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Abstract
In this paper, we define the wavelet multiplier and Landau–Pollak–Slepian (L.P.S)
operators on the Hilbert space L2(G2,H), where G is a locally compact abelian
topological group, and H is the quaternion algebra; Also, we will investigate some of
their properties. In particular, we show that they are bounded linear operators, as well
in Schatten p-class spaces, 1 ≤ p ≤ ∞, and we determine their trace class.

Keywords Locally compact abelian group · Dual group · Wavelet multiplier
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1 Introduction

The representation of a function by simultaneous bandlimiting and timelimiting has
been the concern of many researchers in their works, until to the 1960s, when the
problem was solved by works of Henry Landau, Henry Pollack and David Slepian
[12,13,16], they introduced the self-adjoint Landau–Pollak–Slepian (L.P.S.) operator
on L2(Rn). In 1999, He andWong, introducedWavelet multipliers operator on L2(Rn)

[11], which was generalized from Landau–Pollak–Slepian operator, they showed that
the L.P.S. operator is in fact a wavelet multiplier operator; for more details see [17].
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The authors in [1], generalized L.P.S. and Wavelet multipliers operator on a locally
compact abelian topological group, and investigated some of their properties.

Now, we recall some definitions, and fix some notations, which will be used in the
sequel. The quaternion is a four- dimensional non-commutative algebraH [6,8,10,15]
which is defined over the field of real numbersRwith the three imaginary units. More
precisely,

H = {q0 + q1i + q2 j + q3k, q0, q1, q2, q3 ∈ R},

where the elements i, j, k satisfy the following

i . j = − j .i = k, j .k = −k. j = i, k.i = −i .k = j, i2 = j2 = k2 = −1.

Every quaternion element q can be written also as a sum of two parts, Scalar part
Sc[q] = q0 ∈ R and Vector part, Vec[q] = q1i + q2 j + q3k , Vec[q] is often called
pure quaternion, hence q = Sc[q] + Vec[q]. Now we will briefly review some basic
facts on quaternions which are almost the same as in [8]. For any p, q ∈ H, such that
p = p0+ p1i+ p2 j+ p3k, q = q0+q1i+q2 j+q3k, the addition and multiplication
on H are

p + q = (p0 + q0) + (p1 + q1)i + (p2 + q2) j + (p3 + q3)k,

and

p.q = (p0q0 − p1q1 − p2q2 − p3q3) + (p1q0 + p0q1 + p2q3 − p3q2)i

+ (p2q0 + p0q2 + p3q1 − p1q3) j + (p3q0 + p0q3 + p1q2 − p2q1)k.

The quaternion conjugate of q is defined by p = p0 − p1i − p2 j − p3k; clearly
it is an anti-involution, this means (p.q) = q.p. For any two quaternions q, p we
define right Cr and left Cl carrier operators as Cr (p)q = qp and qCl(p) = pq,
respectively. Also For any q ∈ H, we have Cr (q) = Cl(q) and vice versa. Although,
multiplication on quaternions are non-commutative, it is clear that for all p, q, r ∈ H,
we have Sc[q.p.r ] = Sc[p.r .q] = Sc[r .q.p], which is called cyclic multiplication
identity and it is an important tool in our work.

Note that throughout this paper, G denotes a locally compact abelian topological
group with the Haar measure dx and Ĝ, is the dual group of G with the Haar measure
dξ such that dξ is the dual measure of dx [4,5,7]. The elements of G are denoted by
x, y etc., while the elements of Ĝ are denoted by ξ, ω and so forth. For any continuous
characters ωl : G → Tl , l = i, j the character ω on G2 := G × G is ω : G2 → Tq

in which ω(x) = ω j (x2)ωi (x1), for any x = (x1, x2) ∈ G2, where Ti ,T j and Tq are
the unit circles in Ci ,C j and H respectively, with Cl = {a + bl, a, b ∈ R}, l = i, j .

