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1 Introduction

Two-dimensional spacetimes with asymptotic boundaries have been recently a desirable
playground for holographic studies (see e.g. [1–6]). The holographic relationship connects
a certain 2D dilaton-gravity model in the bulk to a 1D quantum statistical model in the
boundary. A famous example is the Sachdev-Ye-Kitaev (SYK) model [7–10], a solvable
quantum statistical mechanics which in its low energy limit has a holographic description
in terms of Jackiw-Teitelboim (JT) [11–15] gravity with nearly AdS2 boundary condi-
tions [16] describing the near-horizon geometry of nearly extremal black holes [17–19]. The
SYK model possesses 1D conformal invariance i.e. the full reparametrization Diff(S1) in
its infrared, however, this is spontaneously broken to SL(2,R), and the broken phase is
parametrized by Goldstone modes living on the quotient space Diff(S1)/SL(2,R). The ef-
fective action for the associated Goldstone modes has an effective description in terms of
the Schwarzian action [7, 16] which itself is obtained as the boundary action in JT gravity
upon imposing appropriate boundary conditions (see e.g. [2, 20–24]).

It is certainly motivating to go beyond JT gravity and try to put other 2D dilaton-
gravity models under a holographic test. An important link in this holographic setup is
the role played by the Schwarzian action. On the quantum mechanics side, it arises in
the large N and strong coupling limit of a SYK-like model and on the gravity side after
imposing suitable boundary conditions and as a specific boundary term in a JT-like gravity
model. In purely mathematical terms it can be obtained as the coadjoint orbit action of the
Virasoro group and its extensions [25–27]. Two possible genuine extension/generalization
in the gravity setup arises as coupling the 2D dilaton-gravity to new gauge fields and
changing the geometry of the spacetime to flat. In this work we are interested in flat
space holography and find an extension of the Schwarzian action in the presence of spin-2
gauge fields in the bulk. This provides a first example of higher spin generalization of 2D
dilaton-gravity in flat spacetime — studied in [28], and thus, a first step towards a potential
flat-space higher-spin generalization of the SYK-model.

To this end we study generalizations of the Cangemi-Jackiw model [29] in the BF
formulation as a gauge theory of the centrally extended Poincaré algebra. Flat space
holography in this language is understood as the contraction ` → ∞ of the AdS algebra
with ` being the AdS radius. However, instead of strictly sending the contraction parameter
σ = `−1 to zero, one may alternatively consider an expansion of the AdS algebra in 1/`.
This would extend the Poincaré algebra with new generators and new gauge fields appear
in the multiplet in each order of the expansion parameter; this is our starting point to
flat-space holography in the presence of extra massless interacting gauge fields. In this
case the extension would add new spin-1 and spin-2 generators.

Interacting massless spin-2 gauge fields (or any other massless higher spin interactions
with s ≥ 2) coupled to gravity in flat spacetime is forbidden due to no-go theorems. These
no-go theorems are however silent in cases with no propagating degrees of freedom like
in BF-theories. In general, higher spin theories provide an opportunity to understand
holography beyond the supergravity limit which translates to week coupling in the would
be SYK-like model.
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Summary of results. The Callan-Giddings-Harvey-Strominger (CGHS) dilaton-gravity
model [30] is an example which admits asymptotically flat two-dimensional black holes (for
reviews see [31–33]). The gravity sector of the CGHS model is described by the action

ICGHS = −κ2

∫
d2x
√
−g (XR+ (∇X)2/X − 2XΛ) . (1.1)

By performing a dilaton dependent Weyl rescaling gµν → X−1gµν one obtains the
CGHS model in the Einstein frame which is sometime referred to as flat-spacetime JT
gravity [34, 35]

ICGHS → −
κ

2

∫
d2x
√
−g

(
XR− 2Λ

)
, (1.2)

in which the scalar X enforces R = 0 as a constraint regardless of the value of Λ. It can
be considered as an effective theory describing the near-horizon properties of non-extremal
or near-extremal horizons. This can be scrutinized by spherically symmetric reduction of
specific 4D gravity models and performing a near-horizon approximation.1

In order to establish a model for flat space holography, in [28] following [29] the ac-
tion (1.2) was marginally manipulated by integrating in a two-dimensional U(1) gauge field
A which can be interpreted as a constant electric field and an auxiliary scalar field Y . The
consequent model was denoted as ĈGHS which is equivalent to (1.2) on-shell;

IĈGHS = −κ2

∫
d2x
√
−g
(
XR− 2Y

)
+ κ

∫
Y dA . (1.3)

The advantage of working with the ĈGHS model is that it possesses a BF-theory formula-
tion based on the centrally extended 2D Poincaré algebra. More importantly, on-shell the
bulk term in (1.3) is simply zero due to constraints and the full theory is identical to the
boundary term. This is reminiscent to the JT gravity while this is not the case in (1.2).

The holographic analysis for (1.3) was performed in [28]. It was shown that the theory
has a symmetry realization in terms of the twisted warped-conformal algebra [36, 37] with
non-zero twist term but vanishing U(1) level and zero Virasoro central charge. The cor-
responding Euclidean boundary action was also obtained which coincides with the warped
Schwarzian theory [27] which is the geometric action of the same group of centrally ex-
tended symmetries namely Diff(S1) n C∞(S1) when the Heisenberg subgroup is abelian
(vanishing U(1) level) and the Schwarzian term is absent.

One of the results of our present work is to consider a deformation of the ĈGHS model
which we call twisted-ĈGHS model,

Itw-ĈGHS = IĈGHS − γ0
κ

2

∫
d2x
√
−g Y R , (1.4)

1For example, the 4D Einstein-Hilbert term after reduction on sphere with ds2
4 = ds2

2 + e−2φ dΩ2
2 in

which the dilaton field is playing the role of the 4D radial direction and making the expansion around a
given horizon rh = e−φh i.e. e−φ ∼ e−φh (1 +X), leads to (1.2) as a sub-leading term with Λ = −1/(2r2

h)

SEH → S0 + r2
h

4κ4

∫
d2x
√
−g
(
XR+ 1

r2
h

)
+O(X2) .

– 2 –
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which is equivalent to the ĈGHS model on-shell and yields the Euclidean boundary action
as a warped-Schwarzian theory at zero U(1) level but with non-zero Schwarzian term,

IE(1) = κ

∮ (
s0h
′2 + γ0 Sch(h) + g′

(
iP0h

′ − h′′

h′

))
, (1.5)

where h ∈ Diff(S1) is the S1 reparametrization field and g ∈ C∞(S1) is another field on
S1 and

Sch(h) =
(
h′′

h′

)′
− 1

2

(
h′′

h′

)2
, (1.6)

denotes the Schwarzian derivative. The constants (s0, γ0,P0) specify the corresponding
coadjoint orbit of the warped Virasoro group at zero U(1) level.

The main result of this paper, is to extend the construction of ĈGHS model in [28] by
including new spin-2 gauge fields that interact with gravity in flat spacetime. The form of
the extended action with only one spin-2 gauge field is,

Iex-ĈGHS = −κ2

∫
d2x
√
−g

(
XR− 2Y f + 2Y(1)(∇α∇βfαβ −∇2f − 1)

)
+ κ

∫
Y dA , (1.7)

where a new scalar Y(1) together with the new spin-2 field fµν are introduced. In order
to obtain (1.7), we extend the Poincaré algebra by new generators such that we have a
consistently closed algebra that accommodates for the extra spin-2 gauge field and also
acquires a well-defined bilinear form so that we can use the gauge theoretic formulation of
the non-abelian BF-theory. Again we construct the corresponding geometric action as the
Euclidean boundary action of (1.7) which turns out to be our main result;

IE(2) = κ

∮ (
s0h
′2 + γ0Sch(h) + g′

(
iP0h

′ − h′′

h′

)
+ w′

h′
(
t0h
′2 − γ1Sch(h)

)
+ 1

2

[(
w′

h′

)′]2)
,

(1.8)

where in addition to former fields h ∈ Diff(S1) and g ∈ C∞(S1) here we have an extra
field w ∈ Vec(S1) and the orbit is represented by five constants (s0, t0,P0, γ0, γ1). The
presence of the Schwarzian terms multiplied by γ0 and γ1 is again indebted to the presence
of arbitrary twist terms in the model which we have dropped in (1.7) and will be discussed
in section 3. The geometric action (1.8) is an extension of the former (1.5) and is associated
to the central extension of the extended warped symmetry group;

Diff(S1) n C∞(S1) nVec(S1) , (1.9)

again with abelian Heisenberg subgroup. It turns out that the appearance of the abelian
subgroup is special to flat space holography see e.g. [37–47]. This interesting feature is very
different from the generic case of AdS holography in which the corresponding level is non-
zero. We exhibit the corresponding centrally extended algebra for the group (1.9) which

– 3 –
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can be thought of as the spin-2 extension of the warped-conformal algebra at level-zero,

[Ln, Lm] = (n−m)Ln+m + γ0n
3δn+m,0 ,

[Ln, Tm] = (n−m)Tn+m + γ1n
3δn+m,0 ,

[Ln, Pm] = −mPn+m + iκ n2δm+n,0 , [Tn, Pm] = 0 = [Pm, Pn] ,

[Tn, Tm] = (n−m)
∑
q

Pm+n−qPq + 2iκ (m+ n)Pm+n + 2κ2n3δn+m,0 . (1.10)

Outline. The structure of this paper is as follows, In section 2, we use the BF-formulation
of dilaton-gravity in 2D flat space and introduce a systematic extension of it with an
arbitrary number of interacting spin-2 gauge fields based on the extension of the 2d Poincaré
algebra. In section 3, we pay attention to the case with only one spin-2 extension and derive
the metric formulation, and discuss the corresponding field equations. In section 4, we
initiate our boundary analysis by discussing the asymptotic symmetries. In section 5, the
appropriate boundary terms and integrability conditions for having a well-posed variational
principle are found. In section 6, we switch to the Euclidean signature and find the coadjoint
action on the circle. In section 7, we discuss the thermodynamics of the zero-mode solution
both by calculating the Euclidean on-shell action and by implementing the first law using
canonical charges. We summarize and conclude in section 8. In appendix A some aspects
of including an infinite number of spin-2 gauge fields in flat space are considered and in
appendix B, the center of the extended Poincaré group is found.

