The Structure of Finitely Generated Shift-Invariant Subspaces on Locally Compact Abelian Groups

Seyyed Mohammad Tabatabaie©, Kazaros Kazarian, Rajab Ali Kamyabi Gol and Soheila Jokar

Abstract

In this paper, we characterize finitely generated shift-invariant subspaces of $L^{2}(G)$, where G is a locally compact abelian group. In particular, we give a formula for the coefficients in the known representation of the Fourier transform of the elements of finitely generated shift-invariant subspaces. Also, certain orthogonalization procedure for generators which is reminiscent of the Gram-Schmidt orthogonalization process is given.

Mathematics Subject Classification. Primary 43A15; Secondary 43A25, 46E30.

Keywords. Locally compact groups, Fourier transform, shift-invariant subspaces, summation basis.

1. Introduction and Notations

A discrete subgroup L of a locally compact abelian (LCA) group G is called a (uniform) lattice if the quotient space G / L is compact. For each $y \in G$ and $f: G \rightarrow \mathbb{C}$, define the translation $T_{y}: G \rightarrow \mathbb{C}$ by $T_{y} f(x):=f\left(y^{-1} x\right)$. Then, a closed subspace V of $L^{2}(G)$ is called shift invariant (SI) with respect to a given lattice L if $T_{y} f \in V$ whenever $f \in V$ and $y \in L$. For each $\Omega \subseteq L^{2}(G)$, define:

$$
V(\Omega):=\overline{\operatorname{span}}\left\{T_{y} \varphi: y \in L \text { and } \varphi \in \Omega\right\}
$$

which is the smallest SI space containing Ω. If Ω is a finite subset of $L^{2}(G)$, then $V(\Omega)$ is called a finitely generated shift-invariant (FSI) subspace. These subspaces have attracted a lot of attention and have been studied in many papers. For instance, FSI subspaces of $L^{2}\left(\mathbb{R}^{n}\right)$ were characterized by De Boor et al. [2], and they were studied in the context of locally compact groups and
hypergroups in [12] and [16] (see also [3-5, 8,9]). Inspired by [14] ${ }^{1}$, and based on our previous works [12,16], in this paper, we will study FSI subspaces generated by a minimal generating subset of $L^{2}(G)$. More precisely, we give a formula for determining the coefficients in the known representation of the Fourier transform of the members of FSI subspaces as a linear combination of the Fourier transform of the generators. Also, a sort of Gram-Schmidt orthogonalization process is introduced. The bracket product on $L^{2}(\widehat{G})$, which was originally introduced in [11] and extended in [15] (see also [13]), plays an important role in this paper. These products are also applicable to extend many ideas and facts from the theory of shift-invariant subspaces, factorable operators, and Weyl-Heisenberg frames on \mathbb{R}^{n}, to the setting of LCA groups in a different way.

2. Main Results

In this section, by bracket product of elements of $L^{2}(\widehat{G})$, we give a formula for functions in FSI subspaces of $L^{2}(G)$ in terms of the generating set. We first recall the Weil's formula which plays a key role in the given proofs. Let G be a locally compact abelian group with a lattice L and let $\mathrm{d} \xi$ be a Haar measure on the dual group \widehat{G}. It is well known that G is discrete if and only if \widehat{G} is compact. Also, $\widehat{(G / L)} \cong L^{\perp}$ and $\widehat{G} / L^{\perp} \cong \widehat{L}$, where $L^{\perp}:=\{\xi \in \widehat{G}: \xi(L)=\{1\}\}[7]$. Easily, one can see that if L is a lattice in G, then L^{\perp} is also a lattice for \widehat{G}. There is a suitable \widehat{G}-invariant measure $\mathrm{d} \dot{\xi}$ on \widehat{G} / L^{\perp}, where $\dot{\xi}:=\xi L^{\perp}$, such that the following identity (called Weil's formula) holds:

$$
\int_{\widehat{G}} f(\xi) \mathrm{d} \xi=\int_{\widehat{G} / L^{\perp}} \sum_{\eta \in L^{\perp}} f(\xi \eta) \mathrm{d} \dot{\xi}, \quad\left(f \in L^{1}(\widehat{G})\right)
$$

Definition 2.1. Let G be a locally compact abelian group and L be a lattice in G. The bracket product of each $f, g \in L^{2}(\widehat{G})$ is defined by:

$$
[f, g](\xi):=\sum_{\eta \in L^{\perp}} f(\xi \eta) \overline{g(\xi \eta)}, \quad(\xi \in \widehat{G})
$$

Remark 2.2. Since the mapping $\Psi: \widehat{G} / L^{\perp} \rightarrow \widehat{L}$ defined by $\Psi\left(\xi L^{\perp}\right):=\left.\xi\right|_{L}$ for all $\xi \in \widehat{G}$, is an isomorphism of topological groups [7, Theorem 4.39], every element of \widehat{L} is the restriction of an (not necessarily unique) element of \widehat{G} to L. If $\xi_{1}, \xi_{2} \in \widehat{G}$ and $\xi_{1}=\xi_{2}$ on L, then we have $\xi_{1} L^{\perp}=\xi_{2} L^{\perp}$. This easily implies that $[f, g]\left(\xi_{1}\right)=[f, g]\left(\xi_{2}\right)$ for all $f, g \in L^{2}(\widehat{G})$. In other words, brackets can admit inputs from \widehat{L} by $[f, g]\left(\left.\xi\right|_{L}\right):=[f, g](\xi)$ for all $\xi \in \widehat{G}$. On the other hand, for each $\xi \in \widehat{G}$ and $\eta \in L^{\perp}$, we have $[f, g](\xi \eta)=[f, g](\xi)$. Thus, $[f, g]$ is constant on L^{\perp}-cosets, and so brackets can admit inputs from \widehat{G} / L^{\perp} too by setting:

$$
\begin{equation*}
[f, g](\dot{\xi}):=[f, g](\xi) \tag{2.1}
\end{equation*}
$$

[^0]where $\xi \in \widehat{G}$ and $\dot{\xi}:=\xi L^{\perp}$. Therefore, in different situations, we can consider appropriate inputs for brackets.