Likewise, the classical inner product for any two elements f , g ∈ L2(G2,H) we
define the (usual) inner product on L2(G2,H) as ( f , g) = ∫

G2 f (x)g(x)dx . Also,
we can define 〈 f , g〉 = Sc

∫
G2 f (x)g(x)dx , as another inner product on L2(G2,H)

which is called scalar inner product, it is clear that 〈 f , g〉 = Sc( f , g) [10].
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We recall that Fs( f )(ω) = f̂ (ω) = ∫
G2 ωi (x1) f (x)ω j (x2)dx is the two

sided quaternion Fourier transform (also called sandwich Fourier transform) of
f ∈ L1(G2,H) and the inverse of the two sided quaternion Fourier transform is
F−1
s ( f )(x) = f̌ (x) = ∫

Ĝ2 ωi (x1) f (ω)ω j (x2)dω for f (if it exists). The two sided
quaternion Fourier transform on L1(G2,H)∩L2(G2,H) can be extended with respect
to the scalar inner product uniquely to a unitary isomorphism from L2(G2,H) to
L2(Ĝ2,H) known as the quaternionic Plancherel Theorem. Now let us consider the
closed subspace ML1(G2,H)∩L2(G2,H) which is define as

ML1(G2,H)∩L2(G2,H) = { f ∈ L1(G2,H) ∩ L2(G2,H) : f is even with respect to the

first component},

for any function f ∈ ML1(G2,H)∩L2(G2,H) we have Fs( f ) ∈ ML2(Ĝ2,H)
, so we can

extend the two sided quaternion Fourier transformation on ML1(G2,H)∩L2(G2,H) with
respect to the usual inner product by Plancherel theorem fromML2(G2,H) toML2(Ĝ2,H)
for more details see [2].

The translation and modulation operators Ly, Mξ are defined by Ly f (x) =
f (y−1x) andMξ f (x) = ξ j (x2) f (x)ξi (x1), respectively.Note that theCr−modulation
operator MCr

ξ is defined as MCr
ξ f (x) = ξ j (x2) f (x)Cr ξi (x1), for any quaternionic

function f . The space L∞(G2,H) is defined as follows

L∞(G2,H) = { f : G2 −→ H : f is measurable and ‖ f ‖∞ < ∞},

where

‖ f ‖∞ = inf {a ≥ 0 : μ ({x : | f (x)| > a}) = 0} .

Our aim in this paper is to give a generalization of wavelet multiplier and L.P.S.
operators on L2(G2,H) where G is a locally compact abelian topological group and
H is the quaternion algebra. For this, we will define a unitary representation [4,5,7,9]
on the Hilbert space L2(G2,H) by using properties of dual groups [4,5,7], and we
find, among other things, the set of all admissible wavelets [14,17] for this unitary
representation. Then, we investigate boundedness [3] of wavelet multiplier operator
and show it is in Schatten p-class spaces,1 ≤ p ≤ ∞ , and also we will determine their
trace class. At last, we will show that the L.P.S. operator is a special case of wavelet
multiplier operator.

More precisely, this paper is organized as follows: Sect. 2, starts with the definition
of a unitary representation on L2(G2,H). Then, we calculate the admissible wavelet
for this unitary representation, then, we show the operator Pσ,ϕ : ML2(G2,H) →
ML2(G2,H), is unitarily equivalent to the wavelet operator ϕTσ ϕ : ML2(G2,H) →
ML2(G2,H), and state some preliminaries and related notations of these operators. Also
we will discuss the boundedness of wavelet multipliers operator at two stages, first
for σ ∈ L1(Ĝ2,H) , and second for σ ∈ MLp(Ĝ2,H)

, 1 < p ≤ ∞ by using The
Riesz–Thorin Theorem [17]. In Sect. 3, we will explain that the wavelet multiplier
operators are in the Schatten p-class spaces [17,18] and then we will determine the



    1 Page 4 of 17 M. Kh. Abdullah, R. A. Kamyabi-Gol

trace of these operators. In the end, in Sect. 4, we will give the definition of the L.P.S.
operator QC P�QC : ML2(G2,H) → ML2(G2,H) , investigate some of its properties
including the relationship between wavelet multiplier and L.P.S. operators in a special
case, and finally evaluate the trace of this operator.