2 BF formulation of dilaton-gravity in flat space

The first-order formulation of a large class of two-dimensional dilaton-gravity theories has
a gauge theory formulation in terms of the BF-theory;

I = κ

∫ 〈
B , dA+ 1

2[A,A]
〉
, (2.1)

where κ is the coupling constant and the 1-form gauge field A and the scalar B are Lie
algebra valued see e.g. [48–50]. The pairing between B and the curvature 2-form is via a
non-degenerate bilinear form of the Lie algebra. The field equations demand the curvature
two form to be zero; so no local degrees of freedom are involved. As in all dimensions,
two-dimensional gravity multiplet consists of the spin-connection ω and the zweibein ea

one-forms so the connection is,

A = eaPa + ωJ + · · · , (2.2)

where J and P ’s are the boost and translation generators in 2D. The · · · are possible extra
gauge fields. Unlike higher dimensions, the gravity multiplet needs to be supplemented
with the dilaton multiplet which is taken into account by the B field.

– 4 –
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The Jackiw-Teitelboim gravity in its first order formulation is equivalent to a BF-
theory with the gauge algebra so(2,1) with no extra gauge symmetry.2 In flat spacetime a
similar construction allowed Cangemi and Jackiw to write a BF-theory [29] based on the
central extension of the 2D Poincaré algebra iso(1,1) namely Maxwell algebra

[Pa, J ] = εa
bPb , [Pa, Pb] = εabJ

(1) , (2.3)

with J (1) appearing as a central extension. The crucial fact about this algebra unlike its
non-central cousin is the appearance of a non-degenerate bilinear form which enables us
to write the BF-theory. Unlike JT-gravity where the multiplet contains only a graviton
and a dilaton, here in flat spacetime, the multiplet contains a graviton, a dilaton, and a
single spin-1 gauge field whose total degrees of freedom sum to zero. The presence of the
extra spin-1 is a consequence of the extra generator introduced as the central extension of
the algebra.

If we intend to add a new spin-2 gauge field to the BF-system we need to enlarge the
algebra such that new generators transform covariantly under the boost generator J ,

[P (1)
a , J ] = εa

bP
(1)
b . (2.4)

This is obviously a necessary condition but not sufficient. In principle, we need to introduce
as many other generators so that we can close the algebra and simultaneously make sure
that a new non-degenerate invariant bilinear form emerges. Although in principle this
strategy works, here we develop a systematic approach based on the extension of the
Poincaré algebra.

2.1 Extension of the Poincaré algebra

Here, we focus on the extension of the two-dimensional Poincaré algebra but our strategy
is more general and can be applied to any dimensions. Moreover, we turn attention to
the relativistic case while non-relativistic algebras can be discussed on an equal footing.3

We use the fact that the two dimensional Poincaré algebra is a contraction of the so(2, 1)
algebra which has three generators P0, P1 and J forming the gauge algebra for (A)dS2
JT-gravity,

[Pa, J ] = εa
bPb , [Pa, Pb] = εabJ , (2.5)

where we have fixed the cosmological constant to −1. One can introduce three isomorphic
contractions of this algebra by appropriately rescaling only one of these generators with
a contraction parameter σ and then send it to zero in the algebra. This leads to three
distinct but isomorphic algebras namely 2D Poincaré (relativistic), 2D Newton-Hooke (non-
relativistic) and Carroll AdS2 (ultra-relativistic).

Alternatively, one can preserve the contraction parameter in this process and use it
as an expansion parameter rather than just approaching zero. In this procedure all new

2For BF-theory based on higher-spin gauge symmetry in JT gravity see [51–58].
3For a non-relativistic 2d dilaton-gravity setup see the recent papers [59–61].
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generators appearing at each order in the contraction parameter are independent. This
procedure leads to an extension of the contracted algebra. In the relativistic case we should
introduce the contraction parameter σ in the last commutator of (2.5) which is viewed now
as an Inönü-Wigner (IW) bundle of the Lie algebra so(2, 1) over an affine line parametrized
by σ [62]. For this IW bundle we have J (0) ≡ J , J (n) ≡ σnJ and P (n)

a ≡ σnPa. In general,
this system introduces an arbitrary extension of the contracted algebra with the following
commutators

[P (m)
a , J (n)] = εa

bP
(m+n)
b , [P (m)

a , P
(n)
b ] = εabJ

(m+n+1) . (2.6)

The level zero is the Poincaré algebra

[Pa, J ] = εa
bPb , [Pa, Pb] = 0 . (2.7)

However at this level, Pa generators form an ideal for the algebra so we miss an invariant
bilinear form. This problem is resolved at level-1 where the algebra acquires a new generator
J (1) such that we are led to the 2D Maxwell algebra (2.3). This algebra admits an invariant
non-degenerate bilinear form

〈J, J (1)〉 = 1 , 〈Pa, Pb〉 = −ηab , (2.8)

The BF-theory based on this algebra and the bilinear form (2.8) was introduced in [29, 63].
One can deform the model using the fact that the bilinear form at this level is more general
than (2.8) and a new invariant can be added to it [64]

〈J, J〉 = γ0 . (2.9)

The BF-theory based on this more general metric will be discussed in section 3 and the
corresponding boundary dynamics is addressed in section 6.

At level-2, we can add three new generators as J (2), P (1)
a to (2.3) which satisfy new

non-vanishing kinematical commutators

[P (1)
a , J ] = εa

bP
(1)
b , [Pa, J (1)] = εa

bP
(1)
b , [Pa, P (1)

b ] = εabJ
(2). (2.10)

We can see that at this level J (1) is not a central term any more and the new generator
J (2) is central. The algebra at this level in general possesses the invariant bilinear forms
of the level-0 (2.9) and the level-1 (2.8) which by themselves are degenerate at this level
but together with the following new bilinear form they form an invariant non-degenerate
bilinear form at level-2

〈J, J (2)〉 = 1 , 〈Pa, P (1)
b 〉 = −ηab , 〈J (1), J (1)〉 = 1 . (2.11)

In principle, one can continue this procedure and extend the algebra to higher levels as will
be discussed below.

– 6 –
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2.2 Casimir and the bilinear form

In principle, one can continue the procedure of generating new generators to the level-
N . Denote by J (N) and P

(N−1)
a as the generators included in the N -th extension of the

Poincaré algebra. The algebra at this level contains 3N + 1 generators and we show it by
g(N). Suppose that the generators for a given level N have the following order

J, Pa, J
(1), P (1)

a , J (2), · · · , P (N−1)
a , J (N) . (2.12)

In particular, we have a right shift on this sequence by commuting with Pa, until it hits
J (N) where the sequence ends and gives zero.

The algebra at level N possesses a linear Casimir C0 = J (N) as well as N quadratic
Casimir operators. In the latter set, the one that includes all generators is the following

CN = 1
2

N∑
k=0

(
J (k)J (N−k) − ηabP (k)

a P
(N−k−1)
b

)
. (2.13)

The other N − 1 quadratic Casimirs are

CI = 1
2

N∑
k=0

(
J (k+N−I)J (N−k) − ηabP (k+N−I)

a P
(N−k−1)
b

)
, I = 1, · · · , N − 1 . (2.14)

For the case N = 1 the Maxwell algebra has one linear C0 = J (1) and one quadratic Casimir

C1 = JJ (1) − 1
2P

aPa . (2.15)

At level N = 2, we have a linear C0 = J (2) and two quadratic Casimirs

C1 = J (2)J (1) − 1
2P

aPa ,

C2 = JJ (2) + 1
2J

(1)J (1) − P aP (1)
a . (2.16)

There is a one to one map between these Casimirs and the invariant bilinear forms of
the algebra at each level. Namely, the Casimir is the inverse of the bilinear form up to a
constant since it is mapped to a constant under the action of the bilinear form

Γ : g∗ × g→ R . (2.17)

Therefore, at level N , we have N + 1 independent bilinear forms, {Γ0 · · ·ΓN}, such that
Γk is the inverse of Ck for k = 1, · · · , N and Γ0 is the inverse of (J (N))2. Among thses,
only ΓN is independently non-degenerate. For example, we have two independent bilinear
forms at level one

Γ0 : 〈J, J〉 = γ0

Γ1 : 〈J, J (1)〉 = γ1 〈Pa, Pb〉 = −γ1ηab .
(2.18)

and three invariant bilinear forms at level-2

Γ0 : 〈J, J〉 = γ0

Γ1 : 〈J, J (1)〉 = γ1 〈Pa, Pb〉 = −γ1ηab

Γ2 : 〈J (1), J (1)〉 = γ2 〈Pa, P (1)
b 〉 = −γ2ηab 〈J, J (2)〉 = γ2 .

(2.19)

– 7 –
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In our construction of BF-theories, we use the most general bilinear map, labeled by the
real N -vector γ = (γ0, γ1, · · · γN−1), such that

Γ = ΓN +
N−1∑
k=0

γkΓk . (2.20)

The coefficient γN behind ΓN must be non-zero and is set to one, while γk are arbitrary
real numbers. In (2.20) the bilinear form Γk is

〈P (n)
a , P

(m)
b 〉 = −ηabδn+m−k , 〈J (n), J (m)〉 = δn+m−k , (2.21)

where k ≤ N .

