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Abstract -  
Time series modelling is an influential and successful method for vibration-based applications under data-driven approaches. 
Because it is a parametric statistical method, one needs to define more details and parameters compare with non-parametric 
techniques. Time series modelling is generally based on fitting a time series representation to raw vibration measurements 
and using its statistical characteristics. In vibration-based applications, these characteristics are used for some problems such 
as system identification, modal analysis, damage detection, etc. The primary step of time series modelling is to identify an 
appropriate time series representation is such a way that is should be compatible with the nature of time series data. Al-
though the graphical techniques such as Box-Jenkins methodology are often the initial choices, the model identification via 
such approaches may be difficult and time-consuming along with some limitations. Therefore, this study proposes an auto-
matic model identification approach by incorporating the statistical and engineering aspects when vibration time-domain 
measurements are linear and stationary. In the first step of the proposed approach, it is necessary to perform some data ana-
lyses to recognize the nature of vibration time-domain measurements. For the process of model identification, the proposed 
method relies on numerical evidence based on some information criteria including Akaike’s final prediction error (FPE) and 
Bayesian information criterion (BIC). The measured vibration responses of an experimental four-story steel structure under 
ambient excitations are utilized to demonstrate the capability of the proposed method. Results will show that the proposed 
automatic approach succeeds in identifying the best time series model for linear and stationary time series data and facilitates 
the process of model identification compared with the Box-Jenkins methodology. 
 
Keywords - Vibration; Time Series Modelling; Data Analysis; Model Identification 
 
I. INTRODUCTION 
 
Vibration-based applications such as system identifi-
cation, modal analysis, and damage detection recently 
focus on data-driven approaches. The main character-
istic of these approaches is to use raw vibration 
measurements acquired from dynamic tests. In con-
trast, another approach to vibration-based application 
relies upon constructing an accurate finite element 
(FE) or analytical model of the real or tested structure 
and applying the inherent structural properties such as 
mass, stiffness, and damping matrices [1-5]. In real-
ity, it is impossible to build an analytical or numerical 
model of a real structure due to some modelling er-
rors. In such case, it is indispensable to implement the 
model updating procedure [6]. Under this limitation 
and the other difficulties such as constructing the FE 
model and transforming raw vibration measurements 
into the frequency and modal domains, one can real-
ize that data-driven approaches are more useful and 
appropriate ways for vibration-based applications. 
In most cases, the measured vibration data is in time 
domain such as acceleration time histories acquired 
from accelerometers. An important fact is that it is 
very difficult or impossible to directly utilize the raw 
vibration measurements for most of the vibration-
based applications. On this basis, time series 

modelling provides a powerful statistical tool for 
analysing and modelling of the vibration time-domain 
data in an effort to some important vibration-based 
applications such as modal identification [7-9], long-
term condition assessment [10]. Apart from the data 
analysis and modelling, it makes an efficient and 
influential approach to extracting meaningful and 
important patterns or features from the time series 
data for damage detection under structural health 
monitoring [11, 12]. 
One of the significant parts of time series modelling 
is to select an appropriate time series representation 
in such a way that it should be compatible with the 
nature of time series data [13]. In most cases, the 
selection of a time series model needs an expertise 
because most of the available model identification 
techniques are graphical and visual-based tools. The 
inaccurate choice of a time series model may also 
lead to a time-consuming process with redundant 
details. The mentioned issues are related to the statis-
tical aspects of time series modelling, while the engi-
neering aspects play important roles in the use of time 
series modelling in the vibration-based applications. 
Therefore, this study is intended to focus on the proc-
ess of model identification based on the statistical and 
engineering aspects by proposing an automatic ap-
proach. The central idea behind this method is to 
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utilize numerical evidence under the theory of infor-
mation criteria that are often applied to determine the 
orders of time series models. Experimental datasets of 
vibration measurements of a four-story steel structure 
under ambient excitation are used to validate the 
accuracy and performance of the proposed automatic 
model identification method.  
 