For each $f, g \in L^{2}(\widehat{G})$, we have $f \bar{g} \in L^{1}(\widehat{G})$ and:

$$
\begin{equation*}
|[f, g](\xi)|^{2} \leq[f, f](\xi)[g, g](\xi) \quad \text { a.e. on } \widehat{G} \tag{2.2}
\end{equation*}
$$

Since

$$
\|[f, g]\|_{L^{1}\left(\widehat{G} / L^{\perp}\right)}=\int_{\widehat{G} / L^{\perp}}\left|\sum_{\eta \in L^{\perp}} f(\xi \eta) \overline{g(\xi \eta)}\right| \mathrm{d} \dot{\xi} \leq \int_{\widehat{G}}|f(\xi) \overline{g(\xi)}| \mathrm{d} \xi<\infty
$$

the bracket product $[\cdot, \cdot]: L^{2}(\widehat{G}) \times L^{2}(\widehat{G}) \rightarrow L^{1}\left(\widehat{G} / L^{\perp}\right)$ defined by (2.1) is well defined.

Definition 2.3. For each $\varphi \in L^{2}(G)$, we define:

$$
w_{\varphi}(\xi):=[\hat{\varphi}, \hat{\varphi}](\xi)=\sum_{\eta \in L^{\perp}}|\hat{\varphi}(\xi \eta)|^{2}, \quad(\xi \in \widehat{G})
$$

where by $\hat{\varphi}$, we denote the Fourier transform of the function φ (see [7]). The space of all functions $r: \widehat{L} \rightarrow \mathbb{C}$ satisfying:

$$
\int_{\widehat{L}}|r(\xi)|^{2} w_{\varphi}(\xi) \mathrm{d} \xi<\infty
$$

is denoted by $L^{2}\left(\widehat{L}, w_{\varphi}\right)$, where $\mathrm{d} \xi$ is the Plancherel measure on \widehat{L}. For each $r \in L^{2}\left(\widehat{L}, w_{\varphi}\right)$, we define the following norm:

$$
\|r\|_{L^{2}\left(\widehat{L}, w_{\varphi}\right)}:=\left(\int_{\widehat{L}}|r(\xi)|^{2} w_{\varphi}(\xi) \mathrm{d} \xi\right)^{\frac{1}{2}}
$$

Definition 2.4. Let $\Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N} \subseteq L^{2}(G)$ be a finite subset of non-zero functions. For each $1 \leq i \leq N$, we denote $\Omega^{(i)}:=\Omega \backslash\left\{\varphi_{i}\right\}$. The set Ω is called a minimal generating set for $V(\Omega)$ if, for each $1 \leq i \leq N, \varphi_{i} \notin V\left(\Omega^{(i)}\right)$. Also, Ω is called B-orthogonal set (with respect to a given lattice L) if, for each distinct $1 \leq i, j \leq N,\left[\widehat{\varphi_{i}}, \widehat{\varphi_{j}}\right](\xi)=0 \quad$ a.e. on \widehat{L}.

We recall the following lemma from [12].
Lemma 2.5. Let $\varphi \in L^{2}(G)$. Then, $f \in V_{\varphi}$ if and only if there exists a function $r \in L^{2}\left(\widehat{L}, w_{\varphi}\right)$, such that $\hat{f}(\xi)=r(\dot{\xi}) \hat{\varphi}(\xi)(\xi \in \widehat{G})$, and $\|f\|_{L^{2}(G)}=$ $\|r\|_{L^{2}\left(\hat{L}, w_{\varphi}\right)}$.

The next theorem generalizes the above lemma for orthogonal finite subsets of $L^{2}(G)$, and can be considered also as a consequence of the characterization of Riesz basis property for SI spaces in [3,5].

Theorem 2.6. Let $\Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N}$ be a B-orthogonal subset of $L^{2}(G)$. For each $f \in L^{2}(G)$ and $i=1, \ldots, N$, we put:

$$
m_{i}(f):=\frac{\left[\hat{f}, \widehat{\varphi_{i}}\right]}{\left[\widehat{\varphi}_{i}, \widehat{\varphi_{i}}\right]},
$$

where $m_{i}(f)(\xi):=0$ whenever $\left[\widehat{\varphi}_{i}, \widehat{\varphi}_{i}\right](\xi)=0$. Then, $m_{i}(f) \in L^{2}\left(\widehat{L}, w_{\varphi_{i}}\right)$, and $f \in V(\Omega)$ if and only if:

$$
\begin{equation*}
\hat{f}=\sum_{i=1}^{N} m_{i}(f) \widehat{\varphi}_{i} \tag{2.3}
\end{equation*}
$$

In this case:

$$
\begin{equation*}
\|f\|_{L^{2}(G)}=\left(\sum_{i=1}^{N}\left\|m_{i}(f)\right\|_{L^{2}\left(\widehat{L}, w_{\varphi_{i}}\right)}^{2}\right)^{\frac{1}{2}} \tag{2.4}
\end{equation*}
$$

The following result which can be concluded from the Weil's formula would be helpful in the proof of Theorem 2.6.

Proposition 2.7. If G is an $L C A$ group with a lattice L, then for each $f, g \in$ $L^{2}(G)$:

$$
\begin{equation*}
\langle f, g\rangle=\int_{\widehat{G} / L^{\perp}}[\hat{f}, \hat{g}] \mathrm{d} \dot{\xi} \tag{2.5}
\end{equation*}
$$

where $\dot{\xi}:=\xi L^{\perp}$ for all $\xi \in \widehat{G}$.
Proof of Theorem 2.6. Let $f \in L^{2}(G)$ and $i=1,2, \ldots, N$. We have $m_{i}(f) \in$ $L^{2}\left(\widehat{L}, w_{\varphi_{i}}\right)$, since by (2.2) and (2.5):

$$
\begin{aligned}
\left\|m_{i}(f)\right\|_{L^{2}\left(\widehat{L}, w_{\varphi_{i}}\right)}^{2} & =\int_{\widehat{L}}\left|\frac{\left[\hat{f}, \widehat{\varphi}_{i}\right]}{\left[\widehat{\varphi}_{i}, \widehat{\varphi}_{i}\right]}\right|^{2}(\xi) w_{\varphi_{i}}(\xi) \mathrm{d} \xi \\
& \leq \int_{\widehat{L}} \frac{[\hat{f}, \hat{f}](\xi)\left[\widehat{\varphi}_{i}, \widehat{\varphi}_{i}\right](\xi)}{\left[\widehat{\varphi}_{i}, \widehat{\varphi}_{i}\right]^{2}(\xi)}\left[\widehat{\varphi}_{i}, \widehat{\varphi}_{i}\right](\xi) \mathrm{d} \xi \\
& =\int_{\widehat{G} / L^{\perp}}[\hat{f}, \hat{f}](\xi) \mathrm{d} \dot{\xi} \\
& =\langle f, f\rangle=\|f\|_{2}^{2}<\infty
\end{aligned}
$$

