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Abstract. In this paper, we characterize finitely generated shift-invariant
subspaces of L2(G), where G is a locally compact abelian group. In
particular, we give a formula for the coefficients in the known repre-
sentation of the Fourier transform of the elements of finitely generated
shift-invariant subspaces. Also, certain orthogonalization procedure for
generators which is reminiscent of the Gram–Schmidt orthogonalization
process is given.
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1. Introduction and Notations

A discrete subgroup L of a locally compact abelian (LCA) group G is called
a (uniform) lattice if the quotient space G/L is compact. For each y ∈ G and
f : G → C, define the translation Ty : G → C by Tyf(x) := f(y−1x). Then,
a closed subspace V of L2(G) is called shift invariant (SI) with respect to a
given lattice L if Tyf ∈ V whenever f ∈ V and y ∈ L. For each Ω ⊆ L2(G),
define:

V (Ω) := span{Tyϕ : y ∈ L and ϕ ∈ Ω},

which is the smallest SI space containing Ω. If Ω is a finite subset of L2(G),
then V (Ω) is called a finitely generated shift-invariant (FSI) subspace. These
subspaces have attracted a lot of attention and have been studied in many
papers. For instance, FSI subspaces of L2(Rn) were characterized by De Boor
et al. [2], and they were studied in the context of locally compact groups and
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hypergroups in [12] and [16] (see also [3–5,8,9]). Inspired by [14]1, and based
on our previous works [12,16], in this paper, we will study FSI subspaces
generated by a minimal generating subset of L2(G). More precisely, we give
a formula for determining the coefficients in the known representation of the
Fourier transform of the members of FSI subspaces as a linear combination
of the Fourier transform of the generators. Also, a sort of Gram–Schmidt
orthogonalization process is introduced. The bracket product on L2( ̂G), which
was originally introduced in [11] and extended in [15] (see also [13]), plays
an important role in this paper. These products are also applicable to extend
many ideas and facts from the theory of shift-invariant subspaces, factorable
operators, and Weyl–Heisenberg frames on R

n, to the setting of LCA groups
in a different way.

2. Main Results

In this section, by bracket product of elements of L2( ̂G), we give a formula
for functions in FSI subspaces of L2(G) in terms of the generating set. We
first recall the Weil’s formula which plays a key role in the given proofs.
Let G be a locally compact abelian group with a lattice L and let dξ be
a Haar measure on the dual group ̂G. It is well known that G is discrete
if and only if ̂G is compact. Also, (̂G/L) ∼= L⊥ and ̂G/L⊥ ∼= ̂L, where
L⊥ := {ξ ∈ ̂G : ξ(L) = {1}} [7]. Easily, one can see that if L is a lattice in
G, then L⊥ is also a lattice for ̂G. There is a suitable ̂G-invariant measure
dξ̇ on ̂G/L⊥, where ξ̇ := ξL⊥, such that the following identity (called Weil’s
formula) holds:

∫

̂G

f(ξ) dξ =
∫

̂G/L⊥

∑

η∈L⊥
f(ξη) dξ̇, (f ∈ L1( ̂G)).

Definition 2.1. Let G be a locally compact abelian group and L be a lattice
in G. The bracket product of each f, g ∈ L2( ̂G) is defined by:

[f, g](ξ) :=
∑

η∈L⊥
f(ξη)g(ξη), (ξ ∈ ̂G).

Remark 2.2. Since the mapping Ψ : ̂G/L⊥ → ̂L defined by Ψ(ξL⊥) := ξ|L
for all ξ ∈ ̂G, is an isomorphism of topological groups [7, Theorem 4.39],
every element of ̂L is the restriction of an (not necessarily unique) element
of ̂G to L. If ξ1, ξ2 ∈ ̂G and ξ1 = ξ2 on L, then we have ξ1L

⊥ = ξ2L
⊥. This

easily implies that [f, g](ξ1) = [f, g](ξ2) for all f, g ∈ L2( ̂G). In other words,
brackets can admit inputs from ̂L by [f, g](ξ|L) := [f, g](ξ) for all ξ ∈ ̂G. On
the other hand, for each ξ ∈ ̂G and η ∈ L⊥, we have [f, g](ξη) = [f, g](ξ).
Thus, [f, g] is constant on L⊥-cosets, and so brackets can admit inputs from
̂G/L⊥ too by setting:

[f, g](ξ̇) := [f, g](ξ), (2.1)

1A first version of the main results of this paper, restricted to the case of the real line, has
been posted on ArXiv [14] by one of the authors.
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where ξ ∈ ̂G and ξ̇ := ξL⊥. Therefore, in different situations, we can consider
appropriate inputs for brackets.