2.3 Extended BF-theory formulation

At the moment we have provided a consistent extension of the 2D Poincaré algebra. In the
frame-like formulation of the extended dilaton-gravity we should complement the gravity
multiplet, the zweibein 1-form e and the spin connection 1-form ω with new one-forms which
play a similar role for the extra spin-2 gauge symmetries. In general for the extended gauge
group discussed above we can consider the following gauge connection at level-N > 0,

A(N) = e + ω +AJ (N) . (2.22)

The corresponding field strength for the gauge field (2.22) can be written as

F(N) = T (e) +R(ω) + FJ (N) , (2.23)

In addition to the gauge field (2.22) we also introduce a scalar field at level-N > 0,

B(N) = Z + Y +XJ (N) . (2.24)

In (2.22) and (2.24) the U(1) gauge field A and the scalar field X corresponding to the
central term of the algebra J (N) are distinguished as they are independent fields. In
fact, the scalar field X in the second-order form will play the role of the dilaton field
coupled to gravity. Since J (N) appears as the central term in the commutator of Pa and
P

(N−1)
a , the gauge field A is like a Stüeckelberg field that shift-transforms under the gauge

transformation along P (N−1)
a to restore gauge invariance: setting A to zero is inconsistent

with gauge symmetry of the theory. For extra components in (2.22) and (2.24) we have

e = eaPa + ea(1)P
(1)
a + · · ·+ ea(N−1)P

(N−1)
a , (2.25a)

ω = ωJ + ω(1)J
(1) + · · ·+ ω(N−1)J

(N−1) , (2.25b)

and

Z = ZaPa + Za(1)P
(1)
a + · · ·+ Za(N−1)P

(N−1)
a , (2.26a)

Y = Y J + Y(1)J
(1) + · · ·+ Y(N−1)J

(N−1) . (2.26b)

– 8 –
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In the expression for the gauge field (2.25) the zweibein e and extra e(k) are independent
gauge fields while ω as the spin-connection and extra ω(k) are dependent ones. Their
dependence is fixed via torsion constraints T (e) = 0 which can be integrated in the action
via the Lagrange multipliers Z. Finally, the scalar fields in Y will play the role of auxiliary
scalar fields which couple to R(ω) and play the role of extended dilatons. This construction
can be written as a BF-action. In fact, as was shown in subsection 2.2 our extension of the
2D Poincaré algebra is such that at each level of the extension we have a non-degenerate
bilinear form. This suggests that we can consistently extend the corresponding BF-theory.
At level-N , all the generators associated with the extended algebra g(N) contribute, and
the action is formally given by

I(N) = γ0BF(0) + γ1BF(1) + · · ·+ γN−1BF(N−1) + BF(N) . (2.27)

where we have extracted the arbitrary coefficients γk. The BF(k) in the above sequence is
defined by using the bilinear form Γk in (2.20)

BF(k) =
∫ 〈
B(N),F(N)

〉
Γk
. (2.28)

Note that at level N we have the right to set to zero or keep as many of γk for k < N . For
example, at level-1 we have an arbitrary parameter γ0 and at level-2 we have two unfixed
parameters γ0 and γ1, and this pattern persists in higher levels. Although all these choices
are equivalent on-shell, they correspond to different theories off-shell, and especially their
boundary dynamics are different. This will be shown later in two examples of N = 1, 2 in
section 3. We ponder the case of N →∞ in appendix A.

3 Extended dilaton-gravity in flat space

In this section, we use the extension of the 2D Poincaré algebra discussed above to con-
struct the dilaton-gravity at level-2 which exhibits an extra spin-2 gauge symmetry. The
construction at level-1 is reviewed in advance.

At level-1 we deal with the algebra given in (2.3) and the bilinear form is introduced
in equations (2.8)–(2.9). The gauge field and the scalar field at this level can be read from
eq. (2.22) and (2.24). We can then systematically write down the BF-theory for the 2D
Maxwell algebra as the first order formulation of dilaton-gravity in flat space at level-1

κ−1I(1) = γ0

∫
Y dω +

∫ [
X dω + Y

(
dA+ 1

2εab e
aeb
)
− Za(dea + εab ω e

b)
]
. (3.1)

The second order action corresponding to this model is simply obtained by solving the
torsion constraint and using the fact that in two dimensions dω = −1

2Rε with ε being the
volume form,

κ−1I(1) = −γ0
2

∫
d2x
√
−g Y R− 1

2

∫
d2x
√
−g
[
XR− 2Y

]
+
∫
Y dA . (3.2)
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The case where γ0 = 0 corresponds to the ĈGHS model which was studied from the
holographic point of view in [28].4 We denote the case γ0 6= 0 as the twisted-ĈGHS model
whose boundary dynamics will be discussed later. The field equations for both models are
the same and are given in [28]

R = 0 , εµν∂µAν = 1 , ∇µ∇νX + gµνY = 0 , Y = const. (3.3)

where appropriate solutions are also discussed. Here εµν = εµν√
−g is the ε-tensor.

3.1 Extended-ĈGHS model

Here we consider the extension of the 2D Poincaré algebra at level-2 with commutators
given in (2.3) and (2.10) and the bilinear form introduced in section 2 in equation (2.19).
One can systematically construct the BF-formulation of the extended dilaton gravity at
this level using the gauge field (2.22) and the scalar field (2.24)

κ−1I(2) = γ0

∫
Y dω + γ1

∫ [
Y(1) dω + Y R(1) − ZaT a

]
+
∫ [

X dω + Y F + Y(1)R(1) − Za(1)Ta − ZaT
a
(1)
]
, (3.4)

where the curvature 2-forms are introduced as follows

F = dA+ εab e
aeb(1) , (3.5a)

R(1) = dω(1) + 1
2εab e

aeb , (3.5b)

T a = dea + εab ω e
b , (3.5c)

T a(1) = dea(1) + εab ω e
b
(1) + εab ω(1)e

b . (3.5d)

In order to migrate to the metric formulation we integrate out in (3.4) the Lagrange
multipliers Za and Za(1) which gives T a = T a(1) = 0, thereby the dependent gauge fields ω
and ω(1) can be obtained,

ω = ea ? dea = 1
2ea(de

a)σρεσρ (3.6a)

ω(1) = ea ?Dea(1) = 1
2ea(De

a
(1))σρε

σρ , (3.6b)

where D = d+[ω, ] is the Lorentz covariant exterior derivative. Here we used the fact
that in two dimensions every antisymmetric tensor is proportional to ε. These solutions
transform appropriately under a general gauge transformation

Λ = λJ + ξaPa + λ(1)J
(1) + ξa(1)P

(1)
a + σJ (2) , (3.7)

Once we use the gauge transformation of independent gauge fields as

δea = Dξa − εabλeb , (3.8a)
δea(1) = Dξa(1) + εabω(1)ξ

b − εabλeb(1) − ε
a
bλ(1)e

b , (3.8b)

δA = dσ − εabea(1)ξ
b + εabe

aξb(1) . (3.8c)
4The overall sign-difference of the action here and in [28] is due to our convention of bilinear form (2.18).
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We express the metric gµν and the spin-2 gauge field fµν in transition to the second order
formulation such that they are invariant under the Lorentz boost λ and the extended
Lorentz boost λ(1) appearing in (3.8),5

gµν = 1
2e(µ · eν) , fµν = 1

2e(µ · e
(1)
ν) , (3.9)

where · represents contraction of flat indices with ηab. Here, we base our second order
theory by identifying its metric and the extra spin-2 gauge field as in (3.9). Does there
exists other consistent theories? To answer this question one could try to find other consis-
tent embeddings of the Poincaré iso(1,1) algebra into the extended Poincaré algebra given
in (2.3) and (2.10) and its corresponding bilinear form (2.19). Here we considered the
principle embedding where Pa’s play the role of spacetime translation. There exists two
other non-principle choices where (P0, P (1)

1 ) or (P (1)
0 , P1) can be identified with spacetime

translation. It would be interesting to explore these choices separately. The expression
in (3.6) and (3.9) enables us to write the exterior derivatives of the spin-connection ω and
the extended connection ω(1) appearing in (3.4) in terms of the two dimensional Ricci scalar
R and covariant derivative of the spin-2 gauge field fµν and its trace f ,

εab dω = 1
2Re

aeb , (3.10a)

εab(dω(1))ab = 2
(
D2f −DaDbfab

)
. (3.10b)

Inserting (3.10) into the action (3.4), we have its second order form

κ−1I(2) = −γ0
2

∫
d2x
√
−g Y R− γ1

2

∫
d2x
√
−g

[
Y(1)R+ 2Y (∇α∇βfαβ −∇2f − 1)

]
− 1

2

∫
d2x
√
−g

[
XR+ 2Y(1)(∇α∇βfαβ −∇2f − 1) + 2Y (εαβ∂αAβ − f)

]
.

(3.11)

This action is obviously invariant under diffeomorphism that act on the fields via the Lie
derivative. In addition, there are spin-2, as well as U(1) gauge symmetries generated by
gauge parameters χ and σ correspondingly, which transform the spin-2 gauge field fµν and
the spin-1 gauge field Aµ and also the dilaton field X,6

δfµν = ∇(µχν) , δAµ = ∂µσ + 2ενµχν , δX = 2χµ∇µ(Y(1) + γ1Y ), (3.12)

while keeping gµν , Y(1) and Y invariant. This shows that in order to preserve the spin-2
gauge symmetry off-shell, the dilaton field X should also transform under the spin-2 gauge
transformation χ as well as the gauge field Aµ which apart form its U(1) gauge symmetry
generated by σ, shift transforms under χ.

5We use the symmetrization convention as X(µν) = Xµν +Xνµ.
6The variation of the dilaton field X cancels the curvature contribution induced by commuting the

covariant derivatives in variation of fµν under χµ.
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3.2 Equations of motion

Upon varying the action with respect to the scalars X, Y(1) and Y we get the following
constraints on gauge fields

R = 0 , (3.13a)
∇β∇αfαβ −∇2f = 1 , (3.13b)

εαβ∂αAβ = f , (3.13c)

and upon varying the metric gµν , the spin-2 gauge field fµν and the spin-1 gauge field Aµ
we get the following equations for scalar fields

∇µ∇νX − gµν∇2X = 2Y(1)
(
∇σ∇(µfν)

σ −∇µ∇νf −∇2fµν
)
− 2Y

(
fµν −

1
2fgµν

)
,

(3.13d)

∇µ∇νY(1) + gµνY = 0 , (3.13e)

Y = const. (3.13f)

where in the first line above we imposed the first two constraints and in the second line
we have subtracted the trace. We solve now some of the field equations of the extended-
ĈGHS (3.13) with specific suitable boundary and gauge fixing conditions.

Metric. The starting point is to specify the boundary conditions on the metric. We
set up our boundary conditions with Rindler behavior which in the outgoing Eddington-
Finkelstein gauge (gur = −1 and grr = 0) is represented as ds2 ∼ O(r) du2 − 2 du dr. The
spacetime is Ricci flat R = 0, so we take the general solution [27]

ds2 = −2 du dr + 2(T (u) + rP(u)) du2 . (3.14)

As usual, regularity at the horizon fixes the zero-mode of the leading term in terms of the
Rindler acceleration or the horizon temperature. This means that the zero mode of P is
fixed on the disk. The zero mode of T corresponds to the mass of the black holes. The
location of the horizon in (3.14) is at rH = − T0

P0
.