If $N=1$, for a function $\varphi \in L^{2}(G)$, we have $V(\Omega)=V_{\varphi}$. By Lemma 2.5, $f \in V_{\varphi}$ if and only if for some $r \in L^{2}\left(\widehat{L}, w_{\varphi}\right), \hat{f}=r \hat{\varphi}$ and $\|f\|_{L^{2}(G)}=$ $\|r\|_{L^{2}\left(\widehat{L}, w_{\varphi}\right)}$. By [12, Proposition 2.2], if $f \in A_{\varphi}:=\operatorname{span}\left\{T_{y} \varphi: y \in L\right\}$, then $\hat{f}=r \hat{\varphi}$, where $r(\xi)=r(\dot{\xi})=\sum_{i=1}^{n} a_{i} \overline{\xi\left(y_{i}\right)}$ for some $a_{1}, \ldots, a_{n} \in \mathbb{C}$ and $y_{1}, \ldots, y_{n} \in L$. Therefore:

$$
\begin{aligned}
{[\hat{f}, \hat{\varphi}](\xi) } & =\sum_{\eta \in L^{\perp}} \hat{f}(\xi \eta) \overline{\hat{\varphi}(\xi \eta)} \\
& =\sum_{i=1}^{n} \sum_{\eta \in L^{\perp}} a_{i} \cdot(\overline{\xi \eta})\left(y_{i}\right) \hat{\varphi}(\xi \eta) \overline{\hat{\varphi}(\xi \eta)} \\
& =\sum_{i=1}^{n} a_{i} \bar{\xi}\left(y_{i}\right) \sum_{\eta \in L^{\perp}}|\hat{\varphi}(\xi \eta)|^{2} \\
& =r(\xi)[\hat{\varphi}, \hat{\varphi}](\xi),
\end{aligned}
$$

and so, $\hat{f}=\frac{[\hat{f}, \hat{\varphi}]}{[\hat{\varphi}, \hat{\varphi}]} \hat{\varphi}$. Now, let $f \in V_{\varphi} \backslash A_{\varphi}$. Then, there is a sequence $\left(f_{n}\right)$ in A_{φ}, such that:

$$
\lim _{n \rightarrow \infty}\left\|\widehat{f_{n}}-\hat{f}\right\|_{L^{2}(\widehat{G})}=\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{2}(G)}=0
$$

By the above argument, there is a sequence $\left(r_{n}\right)$ in $L^{2}\left(\widehat{L}, w_{\varphi}\right)$, such that for all $n \in \mathbb{N}, \widehat{f_{n}}=r_{n} \hat{\varphi}$ and $r_{n}=\frac{\left[\widehat{f_{n}}, \hat{\varphi}\right]}{[\hat{\varphi}, \hat{\varphi}]}$. For each m and n, we have:

$$
\left\|r_{n}-r_{m}\right\|_{L^{2}\left(\widehat{L}, w_{\varphi}\right)}=\left\|f_{n}-f_{m}\right\|_{L^{2}(G)} .
$$

Therefore, $\left(r_{n}\right)$ is a Cauchy sequence. This implies that for some $r \in L^{2}\left(\widehat{L}, w_{\varphi}\right)$:

$$
\lim _{n \rightarrow \infty}\left\|r_{n}-r\right\|_{L^{2}\left(\widehat{L}, w_{\varphi}\right)}=0
$$

and by
$\left\|\widehat{f_{n}}-r \hat{\varphi}\right\|_{L^{2}(\widehat{G})}=\left\|r_{n} \hat{\varphi}-r \hat{\varphi}\right\|_{L^{2}(\widehat{G})}=\left\|\left(r_{n}-r\right) \hat{\varphi}\right\|_{L^{2}(\widehat{G})}=\left\|r_{n}-r\right\|_{L^{2}\left(\widehat{L}, w_{\varphi}\right)}$,
we have $\hat{f}=r \hat{\varphi}$. However:

$$
r=\lim _{n \rightarrow \infty} r_{n}=\lim _{n \rightarrow \infty} \frac{\left[\widehat{f_{n}}, \hat{\varphi}\right]}{[\hat{\varphi}, \hat{\varphi}]}=\frac{[\widehat{f}, \hat{\varphi}]}{[\hat{\varphi}, \hat{\varphi}]},
$$

since by the relation (2.5) and the inequality (2.2):

$$
\left\|\frac{\left[\widehat{f_{n}}, \hat{\varphi}\right]-[\widehat{f}, \hat{\varphi}]}{[\hat{\varphi}, \hat{\varphi}]}\right\|_{L^{2}\left(\widehat{L}, w_{\varphi}\right)}=\left\|\frac{\left[\widehat{f_{n}}-\hat{f}, \hat{\varphi}\right]}{[\hat{\varphi}, \hat{\varphi}]}\right\|_{L^{2}\left(\widehat{L}, w_{\varphi}\right)} \leq\left\|f_{n}-f\right\|_{L^{2}(G)} .
$$

This completes the proof for $N=1$.
Now, let $N>1$. If

$$
f \in A(\Omega):=\operatorname{span}\left\{T_{y} \varphi_{i}: y \in L, i=1, \ldots, N\right\}
$$

then $f=\sum_{i=1}^{N} f_{i}$, where for any $1 \leq j \leq N, f_{i} \in A_{\varphi_{i}}$. By the above argument, for each $i=1, \ldots, N$ we have $\widehat{\widehat{f}}_{i}=r_{i} \widehat{\varphi}_{i}$, where $r_{i}=m_{i}\left(f_{i}\right)$. However, by B-orthogonality of Ω and the relation (2.5), for each $1 \leq l, j \leq N$ with $l \neq j$, we have $V_{\varphi_{l}} \perp V_{\varphi_{j}}$ in $L^{2}(G)$. This implies that $m_{i}(f)=m_{i}\left(f_{i}\right)$ for all $i=1, \ldots, N$. Therefore, the relation (2.3) holds. Also, by orthogonality, we have:

$$
\|f\|_{L^{2}(G)}^{2}=\sum_{i=1}^{N}\left\|f_{i}\right\|_{L^{2}(G)}^{2}=\sum_{i=1}^{N}\left\|m_{i}(f)\right\|_{L^{2}\left(\widehat{L}, w_{\varphi_{i}}\right)}^{2} .
$$

If $f \in V(\Omega) \backslash A(\Omega)$, similar to the case $N=1$, one can see that the relations (2.3) and (2.4) hold and the proof of necessity is completed.