For each f, g ∈ L2( ̂G), we have fḡ ∈ L1( ̂G) and:

|[f, g](ξ)|2 ≤ [f, f ](ξ) [g, g](ξ) a.e. on ̂G. (2.2)

Since

‖[f, g]‖L1( ̂G/L⊥) =
∫

̂G/L⊥

∣

∣

∣

∣

∣

∣

∑

η∈L⊥
f(ξη)g(ξη)

∣

∣

∣

∣

∣

∣

dξ̇ ≤
∫

̂G

|f(ξ)g(ξ)|dξ < ∞,

the bracket product [·, ·] : L2( ̂G) × L2( ̂G) → L1( ̂G/L⊥) defined by (2.1) is
well defined.

Definition 2.3. For each ϕ ∈ L2(G), we define:

wϕ(ξ) := [ϕ̂, ϕ̂](ξ) =
∑

η∈L⊥
|ϕ̂(ξη)|2, (ξ ∈ ̂G),

where by ϕ̂, we denote the Fourier transform of the function ϕ (see [7]). The
space of all functions r : ̂L → C satisfying:

∫

̂L

|r(ξ)|2 wϕ(ξ) dξ < ∞,

is denoted by L2(̂L,wϕ), where dξ is the Plancherel measure on ̂L. For each
r ∈ L2(̂L,wϕ), we define the following norm:

‖r‖L2(̂L,wϕ) :=
(∫

̂L

|r(ξ)|2 wϕ(ξ) dξ

) 1
2

.

Definition 2.4. Let Ω := {ϕi}N
i=1 ⊆ L2(G) be a finite subset of non-zero

functions. For each 1 ≤ i ≤ N , we denote Ω(i) := Ω\{ϕi}. The set Ω is called
a minimal generating set for V (Ω) if, for each 1 ≤ i ≤ N , ϕi /∈ V (Ω(i)). Also,
Ω is called B-orthogonal set (with respect to a given lattice L) if, for each
distinct 1 ≤ i, j ≤ N , [ϕ̂i, ϕ̂j ](ξ) = 0 a.e. on ̂L.

We recall the following lemma from [12].

Lemma 2.5. Let ϕ ∈ L2(G). Then, f ∈ Vϕ if and only if there exists a func-
tion r ∈ L2(̂L,wϕ), such that f̂(ξ) = r(ξ̇)ϕ̂(ξ) (ξ ∈ ̂G), and ‖f‖L2(G) =
‖r‖L2(̂L,wϕ).

The next theorem generalizes the above lemma for orthogonal finite
subsets of L2(G), and can be considered also as a consequence of the charac-
terization of Riesz basis property for SI spaces in [3,5].

Theorem 2.6. Let Ω := {ϕi}N
i=1 be a B-orthogonal subset of L2(G). For each

f ∈ L2(G) and i = 1, . . . , N , we put:

mi(f) :=
[f̂ , ϕ̂i]
[ϕ̂i, ϕ̂i]

,
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where mi(f)(ξ) := 0 whenever [ϕ̂i, ϕ̂i](ξ) = 0. Then, mi(f) ∈ L2(̂L,wϕi
),

and f ∈ V (Ω) if and only if:

f̂ =
N

∑

i=1

mi(f)ϕ̂i. (2.3)

In this case:

‖f‖L2(G) =

(

N
∑

i=1

‖mi(f)‖2
L2(̂L,wϕi

)

)
1
2

. (2.4)

The following result which can be concluded from the Weil’s formula
would be helpful in the proof of Theorem 2.6.

Proposition 2.7. If G is an LCA group with a lattice L, then for each f, g ∈
L2(G):

〈f, g〉 =
∫

̂G/L⊥
[f̂ , ĝ] dξ̇, (2.5)

where ξ̇ := ξL⊥ for all ξ ∈ ̂G.