2 Wavelet multipliers operator on L2(G2,H)

In this section we introduce the wavelet multipliers operator with respect to the various
kinds of inner product on L2(G2,H) in two ways, first according to the usual inner
product ( f , g) = ∫

G2 f (x)g(x)dx for any f , g ∈ L2(G2,H), and the second with
respect to the scalar inner product 〈 f , g〉 = Sc( f , g) for all f , g ∈ L2(G2,H).

Also to show the boundedness of the wavelet multipliers operator, we use the
Riesz–Thorin Theorem, which will be included for the readers’ convenience [17].

Let (X , μ) be a measure space and (Y , ν) be a σ -finite measure space. Let T be a
linear transformation with domain D consisting of all simple functions f on X such
that

μ({s ∈ X : f (s) �= 0}) < ∞,

and such that the range of T is contained in the set of all measurable functions on
Y . Suppose that α1, α2, β1 and β2 are numbers in the interval [0, 1] and there exist
positive constants M1 and M2 such that

‖T f ‖
L

1
β j (Y )

≤ Mj‖ f ‖
L

1
α j (Y )

, f ∈ D, j = 1, 2.

Then there exist a 0 < θ < 1, such that α = (1− θ)α1 + θα2, β = (1− θ)β1 + θβ2,
and

‖T f ‖
L

1
β (Y )

≤ M1−θ
1 Mθ

2 ‖ f ‖
L

1
α (Y )

, f ∈ D.

The group of all unitary operators on L2(G2,H) with respect to the usual compo-
sition of mappings denoted by U (L2(G2,H)), a group homomorphism πq : Ĝ2 →
U (L2(G2,H)) is said to be a quaternion unitary representation of the group Ĝ2 on
the Hilbert space L2(G2,H), which is denoted by {πq , L2(G2,H)} and defined as
follows

(πq(ξ)u)(x) = ξ j (x2)u(x)Cr (ξi (x1)) = MCr
ξ u(x), ξ ∈ Ĝ2, x ∈ G2.

The nonzero elementϕ ∈ L2(G2,H) is called an admissiblewavelet for the quaternion
unitary representation {πq , L2(G2,H)} if

∫

Ĝ2
|〈ϕ, πq(ω)ϕ〉|2dω < ∞.
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In this case, the value of the above integral is called thewavelet constant associatedwith
the admissible ϕ and denoted by cϕ , and {πq , L2(G2,H)} is called square integrable
representation [11,14,17].

2.1 Wavelet multiplier operator according to the usual inner product

In this section we introduce the wavelet multiplier operator ϕTσ ϕ where Tσ ∈
B(L2(G2,H)) which is defined by Tσ = F−1σF , σ ∈ MLp(Ĝ2,H)

, 1 ≤ p ≤ ∞
and ϕ ∈ ML2(G2,H)

⋂
L∞(G2,H), we will also establish some of its properties. The

following fact will be used frequently.

(u, πq(ξ)ϕ) = (u.ϕ)∧(ξ), (2.1)

for u, ϕ ∈ L2(G2,H) and ξ ∈ Ĝ2. Clearly from (2.1), we have (πq(ξ)ϕ, ν) =
(ν.ϕ)∧(ξ).

The following proposition, characterizes the admissible vectors for the quaternion
unitary representation {πq , L2(G2,H)}.
Proposition 2.1 Theadmissiblewavelet for theunitary representation {πq , L2(G2,H)}
defined on Ĝ2 consists of all functions ϕ ∈ L2(G2,H) ∩ L4(G2,H) for which
‖ϕ‖2 = 1.