Conversely, let:

$$
\hat{f}=\sum_{i=1}^{N} m_{i}(f) \widehat{\varphi_{i}}, \quad \text { where } \quad m_{i}(f)=\frac{\left[\hat{f}, \widehat{\varphi_{i}}\right]}{\left[\widehat{\varphi_{i}}, \widehat{\varphi}_{i}\right]} \in L^{2}\left(\widehat{L}, w_{\varphi_{i}}\right) .
$$

If, for any $1 \leq i \leq N$, we put $\hat{f}_{i}:=m_{i}(f) \hat{\varphi}_{i}$, then by Lemma 2.5, $f_{i} \in V_{\varphi_{i}}$. Now, since $\widehat{f}=\sum_{i=1}^{N} m_{i}(f) \widehat{\varphi}$, we have $f \in V(\Omega)$.

Remark 2.8. The "only if" part of Theorem 2.6 holds more generally for hypergroups. In fact, if K is a commutative Pontryagin hypergroup with a lattice L satisfying the Weil's formula, and $\Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N}$ is a B-orthogonal subset of non-zero elements of $L^{2}(K)$, then for each $f \in V(\Omega)$, we have:

$$
\hat{f}=\sum_{i=1}^{N} m_{i}(f) \widehat{\varphi}_{i}
$$

on the center of \widehat{K}, where $m_{i}(f):=\frac{\left[\hat{f}, \widehat{\varphi_{i}}\right]}{\left[\varphi_{i}, \widehat{\varphi}_{i}\right]}$. This statement would be a generalization of one of the main results of [16]. We refer to the monograph [1] and the paper [10] (in which hypergroups are called convo) for examples, basic definitions and properties related to hypergroups which are extensions of locally compact groups; see also [16].

Example 2.9. Let $G:=(\mathbb{R},+)$, and so $\widehat{G}=\mathbb{R}$. For the lattice $L:=\mathbb{Z}$ in \mathbb{R}, we have $\widehat{L}=\mathbb{T}$ and $L^{\perp}=\mathbb{Z}$. Let $f \in L^{2}(\mathbb{R})$ and $\Omega:=\left\{\varphi_{k}\right\}_{k=1}^{N}$ be a B-orthogonal subset of $L^{2}(\mathbb{R})$. Then:

$$
\left[\hat{f}, \widehat{\varphi_{k}}\right](\xi)=\sum_{\eta \in \mathbb{Z}} \hat{f}(\xi+\eta) \overline{\widehat{\varphi_{k}}(\xi+\eta)} \quad \text { and } \quad w_{\varphi_{k}}(\xi):=\sum_{\eta \in \mathbb{Z}}\left|\widehat{\varphi_{k}}(\xi+\eta)\right|^{2} \quad(\xi \in \mathbb{R})
$$

By Theorem 2.6, $f \in V(\Omega)$ if and only if:

$$
\hat{f}=\sum_{k=1}^{N} m_{k}(f) \widehat{\varphi_{k}}, \quad \text { where } \quad m_{k}(f):=\frac{\left[\hat{f}, \widehat{\varphi_{k}}\right]}{\left[\widehat{\varphi_{k}}, \widehat{\varphi_{k}}\right]} \in L^{2}\left(\mathbb{T}, w_{\varphi_{k}}\right)
$$

Also, $\|f\|_{L^{2}(\mathbb{R})}=\left(\sum_{k=1}^{N}\left\|m_{k}(f)\right\|_{L^{2}\left(\mathbb{T}, w_{\varphi_{k}}\right)}^{2}\right)^{\frac{1}{2}}$.
In particular, since the Fourier transform is a unitary isomorphism from $L^{2}(\mathbb{R})$ to $L^{2}(\mathbb{R})$ for a given N and each $1 \leq k \leq N$, there are $\varphi_{k} \in L^{2}(\mathbb{R})$, such that $\widehat{\varphi_{k}}=\chi_{[k, k+1)}$. Hence, $\left\{\varphi_{k}\right\}_{k=1}^{N}$ is B-orthogonal. In this case, for each $f \in L^{2}(\mathbb{R})$ and $\xi \in \mathbb{T}$,

$$
\left[\hat{f}, \widehat{\varphi_{k}}\right](\xi)=\hat{f}(t(\xi)+k)
$$

where $t(\xi):=\xi \bmod 1$ in $[0,1)$, and $w_{\varphi_{k}}(\xi) \equiv 1$. Hence, $m_{k}(f)(\xi)=\hat{f}(t(\xi)+$ $k)$.

Also, $f \in V\left(\left\{\varphi_{k}\right\}_{k=1}^{N}\right)$ if and only if $\hat{f} \in L^{2}(\mathbb{R})$ and $\hat{f}(t)=0$ a.e. on $\mathbb{R} \backslash[1, N+1)$.

Example 2.10. Let G be the unit circle $\mathbb{T} \cong[0,1)$, and so $\widehat{G}=\mathbb{Z}$. The sets of the form $L=\frac{1}{n} \mathbb{Z}_{n}=\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}\right\}(n \in \mathbb{N})$, are the only lattices in $G[6$, page 525]. The dual group of L is $\widehat{L}=\mathbb{Z}_{n}$ and its annihilator is $L^{\perp}=n \mathbb{Z}$. Let $\varphi \in L^{2}(\mathbb{T})$ and $n \in \mathbb{N}$. By Lemma $2.5, f \in V_{\varphi}$ if and only if there exists a function $r \in L^{2}\left(\mathbb{Z}_{n}, w_{\varphi}\right)$, such that $\hat{f}(\xi)=r(\xi) \hat{\varphi}(\xi)\left(\xi \in \mathbb{Z}_{n}\right)$, and $\|f\|_{L^{2}(\mathbb{T})}=$ $\|r\|_{L^{2}\left(\mathbb{Z}_{n}, w_{\varphi}\right)}$, where $w_{\varphi}(\xi):=\sum_{\eta \in n \mathbb{Z}}|\hat{\varphi}(\xi \eta)|^{2} \quad\left(\xi \in \mathbb{Z}_{n}\right)$. If $\Omega:=\left\{\varphi_{k}\right\}_{k=1}^{N}$ is a B-orthogonal subset of $L^{2}(\mathbb{T})$, then:

$$
\left[\hat{f}, \widehat{\varphi_{k}}\right](\xi)=\sum_{\eta \in n \mathbb{Z}} \hat{f}(\xi \eta) \overline{\widehat{\varphi_{k}}(\xi \eta)} \quad \text { and } \quad w_{\varphi_{k}}(\xi):=\sum_{\eta \in n \mathbb{Z}}\left|\widehat{\varphi_{k}}(\xi \eta)\right|^{2} \quad\left(\xi \in \mathbb{Z}_{n}\right)
$$