Proof of Theorem 2.6. Let f ∈ L2(G) and i = 1, 2, . . . , N . We have mi(f) ∈
L2(̂L,wϕi

), since by (2.2) and (2.5):

‖mi(f)‖2
L2(̂L,wϕi

)
=

∫

̂L

∣

∣

∣

∣

∣

[f̂ , ϕ̂i]
[ϕ̂i, ϕ̂i]

∣

∣

∣

∣

∣

2

(ξ)wϕi
(ξ) dξ

≤
∫

̂L

[f̂ , f̂ ](ξ)[ϕ̂i, ϕ̂i](ξ)
[ϕ̂i, ϕ̂i]2(ξ)

[ϕ̂i, ϕ̂i](ξ) dξ

=
∫

̂G/L⊥
[f̂ , f̂ ](ξ) dξ̇

= 〈f, f〉 = ‖f‖2
2 < ∞.

If N = 1, for a function ϕ ∈ L2(G), we have V (Ω) = Vϕ. By Lemma 2.5,
f ∈ Vϕ if and only if for some r ∈ L2(̂L,wϕ), f̂ = r ϕ̂ and ‖f‖L2(G) =
‖r‖L2(̂L,wϕ). By [12, Proposition 2.2], if f ∈ Aϕ := span{Tyϕ : y ∈ L}, then

f̂ = r ϕ̂, where r(ξ) = r(ξ̇) =
∑n

i=1 aiξ(yi) for some a1, . . . , an ∈ C and
y1, . . . , yn ∈ L. Therefore:

[f̂ , ϕ̂](ξ) =
∑

η∈L⊥
f̂(ξη)ϕ̂(ξη)

=
n

∑

i=1

∑

η∈L⊥
ai · (ξη)(yi)ϕ̂(ξη)ϕ̂(ξη)

=
n

∑

i=1

aiξ̄(yi)
∑

η∈L⊥
|ϕ̂(ξη)|2

= r(ξ) [ϕ̂, ϕ̂](ξ),
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and so, f̂ = [f̂ ,ϕ̂]
[ϕ̂,ϕ̂] ϕ̂. Now, let f ∈ Vϕ\Aϕ. Then, there is a sequence (fn) in

Aϕ, such that:

lim
n→∞ ‖̂fn − f̂‖L2( ̂G) = lim

n→∞ ‖fn − f‖L2(G) = 0.

By the above argument, there is a sequence (rn) in L2(̂L,wϕ), such that

for all n ∈ N, ̂fn = rnϕ̂ and rn = [̂fn,ϕ̂]
[ϕ̂,ϕ̂] . For each m and n, we have:

‖rn − rm‖L2(̂L,wϕ) = ‖fn − fm‖L2(G).

Therefore, (rn) is a Cauchy sequence. This implies that for some r ∈ L2(̂L,wϕ):

lim
n→∞ ‖rn − r‖L2(̂L,wϕ) = 0,

and by

‖̂fn − rϕ̂‖L2( ̂G) = ‖rnϕ̂ − rϕ̂‖L2( ̂G) = ‖(rn − r)ϕ̂‖L2( ̂G) = ‖rn − r‖L2(̂L,wϕ),

we have f̂ = rϕ̂. However:

r = lim
n→∞ rn = lim

n→∞
[̂fn, ϕ̂]
[ϕ̂, ϕ̂]

=
[ ̂f, ϕ̂]
[ϕ̂, ϕ̂]

,

since by the relation (2.5) and the inequality (2.2):
∥

∥

∥

∥

∥

[̂fn, ϕ̂] − [ ̂f, ϕ̂]
[ϕ̂, ϕ̂]

∥

∥

∥

∥

∥

L2(̂L,wϕ)

=

∥

∥

∥

∥

∥

[̂fn − f̂ , ϕ̂]
[ϕ̂, ϕ̂]

∥

∥

∥

∥

∥

L2(̂L,wϕ)

≤ ‖fn − f‖L2(G).

This completes the proof for N = 1.
Now, let N > 1. If

f ∈ A(Ω) := span{Tyϕi : y ∈ L, i = 1, . . . , N},

then f =
∑N

i=1 fi, where for any 1 ≤ j ≤ N , fi ∈ Aϕi
. By the above

argument, for each i = 1, . . . , N we have ̂fi = riϕ̂i, where ri = mi(fi).
However, by B-orthogonality of Ω and the relation (2.5), for each 1 ≤ l, j ≤ N
with l �= j, we have Vϕl

⊥ Vϕj
in L2(G). This implies that mi(f) = mi(fi) for

all i = 1, . . . , N . Therefore, the relation (2.3) holds. Also, by orthogonality,
we have:

‖f‖2
L2(G) =

N
∑

i=1

‖fi‖2
L2(G) =

N
∑

i=1

‖mi(f)‖2
L2(̂L,wϕi

)
.