We can identify the zweibein components form (3.14) in the light-cone frame as

e+ = (P(u)r + T (u)) du− dr , e− = du . (3.15)

Using (3.15) and the torsion constraint T a = 0 we simply have the spin-connection as
ω = P du.

Spin-2 gauge field. In order to solve for the field fµν we use the axial gauge fur = frr =
0. The equations of motion implies ∂2

rfuu = 1 which can be solved as

fuu = T(1)(u) + rP(1)(u) + 1
2r

2. (3.16)

The frame components are given as

e+
(1) =

(1
2r

2 + rP(1)(u) + T(1)(u)
)

du , e−(1) = 0 . (3.17)

The torsion constraint T a(1) = 0 implies the corresponding spin-2 connection ω(1) = (r +
P(1)) du.
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Spin-1 gauge field. The equation of motion for A is equivalent to

∂µAν − ∂νAµ = −fεµν , (3.18)

where f is the trace of fµν . In the gauge (3.16) where f = 0, the U(1) gauge field is a pure
gauge and can be gauge fixed to A = 0.

Dilaton fields. In the axial gauge for fµν the rr-component of the field equation for Y(1)
can be easily solved

Y(1) = y1(u)r + y0(u) . (3.19)

The rr component of the field equation for X also gives ∂2
rX = 0 which is simply solved as:

X = x1(u)r + x0(u) . (3.20)

We continue our discussion on field equations, the boundary action as well as asymptotic
symmetry analysis in the gauge theory BF-formulation in the next section 4.

4 Boundary analysis

In this section, we aim to derive the boundary action upon introducing a consistent set of
boundary conditions. This derivation is based on the BF-formulation of the model. In this
construction, the boundary action is obtained upon establishing a well-defined variational
principle in the BF-model. This translates to making the boundary term on the imposed
boundary conditions integrable.

4.1 Boundary conditions and symmetries

Before discussing the variational principle we present the boundary conditions and the
corresponding symmetries in the gauge theory BF-formulation.

Light-cone. In order to proceed we find it useful to go to the light-cone gauge. In this
gauge η+− = 1 and ε±± = ±1 so the extended gauge algebra at level-2 can be written as7

[P±, J ] = ±P± [P+, P−] = J (1) (4.1)

[P±, P (1)
∓ ] = ±J (2) [P (1)

± , J ] = ±P (1)
± [P±, J (1)] = ±P (1)

± , (4.2)

and the bilinear form at level-2 (2.19) takes the form

〈J, J〉 = γ0 , (4.3)

〈J, J (1)〉 = −〈P+, P−〉 = γ1 , (4.4)

〈J, J (2)〉 = 〈J (1), J (1)〉 = −〈P+, P
(1)
− 〉 = −〈P−, P (1)

+ 〉 = 1 . (4.5)

We setup our boundary conditions compatible with the metric formulation in subsection 3.2
for the metric gµν in (3.14) and for the spin-2 gauge field fµν in (3.16) and the fact that the

7The relation to the diagonal gauge is P± = (P1 ± P0)/
√

2 and P (1)
± = (P (1)

1 ± P (1)
0 )/

√
2.
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gauge field Aµ is pure gauge. After translating those boundary conditions to the first order
form, inserting into (2.22) and performing a finite state-independent gauge transformation

Aµ → g (∂µ +Aµ) g−1 , g = exp(−rP+) , (4.6)

the r-dependence in the gauge field disappears and we are left with non zero elements,

Au = P J + T P+ + P− + P(1)J
(1) + T(1)P

(1)
+ . (4.7)

We choose a gauge fixing condition and justify it in subsection 4.2,

P(1) = 0 . (4.8)

Using the same transformation on the B field B → gB g−1 we can decompose it in terms
of the generators of the algebra and the dilaton fields in (3.19) and (3.20),

B = Y J + y+P+ + y1P− + y0J
(1) + x+P

(1)
+ + x1P

(1)
− + x0J

(2) , (4.9)

where x+ and y+ are determined by field equations. All functions in the connection A and
the B-field are allowed to vary and are functions of u. Since the Lie algebra is larger at
level-2, more functions appear in the gauge field and the dilaton, and there are additional
field equations that determine the dynamics. On-shell, the scalar field B plays the role of
the stabilizer for Au,

B′ + [Au,B] = 0 . (4.10)

where prime is the derivative w.r.t. u. These field equations solve four components of the
scalar field in terms of other components;8

y+ = y′0 + T y1 , (4.11a)

x+ = x′0 + T(1)y1 + T x1 , (4.11b)

Y = y′1 + Py1 , (4.11c)

y0 = x′1 + Px1 , (4.11d)

We have two more equations which relates different components to each other;

(y+)′ + T Y − Py+ = 0 , (4.12a)

(x+)′ + T(1)Y − Px+ + T y0 = 0 . (4.12b)

Apart from these equations we have Y ′ = 0. On-shell we have only three free functions x0,
x1 and y1 in the boundary conditions for the B field which couple to three functions P, T
and T(1) in the gauge field invariantly in the boundary term.

8Generalization of this boundary condition to level-N where we have 3N + 1 generators, solves 2N
variables of the B-field in terms of N + 1 free variables.
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4.2 Asymptotic symmetries

Before shifting gears to our main objective which is finding the boundary action by making
the action well-defined based on our adopted boundary condition, we pause here and ask
what kind of symmetries we should expect to be realized by the boundary system. In
other words, what is the symmetry algebra that governs the phase space of our theory?
In order to answer this question, we study asymptotic symmetries of the bulk theory in
its first-order formulation. We generate a general gauge transformation with the gauge
parameter Λ as in (3.7),

Λ = λJ + ε+P+ + εP− + λ1J
(1) + ε+

1 P
(1)
+ + ε1P

(1)
− + σJ (2) , (4.13)

and require that the boundary conditions on the 1-form connection A in its gauge fixed
form, (4.7) are preserved i.e.

dΛ + [A,Λ] = O(δA) . (4.14)

The components of Λ are in one to one correspondence with those introduced for the
scalar field B in (4.9). To a given gauge transformation Λ, using the bilinear form (2.20),
we can associate an invariant pairing between the gauge transformation and all possible
variations δA

δC[Λ] = −κ
∫
〈Λ, δA〉Γ . (4.15)

In particular, if we implement the definition of (4.15) to any transformation along P+ we
have C[ε+] = 0 which shows that any transformation along ε+ does not change the physical
state. Since according to the gauge transformation condition (4.14), P(1) shift transforms
under ε+;

δΛP(1) = λ′1 + T ε− ε+ , (4.16)

the gauge choice (4.8) does not remove any physical configuration and is accessible provided
that ε+ = λ′1 + T ε. Preserving the boundary conditions (4.7) demands that these
parameters should satisfy the analogous equations as in (4.11) and (4.12)

λ = εP + ε′ , λ1 = Pε1 + ε′1 ,

ε+ = λ′1 + T ε , ε+
1 = σ′ + T(1)ε+ T ε1 . (4.17)

After plugging in the parameters (4.17) into (4.13) we can read off the transformation
induced by Λ on the state-dependent functions from (4.14)

δΛP =
(
εP + ε′

)′
,

δΛT = εT ′ + 2ε′T + ε1

(
P ′ − 1

2P
2
)′

+ 2ε′1
(
P ′ − 1

2P
2
)

+ ε′′′1 ,

δΛT(1) =
(
T(1)ε+ T ε1 + σ′

)′ + ε′T(1) − σ′P + ε′1T . (4.18)

The transformation (4.18) manifests the expectation that P, T and T(1) under ε are primary
fields of conformal weight (1, 2, 2) respectively.
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4.3 Symmetry algebra and the coadjoint representation

The transformation (4.18) are equivalent to the linearized form of the coadjoint represen-
tation of a centrally extended group of symmetries.9 In fact, the phase space of the theory
coincides with the coadjoint representation of the asymptotic symmetry group. In princi-
ple, these symmetries describe the Hilbert space of the theory around a vacuum solution
which itself is labeled by constant representatives of the coadjoint orbit of the group.

To form the algebra of the coadjoint representation which coincides with the algebra
of asymptotic symmetries, we use the invariant bilinear form of the theory as the pairing
between the adjoint and coadjoint elements (4.15)

δC[Λ] = δC[ε] + δC[ε1] + δC[σ] , (4.19)

where δC’s on the right hand side of (4.19) can be determined by inserting the form of
Λ from (4.13) and δA from (4.7) into (4.15) and implementing the bilinear form (4.5).
We have

C[ε] = κ

∫
ε

(
T(1) + γ1T −

γ0
2 [P2 − 2P ′]

)
, (4.20a)

C[ε1] = κ

∫
ε1

(
T − γ1

2 [P2 − 2P ′]
)
, (4.20b)

C[σ] = −κ
∫
σP . (4.20c)

The pairing (4.19) does not coincide with the conventional notion of surface charges in BF-
theories [20, 23] that are defined on codimension-2 surfaces which in this case is a point —
see subsection 7.3. However, by Wick rotating the boundary coordinate and considering the
theory in Euclidean signature we can also think of the pairing as some unconventional finite
and integrable charges over a space-like slice [37] as they lead to an algebra (shown below)
associated with the coadjoint representation of asymptotic symmetries of the Euclidean
theory; in other words, the symmetry of the phase space of the theory. This correspondence
between the phase space of the theory and the coadjoint representation of the group of
symmetries acting on the boundary is specially justified in this case as the bulk piece
of the action is zero and the BF-theory is equivalent to the boundary action as will be
discussed later.