By Theorem 2.6, $f \in V(\Omega)$ if and only if:

$$
\hat{f}=\sum_{k=1}^{N} m_{k}(f) \widehat{\varphi_{k}} \quad \text { and } \quad\|f\|_{L^{2}(\mathbb{T})}=\left(\sum_{k=1}^{N}\left\|m_{k}(f)\right\|_{L^{2}\left(\mathbb{Z}_{n}, w_{\varphi_{k}}\right)}^{2}\right)^{\frac{1}{2}}
$$

where $m_{k}(f):=\frac{\left[\hat{f}, \widehat{\varphi_{k}}\right]}{\left[\widehat{\varphi_{k}}, \widehat{\varphi_{k}}\right]} \in L^{2}\left(\mathbb{Z}_{n}, w_{\varphi_{k}}\right)$.
The following theorem can be considered as a Gram-Schmidt orthogonalization algorithm on fibers.

Theorem 2.11. Suppose that $\Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N} \subseteq L^{2}(G)$ is a minimal generating set for $V(\Omega)$, and the functions g_{1}, \ldots, g_{N} are defined by the relations $g_{1}:=$ φ_{1} and:

$$
\begin{equation*}
\widehat{g_{i}}=\widehat{\varphi}_{i}-\sum_{j=1}^{i-1} b_{j}^{(i)} \widehat{g_{j}} \quad(2 \leq i \leq N) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j}^{(i)}:=\left[\widehat{\varphi_{i}}, \widehat{g_{j}}\right]\left[\widehat{g_{j}}, \widehat{g_{j}}\right]^{-1} \in L^{2}\left(\widehat{L}, w_{g_{j}}\right) \quad(1 \leq j \leq N-1), \tag{2.7}
\end{equation*}
$$

and we define $b_{j}^{(i)}(\xi):=0$ if $\left[\widehat{g_{j}}, \widehat{g_{j}}\right](\xi)=0$. Then, for any $i, 1 \leq i \leq N$, we have $g_{i} \in V\left(\Omega_{i}\right)$, where $\Omega_{i}:=\left\{\varphi_{j}\right\}_{j=1}^{i}$, and for any distinct $1 \leq i, j \leq N$, $\left[\widehat{g_{i}}, \widehat{g_{j}}\right](\xi)=0 \quad$ a.e. on \widehat{L}.

Proof. First, it is shown by induction that for each $1 \leq i \leq N$, and $1 \leq j \leq i$, $b_{j}^{(i)} \in L^{2}\left(\widehat{L}, w_{g_{j}}\right)$ and $\widehat{g_{i}}$ belongs to $L^{2}(\widehat{G})$. Trivially, $\widehat{g_{1}}=\widehat{\varphi_{1}} \in L^{2}(\widehat{\widehat{G}})$, and $b_{1}^{(1)}=1 \in L^{2}\left(\widehat{L}, w_{g_{1}}\right)$, since:

$$
\|1\|_{L^{2}\left(\widehat{L}, w_{g_{1}}\right)}=\int_{\widehat{L}}\left[\widehat{\varphi_{1}}, \widehat{\varphi_{1}}\right](\xi) \mathrm{d} \xi=\left\|\widehat{\varphi_{1}}\right\|_{2}^{2}<\infty
$$

Let $g_{1}, \ldots, g_{i} \in L^{2}(G)$. Then, $b_{j}^{(i)} \in L^{2}\left(\widehat{L}, w_{g_{j}}\right)$, since by the relations (2.2) and (2.5):

$$
\begin{aligned}
\left\|b_{j}^{(i)}\right\|_{L^{2}\left(\widehat{L}, w_{g_{j}}\right)}^{2} & =\int_{\widehat{G} / L^{\perp}}\left|\frac{\left[\widehat{\varphi_{i}}, \widehat{g_{j}}\right](\xi)}{\left[\widehat{g_{j}}, \widehat{g_{j}}\right](\xi)}\right|^{2} w_{g_{j}}(\xi) \mathrm{d} \dot{\xi} \\
& \leq \int_{\widehat{G} / L^{\perp}} \frac{\left[\widehat{\varphi_{i}}, \widehat{\varphi_{i}}\right](\xi)\left[\widehat{g_{j}}, \widehat{g_{j}}\right](\xi)}{\left[\widehat{g_{j}}, \widehat{g_{j}}\right]^{2}(\xi)}\left[\widehat{g_{j}}, \widehat{g_{j}}\right](\xi) \mathrm{d} \dot{\xi} \\
& =\left\langle\varphi_{i}, \varphi_{i}\right\rangle=\left\|\varphi_{i}\right\|_{L^{2}(G)}^{2} .
\end{aligned}
$$

Also, by Lemma 2.5 immediately, we have $g_{i+1} \in L^{2}(G)$.
Now, by induction for $N \geq 2$, we prove that for any distinct $1 \leq i, j \leq$ $N,\left[\widehat{g_{i}}, \widehat{g_{j}}\right](\xi)=0 \quad$ a.e. on \widehat{L}.