If f ∈ V (Ω)\A(Ω), similar to the case N = 1, one can see that the
relations (2.3) and (2.4) hold and the proof of necessity is completed.

Conversely, let:

f̂ =
N

∑

i=1

mi(f)ϕ̂i, where mi(f) =
[f̂ , ϕ̂i]
[ϕ̂i, ϕ̂i]

∈ L2(̂L,wϕi
).

If, for any 1 ≤ i ≤ N , we put f̂i := mi(f)ϕ̂i, then by Lemma 2.5, fi ∈ Vϕi
.

Now, since ̂f =
∑N

i=1 mi(f)ϕ̂i, we have f ∈ V (Ω). �
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Remark 2.8. The “only if” part of Theorem 2.6 holds more generally for
hypergroups. In fact, if K is a commutative Pontryagin hypergroup with a
lattice L satisfying the Weil’s formula, and Ω := {ϕi}N

i=1 is a B-orthogonal
subset of non-zero elements of L2(K), then for each f ∈ V (Ω), we have:

f̂ =
N

∑

i=1

mi(f)ϕ̂i,

on the center of ̂K, where mi(f) := [f̂ ,ϕ̂i]
[ϕ̂i,ϕ̂i]

. This statement would be a gen-
eralization of one of the main results of [16]. We refer to the monograph [1]
and the paper [10] (in which hypergroups are called convo) for examples,
basic definitions and properties related to hypergroups which are extensions
of locally compact groups; see also [16].

Example 2.9. Let G := (R,+), and so ̂G = R. For the lattice L := Z in R, we
have ̂L = T and L⊥ = Z. Let f ∈ L2(R) and Ω := {ϕk}N

k=1 be a B-orthogonal
subset of L2(R). Then:

[f̂ , ϕ̂k](ξ) =
∑

η∈Z

f̂(ξ + η)ϕ̂k(ξ + η) and wϕk
(ξ) :=

∑

η∈Z

|ϕ̂k(ξ + η)|2 (ξ ∈ R).

By Theorem 2.6, f ∈ V (Ω) if and only if:

f̂ =
N

∑

k=1

mk(f)ϕ̂k, where mk(f) :=
[f̂ , ϕ̂k]
[ϕ̂k, ϕ̂k]

∈ L2(T, wϕk
).

Also, ‖f‖L2(R) =
(

∑N
k=1 ‖mk(f)‖2

L2(T,wϕk
)

) 1
2

.

In particular, since the Fourier transform is a unitary isomorphism from
L2(R) to L2(R) for a given N and each 1 ≤ k ≤ N , there are ϕk ∈ L2(R),
such that ϕ̂k = χ[k,k+1). Hence, {ϕk}N

k=1 is B-orthogonal. In this case, for
each f ∈ L2(R) and ξ ∈ T,

[f̂ , ϕ̂k](ξ) = f̂(t(ξ) + k),

where t(ξ) := ξ mod 1 in [0, 1), and wϕk
(ξ) ≡ 1. Hence, mk(f)(ξ) = f̂(t(ξ) +

k).
Also, f ∈ V ({ϕk}N

k=1) if and only if f̂ ∈ L2(R) and f̂(t) = 0 a.e. on
R\[1, N + 1).

Example 2.10. Let G be the unit circle T ∼= [0, 1), and so ̂G = Z. The sets of
the form L = 1

nZn = {0, 1
n , . . . , n−1

n } (n ∈ N), are the only lattices in G [6,
page 525]. The dual group of L is ̂L = Zn and its annihilator is L⊥ = nZ.
Let ϕ ∈ L2(T) and n ∈ N. By Lemma 2.5, f ∈ Vϕ if and only if there exists a
function r ∈ L2(Zn, wϕ), such that f̂(ξ) = r(ξ)ϕ̂(ξ) (ξ ∈ Zn), and ‖f‖L2(T) =
‖r‖L2(Zn,wϕ), where wϕ(ξ) :=