The compactified Euclidean circle then allows us to define the generators Lm, Tm and
Pm as the Fourier modes of C[ε], C[ε1] and C[σ] respectively. Using the relation [C1, C2] =
δ2C1 = −δ1C2 we can find the algebra

[Ln, Lm] = (n−m)Ln+m + γ0n
3δn+m,0 ,

[Ln, Tm] = (n−m)Tn+m + γ1n
3δn+m,0 ,

[Ln, Pm] = −mPn+m + iκ n2δm+n,0 ,

[Tn, Tm] = (n−m)Mn+m + c

12n
3δn+m,0 ,

[Tn, Pm] = 0 , [Pm, Pn] = 0 , (4.21)
9The non-linear form of the coadjoint representation can be identified in section 6 when we derive the

boundary action of the theory on the coadjoint orbit of the group. The coadjoint action is proportional to
the Hamiltonian generator on the circle [25, 65, 66].
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with

Mn =
∑
q

Pn−qPq + 2iκ nPn , and κ2 = c

24 . (4.22)

The algebra (4.21) is the spin-2 extension of the twisted warped conformal symmetry
at vanishing Kac-Moody level [27, 28, 37]. One can also read the algebra (4.21) as the
spin-2 extension of the BMS3 algebra using the prescription in [37]; one can consider the
twisted Sugwara generator Mn in (4.22) as independent and rewrite the algebra (4.21) in
terms of Mn where the only non-zero commutator that is altered is the third commutator
replaced with

[Ln,Mm] = (n−m)Mn+m − κn3δm+n,0 . (4.23)

The appearance of a quadratic term in the commutator of two spin-2 generators [T, T ]
in the CFT language is a feature of including primaries of conformal dimensions 2, 3, · · ·
corresponding to higher spin fields s ≥ 2 in the bulk. This implies that in general the
algebra of higher spin gravity closes only in the so-called enveloping algebra such as W -
algebras of higher spin theories in three dimensions [44, 67, 68].

5 Variational principle

The variation of the BF-action on-shell is a boundary term

δI ≈ κ
∫

du 〈B, δAu〉 . (5.1)

In order to have a well-posed variational principle we need to add a new boundary term to
the action whose variation cancels the boundary term (5.1).

5.1 Boundary action at level-1

First, we explain the general procedure for obtaining the boundary action at level-1 which
is the BF-theory corresponding to the (twisted-)ĈGHS model (3.1) with the Maxwell gauge
algebra given in (4.1) and the invariant bilinear form (4.3)–(4.4) with γ1 = 1. The boundary
condition for the gauge field and the dilaton is [28]:

Au = P J + T P+ + P− , B = Y J + x1P− + x+P+ + x0J
(1) . (5.2)

The boundary term (5.1) at this level is

δI(1) ≈ κ
∫

du
[
(x0 + γ0 Y )δP − x1 δT

]
, (5.3)

where γ0 is a free parameter and all other variables under the integral are functions of u.
This boundary term which in general is not integrable should be canceled by variation of a
supplemented boundary term to the BF-action. In order to make the boundary term (5.3)
integrable we exploit the fact that our theory has two constants of motion at this level

C0 ≡ Y C1 ≡
1
2〈B,B〉γ1 = x0Y − x+x1 . (5.4)
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Upon using the field equations x+ = x′0 + T x1 and Y = x′1 +Px1 we can substitute T and
P in terms of the two Casimirs (5.4) into the boundary term (5.3). After some algebra
we get

δI(1) ≈ κ
∫

du
[
δ
C1
x1

+ C1δ
1
x1
− C0δ

x0
x1

+ δx′0 − [x0δ ln x1]′

+ 1
2γ0

(
δ
C2

0
x1

+ C2
0δ

1
x1
− 2C0[δ ln x1]′

)]
. (5.5)

The boundary term (5.5) is integrable providing that the following holds

δ

∫ du
x1

= 0 , δ

∫
x0
x1

du = 0 . (5.6)

These integrability conditions will be interpreted in section 6, where we consider the theory
on the circle, as having fixed zero mode for the Euclidean fields on the circle. It is worth
mentioning that both of the conditions (5.6) are required for a vanishing boundary term.10

As a consequence of (5.6) we can add the following boundary action to the BF-theory
at this level to cancel the boundary term (5.5);

I(1) → I(1) + ∂I(1) , ∂I(1) = −κ
∫ du
x1

(
C1 + 1

2γ0C
2
0

)
. (5.7)

Imposing the field equations, the bulk contribution vanishes and we are left with the bound-
ary term ∂I(1). In comparison with the boundary action for the ĈGHS model [28] where
only C1 contribute, we see that here the Casimir C0 can also contribute to the boundary
action of the twisted-ĈGHS model (3.1), thanks to the invariant-bilinear form (4.3). In the
Euclidean description of the theory in section 6 this action leads to a Warped-Schwarzian
theory [27] with vanishing u(1) level where C2

0 contributes to the Schwarzian and C1 to a
twisted warped term.

5.2 Boundary action at level-2

Using the boundary condition for the gauge field and the dilaton given in (4.7) and (4.9),
the boundary term of the action (5.1) at this level follows:

δI(2) ≈ κ
∫

du
[
γ0 Y δP + γ1(y0 δP − y1 δT ) + x0δP − x1δT − y1δT(1)

]
. (5.8)

There are three conserved quantities at this level, one linear and two bilinear ones associated
to the algebra Casimirs (2.16)

C0 ≡ Y , (5.9a)

C1 ≡
1
2〈B,B〉γ1 = y0Y − y+y1 , (5.9b)

C2 ≡
1
2〈B,B〉γ2 = x0Y − y+x1 − x+y1 + 1

2y
2
0 . (5.9c)

10In [28] only the first integrability condition was needed as g ≡
∫ u

x0/x1 was considered to be a periodic
function on the circle with no winding modes. Here we relax this boundary condition but we have to fix
the winding instead.
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We use identities (5.9) to eliminate the dilaton components x+, y+ and Y in terms of
Casimirs. Plugging them into field equations (4.11) we trade T , P and T(1) in the boundary
term (5.8) with independent dilaton fields x0, x1, y1 and Casimirs, then substitute them
into the boundary term (5.8). After doing some algebra we get11

δI(2) ≈ κ
∫

du
[
δ
C2
y1

+ C2δ
1
y1
− δC1x1

y2
1
− C1δ

x1
y2

1
− C0δ

x0
y1

+ 1
2δ
C2

0x
2
1

y3
1

+ 1
2C

2
0δ
x2

1
y3

1

+ 1
2γ0

(
δ
C2

0
y1

+ C2
0δ

1
y1

)
+ γ1

(
δ
C1
y1

+ C1δ
1
y1
− 1

2δ
C2

0x1
y2

1
− C2

0δ
x1
y2

1

)]
, (5.10)

where the total derivative terms have been thrown away. The constraint which comes from
the well-posed variational principle is that the following integrals should be fixed

δ

∫ 1
y1

= 0 , δ

∫
x1
y2

1
= 0 , δ

∫
x2

1
y3

1
= 0 and δ

∫
x0
y1

= 0 . (5.11)

As a consequence we complement the action by a boundary action I(2) → I(2) + ∂I(2) as,

∂I(2) = −κ
∫ du
y1

(
C2 −

[
x1
y1

]
C1 + 1

2

[
x1
y1

]2
C2

0 + γ1

(
C1 −

1
2

[
x1
y1

]
C2

0

)
+ γ0

2 C2
0

)
. (5.12)

Again, when the field equations hold, the bulk action vanishes and the Casimir functions
in the boundary action are constant in u. In the next section we will discuss the boundary
actions derived in this section in level-1 (5.7) and level-2 (5.12) on the circle. The integra-
bility conditions (5.11) will be interpreted as fixing the zero modes of certain functions on
the circle.

6 Euclidean theory

In this section we aim to study the theory at finite temperature T = 1/β. In order to do so
we perform a Wick rotation and work in Euclidean signature with periodic time τ ∼ τ + β

u→ iu ≡ τ . (6.1)

The Wick rotation (6.1) entails using the Euclidean frame metric δab with a, b = 1, 2 which
does not distinguish between the up and down indices. Considering ε21 = 1 the Euclidean
algebra with a, b = 1, 2 has exactly the same form as the Lorentzian and we do not need
to change anything at the level of the algebra. For example, at level-1, we have

[Pa, J ] = εabPb [Pa, Pb] = εabJ
(1) , a, b = 1, 2 . (6.2)

All generators in (6.2) are Euclidean. The map from (6.2) to its Lorentzian partner (2.3)
is then

P2 → −iP0 , P1 → P1 , J → iJ , J (1) → −iJ (1) . (6.3)
11To avoid messing up the calculation we plug in the dilaton component y0 which is a dependent field,

only in the end;

y0 = x′1 + Px1 = x1

y1
C0 + y1

(
x1

y1

)′
.
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The same holds for the next level-2. Namely the extension of the Euclidean algebra is
exactly the same as in (2.10) with a, b = 1, 2 and ε21 = 1. The map from Euclidean
extended generators to the Lorentzian ones is then

P
(1)
2 → −iP (1)

0 , P
(1)
1 → P

(1)
1 , J (2) → iJ (2) . (6.4)

However, in our Lorentzian analysis we used the algebra form in the light-cone gauge (4.1)–
(4.2). The same algebra can be used for Euclidean signature, with the identifications

P± = (P1 ± iP2)/
√

2 , P
(1)
± = (P (1)

1 ± iP (1)
2 )/

√
2 , (6.5)

accompanied with i-rescalings of J ’s as mentioned above. Since the light-cone algebra is
the same as in the Lorentzian case the bilinear form of the Euclidean algebra also remains
the same as in (4.3)–(4.5). This assures that, had we started the analysis of section 5 in
Euclidean signature we would get the same result for the boundary terms (5.7) and (5.12)
with the analytic continuation of the integrand using ∂u → i∂τ . Note that since the
connection 1-form A is covariant we just need to replace

∫
→
∮
.

6.1 Euclidean action at level-1

Using the prescription of Wick rotation described above, the Euclidean continuation of the
boundary action at level-1 (5.7) can be evaluated

IE(1) = −κ
∮ dτ
x1

[
C1+1

2γ0C
2
0

]
, (6.6)

where the Casimirs at level-1 are obtained from (5.4) using (6.1) as

C0 = i(x′1 − iPx1) ,
C1 = ix0(x′1 − iPx1)− x1(ix′0 + T x1) , (6.7)

in which prime denotes a differentiation w.r.t. τ . We introduce the following field
redefinition,

f ′ = 1
x1
, g′ = ix0f

′ . (6.8)

This choice is justified by the fact that the integrability conditions (5.6) here on the circle
are translated as having fixed zero modes for functions f and g. This means that they are
either periodic or quasi-periodic functions of τ with fixed winding number. Inserting (6.7)
into (6.6) we find the following expression in terms of variables (6.8)

IE(1) = κ

∮ dτ
f ′

(
T eff + iPg′ + g′′+1

2γ0

[
f ′′

f ′

]2)
, (6.9)

where T eff = T −1
2γ0[P2−2iP ′] is the effective energy density. We can rewrite the effective

action (6.9) in terms of the inverse function h = −f−1 and get12

IE(1) = κ

∮
df
(
h′2T eff+γ0

2

[
h′′

h′

]2
+ g′

[
iPh′ − h′′

h′

])
. (6.10)

12We drop the total double derivative terms. The conventional Schwarzian derivative term
(
h′′

h′

)′− 1
2

(
h′′

h′

)2

is equivalent to − 1
2

(
h′′

h′

)2 under the integral.
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The field redefinition h = −f−1 entails

f ′ = 1
h′
◦ f , f ′′ = − h

′′

h′3
◦ f , g′ = g′

h′
◦ f , g′′ =

(
g′′

h′2
− g′h′′

h′3

)
◦ f , · · ·

It is understood that in (6.10) ′ is with respect to the variable f and we drop ◦f from
here on.