II. TIME SERIES MODELLING 
 
Time series modelling is a statistical tool for fitting a 
mathematical model to time-domain samples [13]. 
This is a parametric approach because one needs to 
define and characterize the main details of time series 
models. In contrast, a non-parametric does not require 
describing the details of the model and often relies 
upon a limited number of parameters. On the other 
hand, time series modelling depends strongly on the 
type and nature of time series data. There are a broad 
range of time-domain data including stationary vs. 
non-stationary, linear vs. nonlinear, Gaussian vs. non-
Gaussian, univariate vs. multivariate, seasonal vs. 
non-seasonal etc. [13]. As such, one can find a large 
number of time series representations suitable for 
each of the time series datasets. In the time series 
modelling, time-invariant linear representations are 
widely used models in vibration-based applications. 
This is because of the use of a linear model with 
stationarity behaviour is considerably simpler than a 
nonlinear or non-stationary representation. Moreover, 
time-invariant linear models have a few details in 
comparison with the other types of representations 
and decrease the computational costs. 
In general, most of the time-invariant linear models 
consists of output, input, and error terms. These terms 
are equivalent to Autoregressive (AR), eXogenous 
(X), and Moving Average (MA). Using these terms, 
one can construct different linear and stationary time 
series models. Assume that x(t) and y(t) denote the 
excitation and vibration response at the specific time 
t. The general formulation of a time-invariant repre-
sentation belongs to Autoregressive Moving Average 
with eXogenous input (ARMAX), which includes all 
of the above-mentioned terms. The ARMAX model is 
defined as (see “armax” MATLAB function): 

� � � � � � � � � �i i i
i 1 j 1 k 1

i j k
   

 � � � � � �¦ ¦ ¦
p qr

y t θ y t φ x t ψ e t e t  
(1) 

where p, r, and q represents the orders of the output 
(AR), input (X), and error (MA) terms, respectively. 
Hence, Θ=[θ1…θp], Φ=[φ1…φr], and Ψ=[ψ1…ψq] 
denotes the coefficients of these terms. Moreover, e(t) 
is the error or discrepancy between the measured time 
series data and predicted one via the model. It is pos-
sible to define the other kinds of time-invariant linear 
models by removing each of the X and MA terms. It 
should be mentioned that the main aim of using time 
series modelling in vibration-based applications is to 
model the structural responses or the outputs of the 
dynamic systems. Therefore, it is essentially needed 
to preserve the AR or output term of the linear and 

stationary models. By eliminating the error term, one 
can define Autoregressive with eXogenous (ARX) 
model as follows (see “arx” MATLAB function): 

� � � � � � � �i i
i 1 j 1

i j
  

 � � � �¦ ¦
p r

y t θ y t φ x t e t  (2) 

If the input term is removed from Eq. (1), it can be 
constructed Autoregressive Moving Average 
(ARMA) representation in the following form: 
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Eventually, the last time-invariant linear model is AR 
that only requires the output term (see “ar” MATLAB 
function): 
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i
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Unlike the non-parametric representations (e.g. auto-
covariance function, cross-covariance function, cross 
spectral density, auto power spectral density, etc. 
[11]), it is apparent that the parametric models require 
some prominent ingredients such as identifying an 
appropriate time series representation compatible 
with the type and nature of time series data (model 
identification), determining adequate orders (model 
order determination), and estimating the model coef-
ficients (parameter estimation), and validating the 
accuracy and adequacy of the model (model diagnos-
tic checking). The main objective of this study is to 
pay attention to the model identification. 
 
III. MODEL IDENTIFICATION BASED ON 
ENGINEERING ASPECTS 
 
The measurement of vibration data can be imple-
mented by diverse dynamic tests through sensing and 
data acquisition equipment [14]. Generally, there are 
two types of excitation methods including forced and 
ambient vibration loads [15]. When some excitation 
devices such as … are available, one can apply con-
trolled forces to structures and measure both the input 
(excitation) and output (structural responses) datasets. 
However, this approach is not always practical, par-
ticularly in civil engineering structures due to the 
requirement of a large force for exciting large and 
complex civil structures and occurrence of probable 
damage [15]. Due to the advanced development of 
sensing and data acquisition systems, the use of am-
bient vibration for the excitation of civil structures 
has received more attention. The main limitation of 
using this excitation source is that it is difficult or 
impossible to measure the unknown and unpredict-
able ambient loads. Therefore, one can realize that in 
addition to the nature of time series data, the applica-
tion of time series modelling also depends on the type 
of data acquisition.  
With these descriptions, the model identification 
based on engineering aspects can be carried out by 
the input-output and output-only time series model 