Proof Using Plancherel Theorem and (2.1), we have

cϕ =
∫

Ĝ2
|(ϕ, πq(ξ)ϕ)|2dξ

=
∫

Ĝ2
|(ϕϕ̄)∧(ξ)|2dξ

= ‖(ϕϕ̄)∧‖22
= ‖ϕϕ̄‖22
= ‖ϕ‖44.


�
Now by using (2.1), we can prove the following proposition.

Proposition 2.2 Let ϕ ∈ ML2(G2,H)∩L∞(G2,H), then for any u, v ∈ ML2(G2,H),

∫

Ĝ2
(u, πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ = (uϕ, νϕ).

Proof By (2.1) and Plancherel Theorem, we get

∫

Ĝ2
(u,πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ
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=
∫

Ĝ2
(uϕ)∧(ξ).(νϕ)∧(ξ)dξ

= ((uϕ)∧, (νϕ)∧)

= (uϕ, νϕ).


�
Now, for σ ∈ L∞(Ĝ2,H) and ϕ ∈ L2(G2,H) ∩ L∞(G2,H), we define Pσ,ϕ :

L2(G2,H) → L2(G2,H) for any u, ν ∈ L2(G2,H) by

(Pσ,ϕu, ν) =
∫

Ĝ2
σ(ξ)(u, πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ. (2.2)

At this point, we aim to show that the linear operators Pσ,ϕ : L2(G2,H) → L2(G2,H)

for σ ∈ L p(Ĝ2,H), 1 ≤ p ≤ ∞ are bounded linear operators [3,18]. For the case
σ ∈ L1(Ĝ2,H), this is shown in the following proposition.

Proposition 2.3 Let σ ∈ L1(Ĝ2,H) and let ϕ ∈ L2(G2,H) ∩ L∞(G2,H) such that
‖ϕ‖2 = 1. Then Pσ,ϕ : L2(G2,H) → L2(G2,H) is a bounded linear operator and
‖Pσ,ϕ‖B(L2(G2,H)) ≤ ‖σ‖1.

Proof Let σ ∈ L1(Ĝ2,H), ϕ ∈ L2(G2,H) ∩ L∞(G2,H) with ‖ϕ‖2 = 1; then

|(Pσ,ϕu, ν)| = ∣
∣
∫

Ĝ2
σ
(
ξ
)
(u, πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ

∣
∣

≤
∫

Ĝ2

∣
∣σ

(
ξ
)∣∣

∣
∣(u, πq(ξ)ϕ)

∣
∣
∣
∣(πq(ξ)ϕ, ν)

∣
∣dξ

≤
∫

Ĝ2

∣
∣σ

(
ξ
)∣
∣‖u‖2‖πq(ξ)ϕ‖22‖ν‖2dξ

=
∫

Ĝ

∣
∣σ

(
ξ
)∣
∣‖u‖2‖ϕ‖22‖ν‖2dξ

= ‖u‖2‖ν‖2
∫

Ĝ2

∣
∣σ(ξ)

∣
∣dξ

= ‖u‖2‖ν‖2‖σ‖1.

So that ‖Pσ,ϕ‖B(L2(G2,H)) ≤ ‖σ‖1. 
�

Theorem 2.4 Let σ ∈ L p(Ĝ2,H), 1 < p ≤ ∞ and let ϕ ∈ L2(G2,H) ∩ L∞(G2,H)

be such that ‖ϕ‖2 = 1. Then there exists a unique bounded linear operator Pσ,ϕ :
L2(G2,H) → L2(G2,H) such that ‖Pσ,ϕ‖B(L2(G2,H)) ≤ ‖ϕ‖

2
q

L∞(G2,H)
‖σ‖L p(Ĝ2,H)

and for all u, ν ∈ L2(G2,H), (Pσ,ϕu, ν) is given in (2.2) for all simple functions σ

on Ĝ2 for which the Haar measure of the set {ξ ∈ Ĝ2 : σ(ξ) �= 0} is finite.