∑

η∈nZ |ϕ̂(ξη)|2 (ξ ∈ Zn). If Ω := {ϕk}N
k=1 is

a B-orthogonal subset of L2(T), then:

[f̂ , ϕ̂k](ξ) =
∑

η∈nZ

f̂(ξη)ϕ̂k(ξη) and wϕk
(ξ) :=

∑

η∈nZ

|ϕ̂k(ξη)|2 (ξ ∈ Zn).
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By Theorem 2.6, f ∈ V (Ω) if and only if:

f̂ =
N

∑

k=1

mk(f)ϕ̂k and ‖f‖L2(T) =

(

N
∑

k=1

‖mk(f)‖2
L2(Zn,wϕk

)

)
1
2

,

where mk(f) := [f̂ ,ϕ̂k]
[ϕ̂k,ϕ̂k] ∈ L2(Zn, wϕk

).

The following theorem can be considered as a Gram–Schmidt orthogo-
nalization algorithm on fibers.

Theorem 2.11. Suppose that Ω := {ϕi}N
i=1 ⊆ L2(G) is a minimal generating

set for V (Ω), and the functions g1, . . . , gN are defined by the relations g1 :=
ϕ1 and:

ĝi = ϕ̂i −
i−1
∑

j=1

b
(i)
j ĝj (2 ≤ i ≤ N), (2.6)

where
b
(i)
j := [ϕ̂i, ĝj ][ĝj , ĝj ]−1 ∈ L2(̂L,wgj

) (1 ≤ j ≤ N − 1), (2.7)

and we define b
(i)
j (ξ) := 0 if [ĝj , ĝj ](ξ) = 0. Then, for any i, 1 ≤ i ≤ N , we

have gi ∈ V (Ωi), where Ωi := {ϕj}i
j=1, and for any distinct 1 ≤ i, j ≤ N ,

[ĝi, ĝj ](ξ) = 0 a.e. on ̂L.

Proof. First, it is shown by induction that for each 1 ≤ i ≤ N , and 1 ≤ j ≤ i,
b
(i)
j ∈ L2(̂L,wgj

) and ĝi belongs to L2( ̂G). Trivially, ĝ1 = ϕ̂1 ∈ L2( ̂G), and

b
(1)
1 = 1 ∈ L2(̂L,wg1), since:

‖1‖L2(̂L,wg1 ) =
∫

̂L

[ϕ̂1, ϕ̂1](ξ) dξ = ‖ϕ̂1‖2
2 < ∞.

Let g1, . . . , gi ∈ L2(G). Then, b
(i)
j ∈ L2(̂L,wgj

), since by the relations
(2.2) and (2.5):

‖b
(i)
j ‖2

L2(̂L,wgj
)
=

∫

̂G/L⊥

∣

∣

∣

∣

[ϕ̂i, ĝj ](ξ)
[ĝj , ĝj ](ξ)

∣

∣

∣

∣

2

wgj
(ξ) dξ̇

≤
∫

̂G/L⊥

[ϕ̂i, ϕ̂i](ξ)[ĝj , ĝj ](ξ)
[ĝj , ĝj ]2(ξ)

[ĝj , ĝj ](ξ) dξ̇

= 〈ϕi, ϕi〉 = ‖ϕi‖2
L2(G).

Also, by Lemma 2.5 immediately, we have gi+1 ∈ L2(G).
Now, by induction for N ≥ 2, we prove that for any distinct 1 ≤ i, j ≤

N , [ĝi, ĝj ](ξ) = 0 a.e. on ̂L.
If N = 2, we have:

[ĝ1, ĝ2](ξ) =
[

ϕ̂1, ϕ̂2 − [ϕ̂2, ϕ̂1]
[ϕ̂1, ϕ̂1]

· ϕ̂1

]

(ξ)

=
∑

η∈L⊥
ϕ̂1(ξη)

(

ϕ̂2 − [ϕ̂2, ϕ̂1]
[ϕ̂1, ϕ̂1]

· ϕ̂1

)

(ξη)
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= [ϕ̂1, ϕ̂2](ξ) −
∑

η∈L⊥

[ϕ̂2, ϕ̂1](ξη)
[ϕ̂1, ϕ̂1](ξη)

· ϕ̂1(ξη)ϕ̂1(ξη)

= [ϕ̂1, ϕ̂2](ξ) − [ϕ̂2, ϕ̂1](ξ)
[ϕ̂1, ϕ̂1](ξ)

·
∑

η∈L⊥
ϕ̂1(ξη)ϕ̂1(ξη)

= [ϕ̂1, ϕ̂2](ξ) − [ϕ̂1, ϕ̂2](ξ) = 0.