If $N=2$, we have:

$$
\begin{aligned}
{\left[\widehat{g_{1}}, \widehat{g_{2}}\right](\xi) } & =\left[\widehat{\varphi_{1}}, \widehat{\varphi_{2}}-\frac{\left[\widehat{\varphi_{2}}, \widehat{\varphi_{1}}\right]}{\left[\widehat{\varphi_{1}}, \widehat{\varphi_{1}}\right]} \cdot \widehat{\varphi_{1}}\right](\xi) \\
& =\sum_{\eta \in L^{\perp}} \widehat{\varphi_{1}}(\xi \eta) \widehat{\left(\widehat{\varphi_{2}}-\frac{\left[\widehat{\varphi_{2}}, \widehat{\varphi_{1}}\right]}{\left[\widehat{\varphi_{1}}, \widehat{\varphi_{1}}\right]} \cdot \widehat{\varphi_{1}}\right)}(\xi \eta)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\widehat{\varphi_{1}}, \widehat{\varphi_{2}}\right](\xi)-\sum_{\eta \in L^{\perp}} \frac{\overline{\left[\widehat{\varphi_{2}}, \widehat{\varphi_{1}}\right]}(\xi \eta)}{\left[\widehat{\varphi_{1}}\right](\xi \eta)} \cdot \widehat{\varphi_{1}}(\xi \eta) \overline{\widehat{\varphi_{1}}(\xi \eta)} \\
& =\left[\widehat{\varphi_{1}}, \widehat{\varphi_{2}}\right](\xi)-\frac{\widehat{\left[\widehat{\varphi_{2}}, \widehat{\varphi_{1}}\right]}(\xi)}{\left[\widehat{\varphi_{1}}, \widehat{\varphi_{1}}\right](\xi)} \cdot \sum_{\eta \in L^{\perp}} \widehat{\varphi_{1}}(\xi \eta) \widehat{\widehat{\varphi_{1}}(\xi \eta)} \\
& =\left[\widehat{\varphi_{1}}, \widehat{\varphi_{2}}\right](\xi)-\left[\widehat{\varphi_{1}}, \widehat{\varphi_{2}}\right](\xi)=0
\end{aligned}
$$

Now, suppose that $\left[\widehat{g_{i}}, \widehat{g_{j}}\right](\xi)=0$ a.e. on \widehat{L} for all $2 \leq m \leq N-1$ and all distinct $1 \leq i, j \leq m-1$. Put $b_{j}^{(m)}:=\left[\widehat{\varphi_{m}}, \widehat{g_{j}}\right]\left[\widehat{g_{j}}, \widehat{g_{j}}\right]^{-1}$, and let $\widehat{g_{m}}=\widehat{\varphi_{m}}-$ $\sum_{j=1}^{m-1} b_{j}^{(m)} \widehat{g_{j}}$. Then, by the assumption of induction, for any $1 \leq l \leq m-1$, we have:

$$
\left[\widehat{g_{m}}, \widehat{g_{l}}\right]=\left[\widehat{\varphi_{m}}, \widehat{g_{l}}\right]-b_{l}^{(m)}\left[\widehat{g_{l}}, \widehat{g_{l}}\right]=\left[\widehat{\varphi_{m}}, \widehat{g_{l}}\right]-\left[\widehat{\varphi_{m}}, \widehat{g_{l}}\right]=0 \text {, a.e. }
$$

Finally, we prove that for any $i, 1 \leq i \leq N, g_{i} \in V\left(\Omega_{i}\right)$. If we put $\widehat{f}=\frac{\left[\widehat{\varphi_{2}}, \widehat{\varphi_{1}}\right]}{\left[\widehat{\varphi_{1}}, \widehat{\varphi_{1}}\right]} \cdot \widehat{\varphi_{1}}$, then by Theorem 2.6, $f \in V_{\varphi_{1}}$, and clearly, $\varphi_{2} \in V_{\varphi_{2}}$. Therefore, by relation (2.6), $g_{2} \in V\left(\Omega_{2}\right)$. The proof of the general case is similar and we skip it.

Proposition 2.12. Under assumptions of Theorem 2.11, we have:

$$
V(\Omega)=\bigoplus_{i=1}^{N} V_{g_{i}} .
$$

Proof. For the orthogonality, we note that by Theorem 2.11, for each distinct i, j, we have $\left[\widehat{g_{i}}, \widehat{g_{j}}\right](\xi)=0 \quad$ a.e. on \widehat{L}, and by the relation (2.5):

$$
\begin{aligned}
\left\langle T_{x} g_{i}, T_{y} g_{j}\right\rangle & =\int_{\widehat{G} / L^{\perp}}\left[\widehat{T_{x} g_{i}}, \widehat{T_{y} g_{j}}\right](\xi) \mathrm{d} \dot{\xi} \\
& =\int_{\widehat{G} / L^{\perp}} \xi\left(x^{-1} y\right)\left[\widehat{g_{i}}, \widehat{g_{j}}\right](\xi) \mathrm{d} \dot{\xi}=0
\end{aligned}
$$

for all $x, y \in L$.
Let $f \in \bigoplus_{i=1}^{N} V_{g_{i}}$. Then, $f=\sum_{i=1}^{N} f_{i}$, where for each $1 \leq i \leq N$, $f_{i} \in V_{g_{i}}$. By Theorem 2.6, for each $1 \leq i \leq N$, there is $F_{i} \in L^{2}\left(\widehat{L}, w_{g_{i}}\right)$, such that $\widehat{f}_{i}=F_{i} \cdot \widehat{g}_{i}$. Hence, $\hat{f}=\sum_{i=1}^{N} F_{i} \cdot \widehat{g_{i}}$, and by Theorem 2.6, we have $f \in V\left(\left\{g_{i}\right\}_{i=1}^{N}\right)$. On the other hand, by Proposition 2.11, for each $1 \leq i \leq N$, we have $g_{i} \in V\left(\Omega_{i}\right)$, and so $f \in V(\Omega)$.