On wavelet multiplier and Landau–Pollak–Slepian operators… Page 7 of 17     1 

Proof For σ ∈ L∞(Ĝ2,H), we get

∣
∣(Pσ,ϕu, ν)

∣
∣ = ∣

∣
∫

Ĝ2
σ
(
ξ
)
(u, πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ

∣
∣

≤
∫

Ĝ2

∣
∣σ

(
ξ
)∣∣

∣
∣(u, πq(ξ)ϕ)

∣
∣
∣
∣(πq(ξ)ϕ, ν)

∣
∣dξ

≤ ‖σ‖L∞(Ĝ2,H)

[
∫

Ĝ2

∣
∣(u, πq(ξ)ϕ)

∣
∣2dξ

] 1
2
[
∫

Ĝ2

∣
∣(πq(ξ)ϕ, ν)

∣
∣2dξ

] 1
2

= ‖σ‖L∞(Ĝ2,H)

[
∫

Ĝ2

∣
∣(uϕ)∧(ξ)

∣
∣2dξ

] 1
2
[
∫

Ĝ2

∣
∣(νϕ)∧(ξ)

∣
∣2dξ

] 1
2

= ‖σ‖L∞(Ĝ2,H)
‖(uϕ)∧‖2‖(νϕ)∧‖2

= ‖σ‖L∞(Ĝ2,H)
‖uϕ‖2‖νϕ‖2

= ‖σ‖L∞(Ĝ2,H)
‖ϕ‖2L∞(G2,H)

‖u‖2‖ν‖2,

thus

‖Pσ,ϕ‖B(L2(G) ≤ ‖σ‖L∞(Ĝ2,H)
‖ϕ‖2L∞(G2,H)

.

For 1 < p < ∞, the Riesz–Thorin Theorem completes the proof. 
�
Now Proposition 2.3 and Theorem 2.4 allow us to define the wavelet multiplier

operator ϕTσ ϕ̄ : ML2(G2,H) → ML2(G2,H) for all σ ∈ MLp(Ĝ2,H)
, 1 ≤ p ≤ ∞ and

all ϕ ∈ ML2(G2,R)∩L∞(G2,R) with ‖ϕ‖2 = 1 which is the same as the bounded linear
operator Pσ,ϕ : ML2(G2,H) → ML2(G2,H). In other words, for any σ ∈ MLp(Ĝ2,H)

, we

have (Pσ,ϕu, ν) = (ϕTσ ϕ̄u, ν), for all u, ν ∈ Mϕ

L2(G2,H)
. Indeed

(Pσ,ϕu, ν) =
∫

Ĝ2
σ(ξ)(u, πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ

=
∫

Ĝ2
σ(ξ)(uϕ)∧(ξ)(νϕ)∧(ξ)dξ

=
∫

Ĝ2
σ(uϕ)∧(ξ).(νϕ)∧(ξ)dξ

= (σ (uϕ)∧, (νϕ)∧)

= ((σ (uϕ)∧)∨, νϕ)

= (ϕTσ ϕ̄ u, ν).

Remark 2.5 Let ϕ be an admissible wavelet for the square integralable representation
{πq , L2(G2,H)}, then the linear operator Lσ,ϕ : L2(G2,H) → L2(G2,H) which is

defined as (Lσ,ϕu, ν) = 1

cϕ

∫
Ĝ2 σ(ξ)(u, πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ is called the localiza-

tion operator associated with the symbol σ and admissible wavelet ϕ , hence from
Proposition 2.1, we have cϕ = ‖ϕ‖44 and from (2.2) we get that Pσ,ϕ = cϕLσ,ϕ also
Lσ,ϕ ∈ S1 with ‖Lσ,ϕ‖S1 ≤ 1

cϕ
‖σ‖L1(Ĝ2)

for more details see [14,17].
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2.2 Wavelet multiplier operator according to scalar inner product

In this section we introduce the wavelet multiplier operator ϕTσ ϕ with respect to
scalar inner product where Tσ ∈ B(L2(G2,H)) is defined by Tσ = F−1σ ScF and
ϕ ∈ L p(G2,H), 1 ≤ p ≤ ∞ and we also establish some of its properties. From (2.1)
we have the following formula which will be used frequently.