The Euclidean action obtained in (6.10) is associated with a warped-Schwarzian the-
ory [27] with vanishing u(1) level which is an action for the warped Virasoro group coadjoint
orbits [37]. Here upon imposing suitable boundary conditions, we found this boundary
action equivalent to the Euclidean twisted-ĈGHS model (3.2), whose bulk contribution
vanishes due to constraints. The same way as the Schwarzian action governs the theory of
pseudo-Goldstone modes associated to a symmetry breaking of the Virasoro group to its
SL(2,R) or U(1) subgroups, the action (6.10) determines the theory of Goldstone modes
appearing in the symmetry breaking from the twisted warped Virasoro group at vanishing
U(1)-level to its finite dimensional global subgroups ISO(1, 1)c which is the 2D Maxwell
group (the central extension of the 2D Poincaré group) or U(1) × U(1) depending on the
value of zero-modes of T and P.

Field equations of the action (6.10) after integrating once yields — from now on we
restrict ourselves to constant representatives T0 and P0,

−iP0h
′ + h′′

h′
= a0 , (6.11)

2h′T eff
0 +iP0g

′ + g′′

h′
−γ0
h′

(
h′′

h′

)′
= b0 . (6.12)

where a0 and b0 are integration constants. The general solution as well as the disk partition
function for this model are obtained in [27].13 However for evaluating the on-shell action we
do not need to solve these equations. The fact that in (6.10) we use f as reparametrizing
the angle coordinate on the circle implies that h is a quasi-periodic function in β,∮

h′ = β . (6.13)

Using (6.13) we can determine the value of a0 by integrating once the equation (6.11),

a0 = −iP0 . (6.14)

Further, multiplying both sides of equation (6.11) by h′ and integrating once we get,∮
h′2 = β . (6.15)

Using (6.11) together with (6.14) and (6.15) we can evaluate the on-shell action

IE(1)|on-shell = κβ

(
T0−

1
2γ0P2

0

)
+iκP0

∮
g′ . (6.16)

13The cylinder partition function of the ĈGHS model is considered in [69].
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The last term measures the quasi-periodicity of the function g which according to the
integrability condition (5.6) has to be fixed and can be determined in terms of b0, T0 and
P0; substituting the h′′ from equation (6.11) into (6.12) we get a second order equation for g

2h′T0+iP0g
′ + g′′

h′
−γ0P2

0 = b0 , (6.17)

where upon integrating it once we have

0 = β(2T0−γ0P2
0 − b0)+iP0

∮
g′ +

∮
g′′

h′
. (6.18)

The last term in (6.18) is zero because if we rewrite it in terms of the inverse map h→ h−1

it is the integral on derivative of a periodic function∮
g′′

h′
→
∮ (

g′

h′

)′
= 0 . (6.19)

Thus the value of the on-shell action (6.16) and the corresponding free energy is

F ⊃ β−1IE(1)|on-shell = −κ
(
T0−

1
2γ0P2

0 − b0
)
. (6.20)

6.2 Euclidean action at level-2

The Euclidean continuation of the boundary action (5.12) is

IE(2) = −κ
∮ dτ
y1

(
C2 −

[
x1
y1

]
C1 + 1

2

[
x1
y1

]2
C2

0+γ1

(
C1 −

1
2

[
x1
y1

]
C2

0
)
g + γ0

2 C2
0

)
. (6.21)

Where the Casimirs are Wick rotated

C0 = i(y′1 − iPy1) , (6.22)
C1 = −(x′1 − iPx1)(y′1 − iPy1) + y1[(x′1 − iPx1)′ − T y1] ,

C2 = ix0(y′1 − iPy1) + x1[(x′1 − iPx1)′ − T y1]− y1(ix′0 + T(1)y1 + T x1)− 1
2(x′1 − iPx1)2 .

It is convenient to introduce the following field redefinition,

f ′ = 1
y1
, w′ = x1

y1
= x1f

′ , g′ = ix0f
′ . (6.23)

Upon inserting (6.23) into the Casimir combinations appearing in (6.21) we have

C2 −
[
x1
y1

]
C1 + 1

2

[
x1
y1

]2
C2

0 = − 1
f ′2

(
iPg′ + g′′ + T(1) + T w′ + 1

2w
′′2
)
,

C1 −
1
2

[
x1
y1

]
C2

0 = − 1
f ′2

(
T − w′′′ + w′′

f ′′

f ′
+ w′

(
f ′′′

f ′
− 3

2
f ′′2

f ′2
+ iP ′ − 1

2P
2
))

,

C2
0 = − 1

f ′2

(
f ′′2

f ′2
+ 2iP f

′′

f ′
− P2

)
. (6.24)
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The Euclidean effective action at level-2 (6.21) after inserting above and performing some
partial integration is obtained

IE(2) = κ

∮ dτ
f ′

(
iPg′ + g′′ + T eff

(1) + T effw′ + 1
2w
′′2+γ1w

′
(
f ′′′

f ′
− 3

2
f ′′2

f ′2

)
+ γ0

2
f ′′2

f ′2

)
(6.25)

where14

T eff
(1) = T(1)+γ1T + γ0

(
iP ′ − 1

2P
2
)
, (6.26)

T eff = T +γ1

(
iP ′ − 1

2P
2
)
. (6.27)

If we rewrite (6.25) in terms of the inverse map h = −f−1 we get

IE(2) = κ

∮
df
(
h′2T eff

(1)+
γ0
2
h′′2

h′2
+ g′

[
iPh′ − h′′

h′

]
+ w′

h′

[
T effh′2−γ1

(
h′′′

h′
− 3

2
h′′2

h′2

)]
+ 1

2

[(
w′

h′

)′]2)
. (6.28)

Prime here refers to derivative w.r.t. f and again we restrict our selves to constant rep-
resentatives T0, T(1)0 and P0 on the orbit. Upon varying the action w.r.t. g, w and h

we get

iP0h
′ − h′′

h′
= a0 , (6.29)

T eff
0 h′2−γ1

(
h′′′

h′
− 3

2
h′′2

h′2

)
+
(
w′

h′

)′′
= b0h

′ , (6.30)

2h′T eff
(1)0 + w′T eff

0 + iP0g
′ + g′′

h′
+ w′

h′2

(
w′

h′

)′′
+γ1

[
w′

h′2

(
2h
′′′

h′
+ 3

2
h′′2

h′2

)
−
(
w′

h′2

)′′
− 3
h′

(
h′′w′

h′2

)′]
−γ0
h′

(
h′′

h′

)′
= c0 . (6.31)

where a0, b0 and c0 are integration constants.
Following the same logic as in the level-1, by integrating equations (6.29)–(6.30) and

using the fact that h′ is quasi-periodic in β one obtains

a0 = iP0 , b0 = T eff
0 , (6.32)

where in the last equation we used the identity (6.15). In fact using eq. (6.29) together
with the identity (6.15) iteratively one can generalize the identity∮

(h′)n = β , n ≥ 1 . (6.33)

14The format appearing as T eff and T eff
(1) are the same as those appearing in the expression of charge (4.20)

after we do the analytic continuation (6.1).
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We can also derive same identity for w′ or g′ smeared with powers of h′. Using the inverse
map h→ h−1 we have h′ → 1/h′ and w′ → w′/h′ which translate to∮ 1

(h′)n =
∮

(h′)n ,
∮

w′

(h′)n =
∮
w′(h′)n−1 , n ≥ 1 (6.34)

Under the inverse map h→ h−1 we also have w′′ → 1
h′2
(
w′′ − h′′

h′ w
′) which, upon using the

fact that
∮
w′′ = 0 implies∮

w′′

h′2
=
∮
w′
h′′

h′3
= iP0

[ ∮
w′

h′
−
∮
w′

h′2
]

= iP0

[ ∮
w′ −

∮
w′h′

]
, (6.35)

where in the second equality we used (6.29) and in the last equality we used the identity
of (6.34). On the other hand if we use the partial integration we have

∮ w′′

h′2 = 2
∮
w′ h

′′

h′3 .
This implies that the right hand side of (6.35) is zero;∮

w′h′ =
∮
w′ . (6.36)

Using the same logic iteratively we get a generalization of the identity in (6.19) and of (6.36)∮
w′′

(h′)n =
∮
w′′(h′)n = 0 ,

∮
w′(h′)n =

∮
w′(h′)n−1 , n ≥ 0 . (6.37)

In order to find identities for higher powers of w′ we use (6.30). If we insert a0 and b0
from (6.32) and h′′ from eq. (6.29) we can simplify and reduce the order of derivatives
in (6.30) and find a third order differential equation for w

T0h
′(h′ − 1)+γ1

2 P
2
0 (h′ − 1) + w′′′

h′
− iP0

(
h′ − 1

)(
2w
′′

h′
+ iP0

w′

h′

)
= 0 . (6.38)

Next we use eqs. (6.29) and (6.38) to solve for h′′ and w′′′ and substitute them in eq. (6.31)

− 2h′T eff
(1)0−γ0P2

0 (h′ − 1)− iP0g
′ − g′′

h′

−γ1
h′

[
T eff

0 h′(h′ − 1)+γ1P2
0

2
(
h′2 − 1

)
− iP0(h′ − 1)w

′′

h′
− w′P2

0 (h′ − 1)
]
− T eff

0
w′

h′
= c0.