Conversely, suppose that $f \in V(\Omega), \Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N}$. By relations (2.6) and (2.7) and by B-orthogonality of the set $\left\{g_{i}\right\}_{i=1}^{N}$, for each $1 \leq m \leq N$, we have:

$$
\begin{aligned}
b_{m}^{(m)} & =\frac{\left[\widehat{\varphi_{m}}, \widehat{g_{m}}\right]}{\left[\widehat{g_{m}}, \widehat{g_{m}}\right]} \\
& =\frac{\left[\widehat{g_{m}}+\sum_{j=1}^{m-1} b_{j}^{(m)} \widehat{g_{j}}, \widehat{g_{m}}\right]}{\left[\widehat{g_{m}}, \widehat{g_{m}}\right]} \\
& =\frac{\left[\widehat{g_{m}}, \widehat{g_{m}}\right]+b_{j}^{(m)} \sum_{j=1}^{m-1}\left[\widehat{g_{j}}, \widehat{g_{m}}\right]}{\left[\widehat{g_{m}}, \widehat{g_{m}}\right]}=1,
\end{aligned}
$$

where $b_{m}^{(m)}$ for $m=N$ is similarly defined by $b_{N}^{(N)}:=\left[\widehat{\varphi_{N}}, \widehat{g_{N}}\right]\left[\widehat{g_{N}}, \widehat{g_{N}}\right]^{-1}$. Therefore:

$$
\widehat{\varphi_{m}}=\widehat{g_{m}}+\sum_{j=1}^{m-1} b_{j}^{(m)} \widehat{g_{j}}=\sum_{j=1}^{m} b_{j}^{(m)} \widehat{g_{j}}=\sum_{j=1}^{m} \frac{\left.\left[\widehat{\varphi_{m}}, \widehat{g_{j}}\right] \widehat{g_{j}}, \widehat{g_{j}}\right]}{} .
$$

By Theorem 2.6, $\varphi_{m} \in V\left(\left\{g_{i}\right\}_{i=1}^{m}\right)$. Hence, $f \in \bigoplus_{i=1}^{N} V_{g_{i}}$.
The following lemma gives a formula for the orthogonal projection on $V(\Omega)$ for a finite minimal generating subset $\Omega \subseteq L^{2}(G)$.

Lemma 2.13. Let $\Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N} \subseteq L^{2}(G)$ be a finite minimal generating set for $V(\Omega)$. Then, for each $f \in L^{2}(G)$, the orthogonal projection $P_{\Omega}(f)$ of f on $V(\Omega)$ is given by:

$$
\widehat{P_{\Omega}(f)}=\sum_{i=1}^{N}\left[\hat{f}, \widehat{g_{i}}\right]\left[\widehat{g_{i}}, \widehat{g_{i}}\right]^{-1} \widehat{g_{i}},
$$

where $\left\{g_{i}\right\}_{i=1}^{N}$ are defined by the relation (2.6).
Proof. Let $f=f_{1} \oplus f_{2}$, where $f_{1} \in V(\Omega)$ and $f_{2} \in[V(\Omega)]^{\perp}$. Then, $P_{\Omega}(f)=$ f_{1}. By Proposition 2.12, for all $1 \leq i \leq N$, there is $F_{i} \in V_{g_{i}}$, such that $f_{1}=\sum_{i=1}^{N} F_{i}$. By Theorem 2.6, for each $1 \leq i \leq N$, we have $\widehat{F}_{i}=m\left(F_{i}\right) \widehat{g}_{i}$, where:

$$
m\left(F_{i}\right):=\frac{\left[\widehat{F}_{i}, \widehat{g_{i}}\right]}{\left[\widehat{g_{i}}, \widehat{g_{i}}\right]} \in L^{2}\left(\widehat{L}, w_{g_{i}}\right) .
$$

Hence:

$$
\widehat{P_{\Omega}(f)}=\sum_{i=1}^{N} \frac{\left[\widehat{F}_{i}, \widehat{g_{i}}\right]}{\left[\widehat{g_{i}}, \widehat{g_{i}}\right]} \cdot \widehat{g_{i}} .
$$

Since $f_{2} \in[V(\Omega)]^{\perp}$ and $g_{i} \in V(\Omega)(1 \leq i \leq N)$, for each $x \in L$, we have:

$$
\begin{aligned}
\mathcal{F}^{-1}\left[\widehat{f_{2}}, \widehat{g_{i}}\right](x) & =\int_{\widehat{G} / L^{\perp}} \xi(x)\left[\widehat{f_{2}}, \widehat{g_{i}}\right](\xi) \mathrm{d} \dot{\xi} \\
& =\int_{\widehat{G} / L^{\perp}} \sum_{\eta \in L^{\perp}}(\xi \eta)(x) \widehat{f_{2}}(\xi \eta) \overline{\widehat{g}_{i}(\xi \eta)} \mathrm{d} \dot{\xi} \\
& =\int_{\widehat{G}} \xi(x) \widehat{f_{2}}(\xi) \widehat{\widehat{g}_{i}(\xi)} \mathrm{d} \xi \\
& =\int_{\widehat{G}} \widehat{f_{2}}(\xi) \overline{\widehat{T_{x} g_{i}}(\xi)} \mathrm{d} \xi \\
& =\left\langle\widehat{\hat{f}_{2}}, \widehat{T_{x} g_{i}}\right\rangle=\left\langle f_{2}, T_{x} g_{i}\right\rangle=0,
\end{aligned}
$$

where \mathcal{F}^{-1} is the inverse Fourier transform. Therefore, $\left[\widehat{f}_{2}, \widehat{g}_{i}\right]=0$. This implies that $\left[\widehat{f}, \widehat{g}_{i}\right]=\left[\widehat{f}_{1}, \widehat{g_{i}}\right]$, and by B-orthogonality of $\left\{g_{i}\right\}_{i=1}^{N}$, we have

$$
\begin{aligned}
{\left[\hat{f}, \widehat{g_{i}}\right]=\sum_{j=1}^{N}\left[\widehat{F_{j}}, \widehat{g_{i}}\right]=} & {\left[\widehat{F}_{i}, \widehat{g}_{i}\right] . \text { Therefore: } } \\
& \widehat{P_{\Omega}(f)}=\sum_{i=1}^{N}\left[\hat{f}, \widehat{g_{i}}\right]\left[\widehat{g_{i}}, \widehat{g_{i}}\right]^{-1} \widehat{g_{i}} .
\end{aligned}
$$