〈u, πq(ξ)ϕ〉 = Sc(uϕ)∧(ξ). (2.3)

For any u, ϕ ∈ L2(G2,H), note that from the definition of scalar inner product, we
have 〈u, πq(ξ)ϕ〉 = 〈πq(ξ)ϕ, u〉.

The following proposition characterizes the admissible vectors for the quaternion
unitary representation {πq , L2(G2,H)}.
Proposition 2.6 Theadmissiblewavelet for theunitary representation {πq , L2(G2,H)}
defined on Ĝ2 consists of all functions ϕ ∈ L2(G2,H) ∩ L4(G2,H) for which
‖ϕ‖2 = 1.

Proof Using Plancherel Theorem and (2.3), we have

cϕ =
∫

Ĝ2
|〈ϕ, πq(ξ)ϕ〉|2dξ

=
∫

Ĝ2
|Sc(ϕϕ̄)∧(ξ)|2dξ

≤
∫

Ĝ2
|(ϕϕ̄)∧(ξ)|2dξ

= ‖(ϕϕ̄)∧‖22
= ‖ϕϕ̄‖22
= ‖|ϕ|2‖22
= ‖ϕ‖44.


�
Now by using (2.3), we can prove the following proposition.

Proposition 2.7 Let ϕ ∈ L2(G2,H) ∩ L∞(G2,H), then for any u, v ∈ L2(G2,H),

∫

Ĝ2
〈u, πq(ξ)ϕ〉〈πq(ξ)ϕ, ν〉dξ = 〈Sc(uϕ)∧, (νϕ)∧〉.

Proof By (2.3), we get

∫

Ĝ2
〈u,πq(ξ)ϕ〉〈πq(ξ)ϕ, ν〉 dξ

=
∫

Ĝ2
Sc(uϕ̄)∧(ξ).Sc(νϕ̄)∧(ξ)dξ
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=
∫

Ĝ2
Sc[Sc(uϕ̄)∧(ξ).(νϕ̄)∧(ξ)]dξ

= Sc
∫

Ĝ2
Sc(uϕ̄)∧(ξ).(νϕ̄)∧(ξ)dξ

= Sc
∫

Ĝ2
Sc(uϕ̄)∧(ξ).(νϕ̄)∧(ξ)dξ

= 〈Sc(uϕ̄)∧, (νϕ̄)∧〉.


�
Now for σ ∈ L p(Ĝ2,R), 1 ≤ p ≤ ∞ and ϕ ∈ L2(G2,H) ∩ L∞(G2,H), we

define Pσ,ϕ : L2(G2,H) → L2(G2,H) for any u, ν ∈ L2(G2,H) by

〈Pσ,ϕu, ν〉 =
∫

Ĝ2
σ(ξ)〈u, πq(ξ)ϕ〉〈πq(ξ)ϕ, ν〉dξ. (2.4)

Now, we aim to show that the linear operators Pσ,ϕ : L2(G2,H) → L2(G2,H)

for σ ∈ L p(Ĝ2,R), 1 ≤ p ≤ ∞ are bounded linear operators. For the case σ ∈
L1(Ĝ2,R), this is shown in the following proposition.