(6.39)

Integrating eq. (6.39) once and using the identities in (6.34) and (6.37) we get,

−2βT eff
(1)0 − iP0

∮
g′ − T eff

0

∮
w′ = c0β . (6.40)

Finally one can obtain the on-shell action as

IE(2)|on-shell = κ

(
βT eff

(1)0 + iP0

∮
g′ + T eff

0

∮
w′
)

(6.41)

= −κβ
(
T(1)0+γ1T0 −

1
2γ0P2

0 +c0

)
.

where in the first line we used the identities (6.34) and (6.37) and in the second line we
substituted from (6.40) and zero modes in (6.26).
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7 Thermodynamics

In this section we analyze the disk thermodynamics associated to the zero-mode solution
represented by T0, P0 and T(1)0 in the Euclidean gauge field,

iAτ = P0 J + T0 P+ + P− + T(1)0 P
(1)
+ . (7.1)

where all generators belong to the Euclidean algebra. The gauge field (7.1) defines our
boundary conditions in the extended-ĈGHS model based on the BF-theory formulation of
the extended Poincaré algebra at level-2. At level-1, the gauge field has no components
along P (1)

+ , hence T(1)0 = 0. The level-1 BF-theory formulation which is the description of
the twisted-ĈGHS model, is based on the centrally extended Poincaré algebra.

7.1 Holonomy

To ensure the regularity of the zero-mode solution on the disk, we require that the holonomy
is trivial. This condition suggests that it belongs to the center of the group. The holonomy
of Aτ along the thermal cycle is

Hol(Aτ ) = exp
[ ∮
Aτ
]
∈ Z(G) . (7.2)

This ensures having contractible thermal cycles on the disk [70]. The detailed analysis of
finding the center of the group is made by applying the lemma to the Baker-Campbell-
Hausdorff formula in the appendix B. Here we just report the result. The holonomy (7.2)
belongs to the center of the group providing that at level-1 and level-2 extensions of the
gauge field we have

Level-1 : P0 = 2πn
β

,

Level-2 : P0 = 2πn
β

, T0 = 0 .
(7.3)

where there is no constraint on T0 at level-1 and no constraint on T(1)0 at level-2.

7.2 Entropy from the onshell action

The free energy of the system is F = −T lnZ where Z is the partition function of the
theory. At the classical level we have Z = e−IE , where IE refers to the Euclidean on-shell
action. The corresponding entropy is then

S = −∂F
∂T

= −IE − T
∂IE
∂T

. (7.4)

Using the expression for the on-shell action (6.16) for the twisted-ĈGHS model and impos-
ing the holonomy condition P0 = 2π/β the corresponding entropy is obtained

Stw-ĈGHS = 2πκ
(
− T0
P0

+ x0+γ0P0

)
= 2πκ

(
XH+γ0Y

)
. (7.5)
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The last equality is written in terms of the value of the dilaton field (3.20) at the horizon
XH = x0 +rHx1 where rH = − T0

P0
while x0 and x1 here are constant and counts the winding

numbers associated to g and h fields respectively. According to (6.8) we have;

x0 = − i
β

∮
g′

f ′
= − i

β

∮
g′ , x1 = 1

β

∮ 1
f ′

= 1
β

∮
h′ = 1 , (7.6)

where in the last equality we used the field redefinition h = −f−1 and used the identi-
ties (6.14) and (6.36). In (7.5) we have also used the fact that x1P0 = Y . The entropy
of the black hole in the twisted-ĈGHS model in comparison to the ĈGHS model acquires
a temperature-dependent term. Its specific heat in contrast to the ĈGHS model, is then
finite and linear in T ;

C = T
∂S

∂T
= (2π)2κγ0T . (7.7)

At level-2 we use the expression of the on-shell action for the extended-ĈGHS model
in (6.41) and also impose the holonomy condition (7.3) which on the disk entails P0 = 2π/β
and T0 = 0. The entropy is then found from (7.4)

Sex-ĈGHS = 2πκ
(
−
T(1)0

P0
+ x0+γ1x1P0 + γ0P0

)
= 2πκ

(
−
T(1)0

P0
+XH+γ1Y(1)H + γ0Y

)
. (7.8)

In the first line upon using (6.23) we have x0 = − i
β

∮
g′ and x1 = 1

β

∮
w′ counting the

winding numbers of g and w quasi-periodic functions correspondingly and the last equality
is written in terms of the horizon value of dilaton fields (3.19) and (3.20) present in the
extended-ĈGHS model (note that in this case rH = 0 as T0 = 0 on the disk). The first
term in the expression of the entropy can be identified with the contribution of the spin-2
gauge field fuu in (3.16) at the horizon.

7.3 Entropy from canonical charges

In BF theories (2.1) the gauge transformations A → A + dΛ could lead to codimension-2
canonical surface charges which in this case is a point [20, 23]

δQ[Λ] = κ〈Λ, δB〉 (7.9)

In particular, let us evaluate this expression at the horizon in (3.14) for the null Killing
vector ξ = ∂u to find the entropy as a Noether conserved quantity using the first law
δQ = TδS. The associated gauge transformation is related to infinitesimal diffeomorphisms
as Λ = ξµAµ = Au. Thus we have

TδS = κ〈Au, δB〉 . (7.10)

At level-1, the zero-mode solution is given by (5.2) where upon substituting x1 = 1 and
P0 = Y = 2πT as fixed quantities (solving the dilaton field equation x′1 + Px1 = Y )
we have,

TδS = 2πκT (γ0δY + δx0 − δ(T0/P0)) , (7.11)
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which is an integrable identity and after integration leads to S = 2πκ(XH + γ0Y ) in
agreement with (7.5). At level-2 by inserting zero mode components (4.7) and (4.9) into
equation (7.10) and using field equations (4.11) to fix y1 = 1 and y0 = x1P0, we get

TδS = 2πκT
(
−δ(T(1)0/P0) + δ(x0 + x1rH) + γ1δ(y0 + y1rH) + γ0δY

)
, (7.12)

which upon integrating we find the same expression for the entropy as in (7.8).

8 Summary and remarks

In this paper, we studied holographically the two-dimensional dilaton gravity coupled to
spin-2 gauge fields in flat spacetime. In particular we used the expansion method around
the flat background R = 0 to study interacting massless spin-2 theories and their holo-
graphic picture. We called this model as extended-ĈGHS model. The action corresponds
to a BF-theory for a 7-dimensional gauge group. Four of its generators comprise the cen-
trally extended 2D Poincaré subalgebra J, Pa, J (1) and the two extra generators P (1)

a are
associated with the spin-2 extension manifested as the spin-2 representation of the boost
generator, and there exists a central generator J (2). The presence of the central term is
assuring the existence of a non-degenerate bilinear form. We also derived the metric formu-
lation of the theory and the corresponding field equations and solved them with appropriate
gauge fixing/boundary conditions in section 3.

By translating the boundary conditions to the BF-formulation, we studied the asymp-
totic symmetries of the model in section 4 which is the spin-2 extension of the warped-
Virasoro algebra at vanishing Kac-moody level. In section 5 using the BF-theory setup and
our adopted boundary conditions we studied the variational principle and found the appro-
priate boundary term which makes the variational-principle well-defined. This amounted
to impose certain integrability conditions on the dilaton fields in the theory. We analyti-
cally continued the boundary action — which equals the bulk action — to the Euclidean
signature where the integrability conditions gain simple forms. These integrability condi-
tions amount to fixing the zero-mode of certain quasi-periodic functions which themselves
account for a certain combination of dilaton fields components on the circle. The Euclidean
boundary action on the circle together with the field equations are derived in terms of these
quasi-periodic functions in section 6 which is the spin-2 extension of the warped-Schwarzian
theory at vanishing U(1)-level [27, 28]. Finding the on-shell action and imposing the holon-
omy conditions on the disk we explored the thermodynamics of black holes in this setup
and found the corresponding entropy in terms of the contribution of the spin-2 and dilaton
fields at the horizon in section 7.

Based on our results in this paper both on the gravity side and on the Euclidean
quantum mechanics side one can ask several questions. One of the interesting questions is
whether there exists an SYK-like statistical quantum mechanics whose low-energy effective
action is (6.28). In fact, it was shown in [28] that there exists a scaling limit from the effec-
tive action of the charged SYK model to the warped Schwarzian action (6.10) in which, in
addition to the reparametrization fields h comprising the Schwarzian term, the spin-1 fields
g are also present. In the spin-2 extended version (6.28) the analogous scaling limit if exists

– 27 –



J
H
E
P
0
7
(
2
0
2
1
)
1
2
6

would require starting from a charged SYK model which exhibits an extra spin-2 global
symmetry. Another interesting calculation is the partition function of this model (6.28)
which will be 1-loop exact as its Schwarzian [65] and warped Schwarzian [27] ancestors.

From the bulk point of view, the appearance of extra spin-2 gauge symmetry can be
considered as a blessing to flat-space holography in 2D. In the presence of extra massless
gauge fields the topology of the group structure of the extended Poincaré symmetry is
more involved and the number of configurations with R = 0 enhances. In the pure dilaton-
gravity in fact the constraint R = 0 allows only very few saddles to the theory. Now with
the appearance of extra spin-2 gauge symmetry, this can in principle enhance. This may
increases the chance of an ensemble interpretation of the theory [6]. Similar to three dimen-
sional higher-spin gravity [67], interesting features may also arise due to extension of the
symmetry algebra; the notion of inequivalent non-trivial embeddings of the gravitational
subalgebra in the full gauge algebra [71–76] or the appearance of generalized black holes
see e.g. [70, 77–79].
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A Level-∞ theory

In section 2, we discussed the extension of the BF-theory to an arbitrary level-N . In the
limit N →∞, infinitely many copies of spin-2 fields can be summed into smooth functions
of the expansion parameter σ and comprise an effective 2-dimensional geometry with an
effective curvature σ as will be discussed here.