Theorem 2.14. Let $\Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N} \subseteq L^{2}(G)$ be a finite minimal generating set for $V(\Omega)$. Then, for each $f \in V(\Omega)$, we have:

$$
\begin{equation*}
\hat{f}=\sum_{i=1}^{N} m_{i}(f) \widehat{\varphi}_{i}, \quad \text { where } \quad m_{i}(f):=\frac{\left[\hat{f}, \widehat{h_{i}}\right]}{\left[\widehat{h_{i}}, \widehat{h_{i}}\right]} \in L^{2}\left(\widehat{L}, w_{h_{i}}\right), \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{N}\left\|m_{i}(f)\right\|_{L^{2}\left(\widehat{L}, w_{h_{i}}\right)}^{2} \leq\|f\|_{L^{2}(G)}^{2} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{h_{i}}=\widehat{\varphi_{i}}-\widehat{P_{\Omega^{(i)}}\left(\varphi_{i}\right)}, \tag{2.10}
\end{equation*}
$$

and $\Omega^{(i)}:=\Omega \backslash\left\{\varphi_{i}\right\}$.
Proof. By Theorem 2.6, the affirmation is true when $N=1$.
Suppose that the theorem is true for some $N \in \mathbb{N}$. Let $\Gamma:=\left\{\phi_{i}\right\}_{i=1}^{N+1}$ be a minimal generating set for $V(\Gamma)$, and put:

$$
\widehat{\varphi}_{i}=\widehat{\phi}_{i}-\frac{\left[\widehat{\phi}_{i}, \widehat{\phi}_{N+1}\right]}{\left[\widehat{\phi}_{N+1}, \widehat{\phi}_{N+1}\right]} \widehat{\phi}_{N+1}, \quad(1 \leq i \leq N)
$$

By Lemma 2.13, it follows that for any $1 \leq i \leq N$:

$$
\left[\widehat{\varphi}_{i}, \widehat{\phi}_{N+1}\right](\xi)=0 \quad \text { a.e. }
$$

Therefore, setting $\Omega:=\left\{\varphi_{i}\right\}_{i=1}^{N}$, by the relation (2.5), we have $V(\Omega) \perp V_{\phi_{N+1}}$, and so, $V(\Omega) \oplus V_{\phi_{N+1}}=V(\Gamma)$. Hence, by the induction assumption, for any $f \in V(\Gamma)$, we have:

$$
\hat{f}=\sum_{i=1}^{N} m_{i}(f) \widehat{\varphi}_{i}+\frac{\left[\hat{f}, \widehat{\phi}_{N+1}\right]}{\left[\widehat{\phi}_{N+1}, \widehat{\phi}_{N+1}\right]} \widehat{\phi}_{N+1}
$$

where $m_{i}(f)$ is defined by (2.8).
For any $1 \leq i \leq N$:
$\left.\widehat{\phi_{i}}-\widehat{P_{\Gamma^{(i)}}\left(\phi_{i}\right.}\right)=\widehat{\phi}_{i}-\widehat{P_{\Gamma^{(i)}}}\left(\varphi_{i}\right)-\frac{\left[\widehat{\phi}_{i}, \widehat{\phi}_{N+1}\right]}{\left[\widehat{\phi}_{N+1}, \widehat{\phi}_{N+1}\right]} \widehat{\phi}_{N+1}=\widehat{\varphi_{i}}-\widehat{P_{\Omega^{(i)}}}\left(\varphi_{i}\right)=\widehat{h}_{i}$.
Putting $\widehat{h}_{N+1}=\widehat{\phi}_{N+1}-\widehat{P_{\Gamma^{(N+1)}}}\left(\phi_{N+1}\right)$, easily, one can show $w_{h_{N+1}}(\xi) \leq$ $w_{\phi_{N+1}}(\xi)$ and the proof is completed.

Acknowledgements

We would like to thank the referee for carefully reading our manuscript and her/his very nice comments.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups. De Gruyter, Berlin (1995)
[2] De Boor, C., DeVore, R.A., Ron, A.: The structure of finitely generated shift invariant spaces in $L^{2}\left(\mathbb{R}^{d}\right)$. J. Funct. Anal. 119, 37-78 (1994)
[3] Bownik, M.: The structure of shift-invariant subspaces of $L^{2}\left(\mathbb{R}^{n}\right)$. J. Funct. Anal. 177(2), 282-309 (2000)
[4] Bownik, M., Ross, K.: The structure of translation-invariant spaces on locally compact abelian groups. J. Fourier Anal. Appl. 21(4), 849-884 (2015)
[5] Cabrelli, C., Paternostro, V.: Shift-invariant spaces on LCA groups. J. Funct. Anal. 258(6), 2034-2059 (2010)
[6] Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Springer International Publishing, Cham (2016)
[7] Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, London (1995)
[8] Iverson, J.: Subspaces of $L^{2}(G)$ invariant under translation by an abelian subgroup. J. Funct. Anal. 269(3), 865-913 (2015)
[9] Jakobsen, M.S., Lemvig, J.: Reproducing formulas for generalized translation invariant systems on locally compact abelian groups. Trans. Am. Math. Soc. 368(12), 8447-8480 (2016)
[10] Jewett, R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18, 1-101 (1975)
[11] Jia, R.Q., Micchelli, C.A.: Using the refinement equation for the construction of pre-wavelets, II. Powers of two. In: Laurent, P.J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 209-246. Academic Press, New York (1991)
[12] Kamyabi Gol, R.A., Raisi Tousi, R.: The structure of shift invariant spaces on a locally compact abelian group. J. Math. Anal. Appl. 340, 219-225 (2008a)
[13] Kamyabi Gol, R.A., Raisi Tousi, R.: Bracket products on locally compact abelian groups. J. Sci. I. R. Iran 19(2), 153-157 (2008b)
[14] Kazarian, K.S.: On the structure of finitely generated shift-invariant subspaces. arXiv:1605.02456v1 [math.CA] (2016)
[15] Ron, A., Shen, Z.: Frames and stable bases for shift invarianat subspace of $L^{2}\left(\mathbb{R}^{d}\right)$. Can. J. Math. 47, 1051-1094 (1995)
[16] Tabatabaie, S.M., Jokar, S.: A characterization of admissible vectors related to representations on hypergroups. Tbilisi Math. J. 10(4), 143-151 (2017)

Seyyed Mohammad Tabatabaie and Soheila Jokar
Department of Mathematics
University of Qom
Qom
Iran
e-mail: sm.tabatabaie@qom.ac.ir
Soheila Jokar
e-mail: s.jokar@stu.qom.ac.ir
Kazaros Kazarian
Departamento de Matematicas
Universidad Autonoma de Madrid
28049 Madrid
Spain
e-mail: kazaros.kazarian@uam.es
Rajab Ali Kamyabi Gol
Department of Mathematics
Ferdowsi University of Mashhad
Mashhad
Iran
e-mail: kamyabi@ferdowsi.um.ac.ir
Received: October 2, 2019.
Revised: August 4, 2020.
Accepted: December 5, 2020.

[^0]: ${ }^{1}$ A first version of the main results of this paper, restricted to the case of the real line, has been posted on ArXiv [14] by one of the authors.