An Automatic Method for Identification of Time Series Models in Vibration-Based Applications 

Proceedings of ISER 153rd International Conference, Milan, Italy, 29th-30th August 2018 

65 

classes. In this regard, the ARX and ARMAX models 
require the input or eXogenous term and fall into the 
input-output model class. On the contrary, the AR 
and ARMA representations do not need to assign the 
input term in their formulations. Therefore, these fall 
into the output-only model classes.  
 
IV. MODEL IDENTIFICATION BASED ON 
STATISTICAL ASPECTS 
 
From a statistical viewpoint, the time-invariant linear 
representations are constructed from one or all of the 
output, input, and error terms, which are equivalent to 
the AR, X, and MA. Hence, the model identification 
based on a statistical approach can be implemented 
by approaches that are able to recognize these terms 
based on the nature of time series data. 
 
4.1 Conventional graphical approach 
The Box-Jenkins methodology is a conventional 
graphical approach to identifying a time-invariant 
linear representation [13]. This methodology relies on 
the autocorrelation function (ACF) and partial auto-
correlation function (PACF). The ACF is the correla-
tion between any two values in a time series with a 
specific time shift called lag (see “autocorr” MAT-
LAB function). The PACF is the correlation between 
any two samples with a specific lag (see “parcorr” 
MATLAB function), where the linear effects of the 
samples are removed [16]. Once the type of model 
class (i.e. input-only or output-only) has been recog-
nized, the plots of ACF and PACF on the univariate 
time series data enable the researcher, engineer, and 
analyst to graphically identify a model. The strategy 
for model identification by using these function is 
presented in Table 1. 
 

Function 
Model class 

AR(p) MA(q) ARMA(p,q) 

ACF Tails off Cut off after 
lag q Tails off 

PACF Cut off after 
lag p Tails off Tails off 

Table 1. Graphical model identification by the Box-Jenkins 
methodology 

 
4.2 Proposed automatic approach 
Although the Box-Jenkins methodology is a well-
known graphical approach to the model identifica-
tion, some limitations may lead to difficulties and 
erroneous selections. The first limitation is that the 
use of this approach needs high expertise for recog-
nizing when the samples of ACF or PACFs tail off or 
cut off. In other words, it is not a trivial process to 
graphically choose a model. As the other limitation, 
the plots of ACF and PACF need to define a lag 
number. Small and large lag numbers may cause an 
erroneous model identification. Moreover, the Box-
Jenkins methodology is not automatic, which means 
that it is necessary to perform the model identification 
on each time series data leading to a time-consuming 

process. To deal with these limitations, the proposed 
automatic approach utilizes numerical evidence for 
the best model identification. The fundamental prin-
ciple of this approach relies on the use of information 
criteria under the selection of different sample orders. 
The process of model identification via the proposed 
automatic approach is similar and equivalent to the 
Box-Jenkins methodology with a difference that 
instead of applying the plots of ACF and PACF, it 
uses the information criteria as the numerical evi-
dence for choosing the best AR, MA, ARMA models. 
At the first step of this approach, it is necessary to 
carry out initial data analyses in an effort to recognize 
the nature of vibration time-domain measurements. 
The first information criterion used in the proposed 
automatic model identification method is Akaike’s 
final prediction error (FPE) [17], which is expressed 
as: 