Now, suppose that [ĝi, ĝj ](ξ) = 0 a.e. on ̂L for all 2 ≤ m ≤ N − 1 and all
distinct 1 ≤ i, j ≤ m − 1. Put b

(m)
j := [ϕ̂m, ĝj ] [ĝj , ĝj ]−1, and let ĝm = ϕ̂m −

∑m−1
j=1 b

(m)
j ĝj . Then, by the assumption of induction, for any 1 ≤ l ≤ m − 1,

we have:

[ĝm, ĝl] = [ϕ̂m, ĝl] − b
(m)
l [ĝl, ĝl] = [ϕ̂m, ĝl] − [ϕ̂m, ĝl] = 0, a.e.

Finally, we prove that for any i, 1 ≤ i ≤ N , gi ∈ V (Ωi). If we put
̂f = [ϕ̂2,ϕ̂1]

[ϕ̂1,ϕ̂1]
· ϕ̂1, then by Theorem 2.6, f ∈ Vϕ1 , and clearly, ϕ2 ∈ Vϕ2 .

Therefore, by relation (2.6), g2 ∈ V (Ω2). The proof of the general case is
similar and we skip it. �

Proposition 2.12. Under assumptions of Theorem 2.11, we have:

V (Ω) =
N

⊕

i=1

Vgi
.

Proof. For the orthogonality, we note that by Theorem 2.11, for each distinct
i, j, we have [ĝi, ĝj ](ξ) = 0 a.e. on ̂L, and by the relation (2.5):

〈Txgi, Tygj〉 =
∫

̂G/L⊥
[ ̂Txgi, ̂Tygj ](ξ) dξ̇

=
∫

̂G/L⊥
ξ(x−1y)[ĝi, ĝj ](ξ) dξ̇ = 0

for all x, y ∈ L.
Let f ∈ ⊕N

i=1 Vgi
. Then, f =

∑N
i=1 fi, where for each 1 ≤ i ≤ N ,

fi ∈ Vgi
. By Theorem 2.6, for each 1 ≤ i ≤ N , there is Fi ∈ L2(̂L,wgi

),
such that ̂fi = Fi · ĝi. Hence, f̂ =

∑N
i=1 Fi · ĝi, and by Theorem 2.6, we have

f ∈ V ({gi}N
i=1). On the other hand, by Proposition 2.11, for each 1 ≤ i ≤ N ,

we have gi ∈ V (Ωi), and so f ∈ V (Ω).
Conversely, suppose that f ∈ V (Ω), Ω := {ϕi}N

i=1. By relations (2.6)
and (2.7) and by B-orthogonality of the set {gi}N

i=1, for each 1 ≤ m ≤ N , we
have:

b(m)
m =

[ϕ̂m, ĝm]
[ĝm, ĝm]

=
[ĝm +

∑m−1
j=1 b

(m)
j ĝj , ĝm]

[ĝm, ĝm]

=
[ĝm, ĝm] + b

(m)
j

∑m−1
j=1 [ĝj , ĝm]

[ĝm, ĝm]
= 1,
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where b
(m)
m for m = N is similarly defined by b

(N)
N := [ϕ̂N , ĝN ][ĝN , ĝN ]−1.

Therefore:

ϕ̂m = ĝm +
m−1
∑

j=1

b
(m)
j ĝj =

m
∑

j=1

b
(m)
j ĝj =

m
∑

j=1

[ϕ̂m, ĝj ]
[ĝj , ĝj ]

ĝj .

By Theorem 2.6, ϕm ∈ V ({gi}m
i=1). Hence, f ∈ ⊕N

i=1 Vgi
. �

The following lemma gives a formula for the orthogonal projection on
V (Ω) for a finite minimal generating subset Ω ⊆ L2(G).

Lemma 2.13. Let Ω := {ϕi}N
i=1 ⊆ L2(G) be a finite minimal generating set

for V (Ω). Then, for each f ∈ L2(G), the orthogonal projection PΩ(f) of f
on V (Ω) is given by:

P̂Ω(f) =
N

∑

i=1

[f̂ , ĝi][ĝi, ĝi]−1ĝi,

where {gi}N
i=1 are defined by the relation (2.6).