Proposition 2.8 Let σ ∈ L1(Ĝ2,R) and let ϕ ∈ L2(G2,H) ∩ L∞(G2,H) be such
that ‖ϕ‖2 = 1. Then Pσ,ϕ : L2(G2,H) → L2(G2,H) is a bounded linear operator
and ‖Pσ,ϕ‖B(L2(G2,H)) ≤ ‖σ‖1.
Proof Let σ ∈ L1(Ĝ2,R), ϕ ∈ L2(G2,H) ∩ L∞(G2,H) with ‖ϕ‖2 = 1; Then

|〈Pσ,ϕu, ν〉| = ∣
∣
∫

Ĝ2
σ
(
ξ
)〈u, πq(ξ)ϕ〉〈πq(ξ)ϕ, ν〉dξ

∣
∣

≤
∫

Ĝ2

∣
∣σ

(
ξ
)∣∣

∣
∣〈u, πq(ξ)ϕ〉∣∣∣∣〈πq(ξ)ϕ, ν〉∣∣dξ

≤
∫

Ĝ2

∣
∣σ

(
ξ
)∣∣‖u‖2‖πq(ξ)ϕ‖22‖ν‖2dξ

=
∫

Ĝ

∣
∣σ

(
ξ
)∣∣‖u‖2‖ϕ‖22‖ν‖2dξ

= ‖u‖2‖ν‖2
∫

Ĝ2

∣
∣σ(ξ)

∣
∣dξ

= ‖u‖2‖ν‖2‖σ‖1.

So that ‖Pσ,ϕ‖B(L2(G2,H)) ≤ ‖σ‖1. 
�
Theorem 2.9 Let σ ∈ L p(Ĝ2,R), 1 < p ≤ ∞ and let ϕ ∈ L2(G2,H) ∩ L∞(G2,H)

be such that ‖ϕ‖2 = 1. Then there exists a unique bounded linear operator Pσ,ϕ :
L2(G2,H) → L2(G2,H) such that ‖Pσ,ϕ‖B(L2(G2,H)) ≤ ‖ϕ‖

2
q

L∞(G2,H)
‖σ‖L p(Ĝ2,H)

and for all u, ν ∈ L2(G2,H), 〈Pσ,ϕu, ν〉 is given in (2.4) for all simple functions σ

on Ĝ2 for which the Haar measure of the set {ξ ∈ Ĝ2 : σ(ξ) �= 0} is finite.
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Proof For σ ∈ L∞(Ĝ2,R), we get

∣
∣〈Pσ,ϕu, ν〉∣∣ = ∣

∣
∫

Ĝ2
σ
(
ξ
)〈u, πq(ξ)ϕ〉〈πq(ξ)ϕ, ν〉dξ

∣
∣

≤
∫

Ĝ2

∣
∣σ

(
ξ
)∣∣

∣
∣〈u, πq(ξ)ϕ〉∣∣∣∣〈πq(ξ)ϕ, ν〉∣∣dξ

≤ ‖σ‖∞
[
∫

Ĝ2

∣
∣〈u, πq(ξ)ϕ〉∣∣2dξ

] 1
2
[
∫

Ĝ2

∣
∣〈πq(ξ)ϕ, ν〉∣∣2dξ

] 1
2

= ‖σ‖∞
[
∫

Ĝ2

∣
∣Sc(uϕ̄)∧(ξ)

∣
∣2dξ

] 1
2
[
∫

Ĝ2

∣
∣Sc(νϕ̄)∧(ξ)

∣
∣2dξ

] 1
2

= ‖σ‖∞‖Sc(uϕ̄)∧‖2‖Sc(νϕ̄)∧‖2
≤ ‖σ‖∞‖(uϕ̄)∧‖2‖(νϕ̄)∧‖2
= ‖σ‖∞‖uϕ̄‖2‖νϕ̄‖2
= ‖σ‖∞‖ϕ‖2L∞(G2,H)

‖u‖2‖ν‖2,

thus

‖Pσ,ϕ‖B(L2(G) ≤ ‖σ‖L∞(Ĝ2,H)
‖ϕ‖2L∞(G2,H)

.