� � � �T

t 1

11det t, t,
1 

§ ·�¨ ¸§ · ¨ ¸¨ ¸
© ¹¨ ¸�

© ¹

¦e Ω e Ω
n

d
nFPE
dn
n

 (5) 

where e(t,Ω) is the vector of model residuals at time t 
by using the vector of model coefficients Ω, which 
can be one of the coefficient vectors of output (Θ), 
input (Φ), and error (Ψ) terms. In Eq. (5), n denotes 
the number of data samples and d represents the 
number of estimated coefficients (i.e. d=p for AR, 
d=q for M, and d=p+q for ARMA). Furthermore, 
“det” refers to the determination operator. Bayesian 
information criterion (BIC) is another tool used in the 
automatic model identification approach. The formula 
of BIC is given by [13]: 

� � � �maxBIC 2ln ln � �L d n  (6) 
where Lmax represents the maximum value of likeli-
hood function. In statistics, the information criteria 
are useful techniques for order determination. For this 
purpose, one initially needs to examine different 
orders (e.g. 1-100) and then compute the amounts of 
information criteria. A number that has the smallest 
quantity of information criteria is chosen as the model 
order. However, in this article, the same procedure is 
adopted to identify the best time-invariant linear 
models by using the FPE and BIC. 
 
V. AN EXPERIMENTAL FOUR-STORY STEEL 
STRUCTURE 
 
The capability and performance of the proposed 
automatic approach to model identification are vali-
dated by the measured vibration responses of an ex-
perimental four-story steel structure under ambient 
excitations. This structure is a well-known bench-
mark problem for vibration-based applications, which 
belongs to the American Civil Engineer Society 
(ASCE) [18]. The structure was constructed from 2-
bay-by-2-bay steel frame in scale-model with 
2.5×2.5m in plan and 3.6m in tall as shown in Fig. 
1(a). It was subjected to ambient excitations including 
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excitations present from the environment due to the 
wind, pedestrians, and traffic. The vibration time-
domain signals were measured by 15 accelerometers 

with 5 Volts/g sensitivity distributed on the four sto-
ries and the base of the structure as shown in Fig. 1 
(b). 

 

(a) 

 

(b) 

 
Figure 1. (a) The four-story ASCE steel structure, (b) sensor locations 

 
In order to demonstrate the ability of the proposed 
methods to identify a time series model, the measured 
vibration responses at the sensors 4, 7, 10, and 15 of 
the undamaged condition are utilized. Note that the 
undamaged state used in this article is equivalent to 
the test configuration 1 in [18]. Since the measured 
vibration responses were acquired from the ambient 

excitation sources, one can use the output-only model 
classes. At first, it is necessary to analyse the vibra-
tion responses and recognize their nature. As a sam-
ple, Fig. 2 illustrates the vibration measurements at 
the sensors 4, 7, 10, and 15. The visual inspection 
indicates that the time series data at these sensors are 
linear. 

 

 
Figure 2. The measured vibration responses: (a) Sensor 4, (b) Sensor 7, (c) Sensor 10, (d) Sensor 15 

 
In order to examine the stationarity or non-
stationarity of vibration measurements, Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) hypothesis test [19] is 
utilized that assesses the null hypothesis of a univari-
ate time series is trend stationary. Similar to most of 
the statistical hypothesis test, it gives some important 
outputs such as the test statistics (QKPSS) and a critical 
value (c-value) under a significance level (see 

“kpsstest” MATLAB function). Based on the KPSS 
test, if the value of QKPSS is larger than the c-value, 
the test rejects the null hypothesis in the sense that the 
time series data is non-stationary. Fig. 3(a) demon-
strates the amounts of QKPSS by using 5% significance 
level, which leads to the c-value (the dashed red line) 
corresponds to 0.1460. 

