134

Tajbakhsh A, Hassini E (2015) Performance measurement of sustain-
able supply chains: a review and research questions. Int J Prod 
Perform Manage

Tavassoli S, Brandt M, Qian M, Arenius P, Kianian B, Diegel O, Pope 
L (2020) Adoption and diffusion of disruptive technologies: The 



Assessment the effect of rapid prototyping implementation on supply chain sustainability:…

1 3

case of additive manufacturing in medical technology industry 
in Australia. Procedia Manuf 43:18–24

Thomas-Seale LE, Kirkman-Brown JC, Attallah MM, Espino DM, 
Shepherd DE (2018) The barriers to the progression of additive 
manufacture: Perspectives from UK industry. Int J Prod Econ 
198:104–118

Vinodh S, Sundararaj G, Devadasan SR, Kuttalingam D, Rajanayagam 
D (2009) Agility through rapid prototyping technology in a 
manufacturing environment using a 3D printer. J Manuf Technol 
Manag 20(7):1023–1041

Weller C, Kleer R, Piller FT (2015) Economic implications of 3D print-
ing: Market structure models in light of additive manufacturing 
revisited. Int J Prod Econ 164:43–56

Wright L, Fulton L (2005) Climate change mitigation and transport in 
developing nations. Transp Rev 25(6):691–717

Wu DD, Kefan X, Hua L, Shi Z, Olson DL (2010) Modeling techno-
logical innovation risks of an entrepreneurial team using system 
dynamics: An agent-based perspective. Technol Forecast Soc 
Chang 77(6):857–869

Yadav G, Kumar A, Luthra S, Garza-Reyes JA, Kumar V, Batista L 
(2020) A framework to achieve sustainability in manufacturing 
organizations of developing economies using industry 4.0 tech-
nologies’ enablers. Comput Ind 122:103280

Yang S, Tang Y, Zhao YF (2015) A new part consolidation method to 
embrace the design freedom of additive manufacturing. J Manuf 
Process 20:444–449

Yang S, Zhao YF (2018) Additive manufacturing-enabled part count 
reduction: A lifecycle perspective. J Mech Des 140(3):1–12

Yang S, Page T, Zhang Y, Zhao YF (2020) Towards an automated 
decision support system for the identification of additive manu-
facturing part candidates. J Intell Manuf 1–17

Yang Y, Li L (2018) Cost modeling and analysis for Mask Image Pro-
jection Stereolithography additive manufacturing: Simultaneous 
production with mixed geometries. Int J Prod Econ 206:146–158

Yılmaz ÖF (2020) Examining additive manufacturing in supply 
chain context through an optimization model. Comput Ind Eng 
142(106335):1–23

Zhang H, Calvo-Amodio J, Haapala KR (2013) A conceptual model for 
assisting sustainable manufacturing through system dynamics. J 
Manuf Syst 32(4):543–549

Zheng T, Ardolino M, Bacchetti A, Perona M, Zanardini M (2019) 
The impacts of Industry 4.0: A descriptive survey in the Italian 
manufacturing sector. J Manuf Technol Manage

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach
	Abstract
	1 Introduction
	2 Background and literature review
	2.1 Rapid prototyping
	2.2 RP and sustainable supply chain
	2.3 Gaps identified in the existing literature

	3 Methodology and modeling
	3.1 System modeling
	3.1.1 Indicators for the sustainability assessment
	3.1.2 Dynamic hypothesis and causal loop diagram (CLD)
	3.1.3 Stock and flow diagram (SFD)
	3.1.4 Mathematical formulation

	3.2 Model validation
	3.2.1 Extreme conditions test
	3.2.2 Sensitivity analysis


	4 Simulation and results
	4.1 Sustainability indicators
	4.1.1 Economic dimension
	4.1.2 Environmental dimension
	4.1.3 Social dimension


	5 Discussion
	6 Conclusion and direction for further research
	References