A.1 Defining summed variables

In order to build a BF-theory based on the infinite-dimensional Lie algebra (2.6), we
extend the definitions (2.25) to include infinitely many terms while introducing a regulating
parameter σ:

e =
∞∑
k=0

σk

k! e
a
(k)(x)P (k)

a , (A.1a)

ω =
∞∑
k=0

σk

k! ω(k)(x)J (k) . (A.1b)

Suppose that there are smooth one-forms ea(x, σ) and ω(x, σ) with convergent Taylor
series in σ whose coefficients are given by ea(k) and ω(k). We have e = e[ea(x, σ)] and
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ω = ω[ω(x, σ)]. The commutator of Lie-algebra-valued one-forms are

[
e[ea(x, σ)], e[fa(x, σ)]

]
=

∞∑
k,m=0

Jk+m+1
σk+m

k!m! εabe
a
(k)(x)f b(m)(x)

=
∞∑
s=0

J(s+1)
σs

s! (eaf bεab)(s)(x). (A.2)

In the last equality, we used (ef)(x) =
∑∞
k=0

1
k!
∑k
m=0 e(m)(x)f(k−m)(x)

( k
m

)
. The right-

hand-side of (A.2) can be resummed as

[
e[ea(x, σ)], e[fa(x, σ)]

]
= ω[εab

∫ σ

0
(eaf b)(x, σ′)dσ′] . (A.3)

Similarly, we have [
e[ea(x, σ)],ω[ω(x, σ)]

]
= e[εab(ω eb)(x, σ)] . (A.4)

Now we are ready to define the Level-∞ BF-theory by introducing the gauge field

A = e[ea(x, σ)] + ω[ω(x, σ)] , (A.5)

with curvature

F = e[dea(x, σ)] + e[εab(ω eb)(x, σ)] + ω[dω(x, σ)] + ω
[1

2εab
(∫ σ

0
(eaeb)(x, σ′)dσ′

)]
.

(A.6)

We also introduce the Level-∞ dilaton by extending (2.24)

B = Z[Za(x, σ)] + Y[Y (x, σ)] , (A.7)

where we define

Z[Za(x, σ)] =
∞∑
k=0

σk

k! Z
a
(k)(x)P (k)

a , Y[Y (x, σ)] =
∞∑
k=0

σk

k! Y(n)(x)J (k) . (A.8)

Reduction to level-N . The definitions (A.5) and (A.7) reduce to (2.22) and (2.24) for
the level-N theory, if both e and Z are kept up to order σN−1 while ω and Y are kept up
to order σN . The gauge field A in (2.22) will be identified with ω(N), and the dilaton X
in (2.24) with Y(N).

A.2 The level-∞ BF-action

To specify the BF-action, one needs to fix the pairing between various fields defined above.
Using (2.21), we have

〈
Y[Y (x, σ)],ω[ω(x, σ])

〉
ΓN

=
N∑

k,m=0

1
k!m!Yk(x)ωm(x)σk+mδk+m−N = σN

N ! (Y w)N (x) .

(A.9)
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The pairing of two functions Y[Y (x, σ)] and ω[ω(x, σ)] using the bilinear form ΓN is given
by the Nth coefficient in the Taylor series of the function (Y ω)(x, σ), which itself has N+1
terms when written in terms of the Taylor coefficients of Y (x, σ) and ω(x, σ). It is thus
suggestive to consider the bilinear form Γ∞ defined by the N + 1-vector γ = (1, 1, · · · , 1),
and N →∞. The pairing acquires the simple form〈

Y[Y (x, σ)],ω[ω(x, σ])
〉

Γ∞ = (Y ω)(x, σ) . (A.10)

Similarly, for Z and e one obtains〈
Z[Za(x, σ)], e[ea(x, σ)]

〉
Γ∞ = −(Zaea)(x, σ) . (A.11)

Now we are ready to propose the Level-∞ BF-theory

I(∞)[B,A;σ] =
∫ 〈
B[Za, Y ]F [ea, ω]

〉
Γ∞

, (A.12)

where the parameter σ is fixed to a certain value in the convergence radius of the Taylor
series, and the integration is performed on a two-dimensional manifold. Explicitly, the
action is

I(∞)[B,A;σ] =
∫ {

Y

(
dω + 1

2εab
∫ σ

0
(eaeb)(σ′)dσ′

)
+ xa

(
dea + εabωe

b)} . (A.13)

Variation with respect to Y (x, σ) and Za(x, σ) gives the following field equations

dω(x, σ) + 1
2εab

∫ σ

0
(eaeb)(x, σ′)dσ′ = 0 , (A.14)

dea(x, σ) + εabω(x, σ)eb(x, σ) = 0 . (A.15)

Effective curvature. I(∞)[B,A;σ] is defined at a fixed σ. Equation (A.15) solves w(x, σ)
in terms of ea(x, σ), while by taking a derivative of the two sides in (A.14) with respect to
σ we have

dω′(x, σ) + 1
2εab(e

aeb)(x, σ) = 0 . (A.16)

Suppose that we define an effective two dimensional metric Gµν(x, σ) depending on the
parameter σ as

Gµν(x, σ) = eaµ(x, σ)ebν(x, σ)ηab . (A.17)

Using the relation between the Ricci scalar and the spin connection in two dimensions,
R = 2 ? dω we can find the curvature of the metric Gµν

R[G] =
∫ σ

0 det e(x, σ′) dσ′

det e(x, σ) =
∫ σ

0
√
G(x, σ′) dσ′√
G(x, σ)

. (A.18)

We can simplify this expression by exploiting the gauge symmetry of each spin-2 field ea(k)
such that

e(k=0) =
(

1 a(x)
0 1

)
, e(k>0) =

(
1 a(k)(x)
0 0

)
. (A.19)
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In this gauge, the determinant of the effective metric is equal to one. It follows that

R[G] = σ. (A.20)

Of course the final result must be independent of the gauge. We conclude that a stack
of infinitely many spin-2 fields present in the theory (A.12) give rise a curved background
depending on the parameter σ. The effective geometry is a de Sitter space if σ > 0 and an
anti-de Sitter space if σ < 0. Regarding the flat space limit, one can take the limit σ → 0
from some non-vanishing value. This limit effectively switches off all the fields in A except
ea and ω, and the translation generators effectively commute. The background geometry
is flat in this case.

B Center of the 2D extended Poincaré group

In this part we would like to find the center for symmetry groups we studied in the main
text. To this end, we use the lemma to the Baker-Campbell-Hausdorff formula

eXeY = e(Y+[X,Y ]+ 1
2! [X,[X,Y ]]+ 1

3! [X,[X,[X,Y ]]]+··· ) eX , (B.1)

where X and Y are elements in the Lie algebra of a Lie group. The group element g = eX

will belong to the center of the group iff for any arbitrary element Y we have

[X,Y ] + 1
2! [X, [X,Y ]] + 1

3! [X, [X, [X,Y ]]] + · · · = 0 . (B.2)

This leads to constraints on parameters in the Lie algebra elements of X.

B.1 Center of the 2D Maxwell group

First, we are going to explore the center of 2D Maxwell group at level-1. We denote the X
and Y elements as

X = αJ + β+P+ + β−P− + α1J
(1) , (B.3)

Y = aJ + b+P+ + b−P− + a1J
(1) .

Utilizing the 2D Maxwell algebra commutation relations (4.1) in (B.1) we obtain

eXeY =e(Y+A+P++A−P−+C1J(1)) eX , (B.4)

where the coefficients are given by15

A± =
(
β±a

α
− b±

)
(1− e∓α) ,

C1 =
(
β+b−

α

)
(eα − 1) +

(
β−b+

α

)
(e−α − 1) + 2β+β−a

α2 (1− coshα). (B.5)

The center condition (B.2) is satisfied for the Lie algebra element X by the nontrivial
solution to A± = C1 = 0 which in this case is

α = ±2π i n , n ∈ N . (B.6)

Other parameters in X remain unconstrained.
15The case α = 0 gives the trivial center β± = 0.
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B.2 Center of the extended Maxwell group

In the next step, we are going to explore the center of the group at level-2. We denote X
and Y elements as16

X = αJ + β+P+ + β−P− + β+
1 P

(1)
+ + β−1 P

(1)
− , (B.7)

Y = aJ + b+P+ + b−P− + a1J
(1) + b+1 P

(1)
+ + b−1 P

(1)
− + a2J

(2) .

We explore constraints on the group element X such that it is the center of the extended
Maxwell group. In general we have

eXeY = e

(
Y+A+P++A−P−+C1J(1)+A+

1 P
(1)
+ +A−1 P

(1)
− +C2J(2)

)
eX , (B.8)

The commutators of extended Maxwell algebra (4.2) and the BCH lemma in (B.1) leads
to the coefficients given as

A± =
(
β±a

α
− b±

)
(1− e∓α) ,

C1 = β+b−

α
(eα − 1) + β−b+

α
(e−α − 1) + 2β+β−a

α2 (coshα− 1) ,

A±1 =
(
β±1 a1
α

+ aβ±1
α
− b±1

)
(1− e∓α) + b∓β±

2

α2 (coshα− 1)

+ b±β−β+

α2 (e∓α − 1 + αe∓α) + aβ±
2
β∓

2α3 (∓2αe∓α − 3e∓α − e±α + 4),

C2 =
(
b+1 β

−

α
+ b+β−1

α

)
(e−α − 1) +

(
b−1 β

+

α
+ b−β+

1
α

)
(eα − 1)

+ 4aβ+2
β−

2

α4

(
α

2 sinhα− coshα+ 1
)

+
(2a1β

+β−

α2 + 2aβ−β+
1

α2 + 2aβ+β−1
α2

)
(1− coshα)

− b−β+2
β−

2α3 (2αeα − 3eα − e−α + 4)− b+β+β−
2

2α3 (−2αe−α − 3e−α − eα + 4) , (B.9)

The center condition (B.2) is satisfied by finding a non-trivial solution to A± = C1 = A±1 =
C2 = 0 in (B.7). Again it necessitate to have

α = ±2π i n , n ∈ N . (B.10)

However there remains three terms in A±1 and C2 in (B.9) which do not become zero after
imposing (B.10). These terms which should become independently zero are

0 = b+β−β+

α
− aβ+2

β−

α2 ,

0 = b−β−β+

α
+ aβ+β−

2

α2 ,

0 = b+β+β−
2

α2 e−2α − b−β+2
β−

α2 . (B.11)

16We considered X as an element of the algebra in accordance to our gauge fixed boundary condi-
tions (4.7).
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First of all these extra conditions show that β±1 are unconstrained. Since we do not want
to put any constraint on the arbitrary element Y , from the last equality we have

β+β− = 0 , (B.12)

which solves the other two conditions as well. Without loss of generality, we can make the
choice β− = 1 which is consistent with our boundary conditions at level-2 (4.7).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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