Proof. Let f = f1 ⊕ f2, where f1 ∈ V (Ω) and f2 ∈ [V (Ω)]⊥. Then, PΩ(f) =
f1. By Proposition 2.12, for all 1 ≤ i ≤ N , there is Fi ∈ Vgi

, such that
f1 =

∑N
i=1 Fi. By Theorem 2.6, for each 1 ≤ i ≤ N , we have ̂Fi = m(Fi)ĝi,

where:

m(Fi) :=
[ ̂Fi, ĝi]
[ĝi, ĝi]

∈ L2(̂L,wgi
).

Hence:

P̂Ω(f) =
N

∑

i=1

[ ̂Fi, ĝi]
[ĝi, ĝi]

· ĝi.

Since f2 ∈ [V (Ω)]⊥ and gi ∈ V (Ω) (1 ≤ i ≤ N), for each x ∈ L, we
have:

F−1[ ̂f2, ĝi](x) =
∫

̂G/L⊥
ξ(x)[ ̂f2, ĝi](ξ) dξ̇

=
∫

̂G/L⊥

∑

η∈L⊥
(ξη)(x) ̂f2(ξη)ĝi(ξη) dξ̇

=
∫

̂G

ξ(x) ̂f2(ξ)ĝi(ξ) dξ

=
∫

̂G

̂f2(ξ) ̂Txgi(ξ) dξ

= 〈 ̂f2, ̂Txgi〉 = 〈f2, Txgi〉 = 0,

where F−1 is the inverse Fourier transform. Therefore, [ ̂f2, ĝi] = 0. This
implies that [ ̂f, ĝi] = [ ̂f1, ĝi], and by B-orthogonality of {gi}N

i=1, we have
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[f̂ , ĝi] =
∑N

j=1[̂Fj , ĝi] = [ ̂Fi, ĝi]. Therefore:

P̂Ω(f) =
N

∑

i=1

[f̂ , ĝi][ĝi, ĝi]−1ĝi.

�

Theorem 2.14. Let Ω := {ϕi}N
i=1 ⊆ L2(G) be a finite minimal generating set

for V (Ω). Then, for each f ∈ V (Ω), we have:

f̂ =
N

∑

i=1

mi(f)ϕ̂i, where mi(f) :=
[f̂ , ̂hi]

[ ̂hi, ̂hi]
∈ L2(̂L,whi

), (2.8)

and
N

∑

i=1

‖mi(f)‖2
L2(̂L,whi

)
≤ ‖f‖2

L2(G), (2.9)

where
̂hi = ϕ̂i − ̂PΩ(i)(ϕi), (2.10)

and Ω(i) := Ω\{ϕi}.
Proof. By Theorem 2.6, the affirmation is true when N = 1.

Suppose that the theorem is true for some N ∈ N. Let Γ := {φi}N+1
i=1 be

a minimal generating set for V (Γ), and put:

ϕ̂i = ̂φi − [ ̂φi, ̂φN+1]

[̂φN+1, ̂φN+1]
̂φN+1, (1 ≤ i ≤ N).

By Lemma 2.13, it follows that for any 1 ≤ i ≤ N :
[

ϕ̂i, ̂φN+1

]

(ξ) = 0 a.e.

Therefore, setting Ω := {ϕi}N
i=1, by the relation (2.5), we have V (Ω)⊥VφN+1 ,

and so, V (Ω) ⊕ VφN+1 = V (Γ). Hence, by the induction assumption, for any
f ∈ V (Γ), we have:

f̂ =
N

∑

i=1

mi(f)ϕ̂i +

[

f̂ , ̂φN+1

]

[

̂φN+1, ̂φN+1

]
̂φN+1,

where mi(f) is defined by (2.8).
For any 1 ≤ i ≤ N :

̂φi − ̂PΓ(i)(φi) = ̂φi − P̂Γ(i)(ϕi) −
[

̂φi, ̂φN+1

]

[

̂φN+1, ̂φN+1

]
̂φN+1 = ϕ̂i − P̂Ω(i)(ϕi) = ̂hi.

Putting ̂hN+1 = ̂φN+1 − P̂Γ(N+1)(φN+1), easily, one can show whN+1(ξ) ≤
wφN+1(ξ) and the proof is completed. �
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