 

 
Figure 3. Stationarity assessment of the vibration responses at all sensors by the KPSS test:  

(a) before differencing, (b) after differencing 
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It is apparent from Fig. 3(a) that the acceleration time 
histories at the sensors 1-3, 5, 9, 13, and 15 are non-
stationary since their KPSS test statistics exceed the 
c-value. Under such circumstances, it is not accurate 
to fit the time-invariant linear models to the non-
stationary data. An efficient way for dealing with this 
problem is to use the differencing of time series data 
[13]. Performing the first-order differencing on the 
non-stationary time-domain responses (i.e. “diff” 
MATLAB function), Fig. 3(b) illustrate the new 
amounts of QKPSS after the data differencing. As can 
be seen, all values of QKPSS are smaller than the c-
value, which mean that the non-stationary time-
domain responses become stationary. At this moment, 
one can utilize the graphical and automatic model 
identification techniques based on the linearity and 
stationarity of the vibration responses. Fig. 4 shows 
the results of model identification by the Box-Jenkins 
methodology at the sensor 15. In this figure, the plots 

of ACF and PACF are depicted by using 100 lags. It 
can be discerned that the samples of both ACF and 
PACF tail off and do not cut off at specific lags. 
Based on Table 1, one can state that the most appro-
priate time series model for the acceleration time 
histories at the sensor 15 is most likely the ARMA 
representation. As can be seen, it is difficult to cer-
tainly select a suitable model because it needs a pro-
fessional expertise and knowledge about the varia-
tions of the ACF and PACF samples. On the other 
hand, if the predefined lag becomes more than 100, it 
is probable that the selection of a model between the 
AR and ARMA to be more difficult. This is because 
the samples of PACF tend to zero or cut off at a lag, 
which implies the selection of AR model. As a result, 
although the Box-Jenkins methodology is known as 
the useful graphical tool for the model identification, 
it does not guarantee an appropriate and accurate 
selection of a time series model. 

 

 
Figure 4. Graphical model identification via the conventional Box-Jenkins methodology at the sensor 15: (a) ACF, (b) PACF 

 
In order to begin the automatic model identification, 
it is necessary to compute the amounts of these FPE 
and BIC in different sample orders. The process is 
based on fitting AR, MA, and ARMA models with 
diverse orders (i.e. p for AR, q for Ma, and both p and 

q for ARMA), estimating the coefficients of the men-
tioned representations, and calculating the FPE and 
BIC values. The sample order for AR and MA are 10, 
20, 30, 40, 50, 60, 80, and 100.  

 

 
Figure 5. Automatic model identification via the proposed approach based on the FPE: (a) Sensor 4, (b) Sensor 7, (c) Sensor 10, (d) 

Sensor 15 
 

 
Figure 6. Automatic model identification via the proposed approach based on the BIC: (a) Sensor 4, (b) Sensor 7, (c) Sensor 10, (d) 

Sensor 15 
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Because the ARMA contains the two types of orders, 
the half of the mentioned quantities are allocated to 
the ARMA model; that is, ARMA(5,5), 
ARMA(10,10),…,ARMA(50,50). The results of the 
automatic model identification based on the FPE and 
BIC under the eight sample orders at the sensors 4, 7, 
10, and 15 are shown in Figs. 5 and 6, respectively. 
The observations in these figures reveal that the 
smallest BIC and FPE quantities in all eight sample 
orders belong to the ARMA, while the MA has the 
largest amounts. Therefore, it can be concluded that 
the ARMA model is the most appropriate time series 
representation for modelling.  
 
VI. CONCLUSION 
 
This article proposed an automatic model identifica-
tion approach based on numerical evidence through 
the FPE and BIC based on the statistical and engi-
neering aspects. The proposed approach is equivalent 
to the Box-Jenkins methodology as the conventional 
graphical approach to the model identification. The 
central idea of the automatic method is to fit AR, 
MA, and ARMA representations with diverse sample 
orders and choose one of them that has the smallest 
FPE and BIC values. Using the measured vibration 
datasets of the ASCE benchmark problem under 
ambient vibration, it was seen that the applications of 
both the automatic and graphical model identification 
techniques essentially need an initial data analysis for 
understanding the nature of time series data in terms 
of linearity and stationarity. Furthermore, the results 
showed that the selection of a suitable model by the 
conventional Bo-Jenkins methodology may be diffi-
cult and erroneous along with a professional exper-
tise. In contrast, it was observed that the proposed 
automatic approach not only addresses the limitations 
of the graphical technique but also facilitates the 
process of model identification based on its automatic 
algorithm. 
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