For 1 < p < ∞, the Riesz–Thorin Theorem completes the proof. 
�
Now Proposition 2.8 and Theorem 2.9 allow us to define the wavelet multiplier

operator ϕTσ ϕ̄ : L2(G2,H) → L2(G2,H) for all σ ∈ L p(Ĝ2,R), 1 ≤ p ≤ ∞
and all ϕ ∈ L2(G2,R) ∩ L∞(G2,R) with ‖ϕ‖2 = 1 which is the same as the
bounded linear operator Pσ,ϕ : L2(G2,H) → L2(G2,H). In other words, for any
σ ∈ L p(Ĝ2,R), 1 ≤ p ≤ ∞ we have 〈Pσ,ϕu, ν〉 = 〈ϕTσ ϕ̄u, ν〉, for all u, ν ∈
L2(G2,H). Indeed

〈Pσ,ϕu, ν〉 =
∫

Ĝ2
σ(ξ)〈u, πq(ξ)ϕ〉〈πq(ξ)ϕ, ν〉dξ

=
∫

Ĝ2
σ(ξ)Sc(uϕ̄)∧(ξ)Sc(νϕ̄)∧(ξ)dξ

=
∫

Ĝ2
σ(ξ)Sc[Sc(uϕ̄)∧(ξ).(νϕ̄)∧(ξ)]dξ

= Sc
∫

Ĝ2
σ(ξ)Sc(uϕ̄)∧(ξ).(νϕ̄)∧(ξ)dξ

= Sc
∫

Ĝ2
(σ Sc(uϕ̄)∧)(ξ).(νϕ̄)∧(ξ)dξ

= 〈σ Sc(uϕ̄)∧, (νϕ̄)∧〉
= 〈(σ Sc(uϕ̄)∧)∨, νϕ̄〉
= 〈ϕTσ ϕ̄u, ν〉.
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Remark 2.10 Let ϕ be an admissible wavelet for the square integralable representation
{πq , L2(G2,H)}, then the linear operator Lσ,ϕ : L2(G2,H) → L2(G2,H) which is

defined as 〈Lσ,ϕu, ν〉 = 1

cϕ

∫
Ĝ2 σ(ξ)〈u, π(ξ)ϕ〉〈πq(ξ)ϕ, ν〉dξ is called the localiza-

tion operator associated with the symbol σ and admissible wavelet ϕ , hence from
Proposition 2.6, we have cϕ ≤ ‖ϕ‖44 and from (2.4) we get Pσ,ϕ = cϕLσ,ϕ also
Lσ,ϕ ∈ S1 with ‖Lσ,ϕ‖S1 ≤ 1

cϕ
‖σ‖L1(Ĝ2)

.

3 The Schatten–von Neumann property

We recall that an operator T on a Hilbert spaceH is called a compact operator [3,18]
(or completely continuous operator) if, for every bounded sequence {xn} in H, the
sequence {T xn} contains a convergent subsequence. Now if T is a compact operator
on a separable Hilbert space H, then there exist orthonormal sets {en} and {σn} in H
such that

T (x) =
∑

n

λn〈x, en〉σn, x ∈ H,

where λn is the n-th singular value of T [3,18]. Given 0 < p < ∞, we define
the Schatten p-class of H, denoted by Sp(H) or simply Sp, to be the space of all
compact operators T on H such that its singular value sequence {λn} belongs to 
p
(the p-summable sequence space) [18]. We will be mainly concerned with the range
1 ≤ p < ∞. In this case, Sp is a Banach space with the norm ‖T ‖p defined by

‖T ‖p = [ ∑

n

|λn|p
] 1
p ,

S1 is also called the trace class, and S2 is usually called the Hilbert- Schmidt class.
The following theorem contains sufficient conditions for the wavelet multipliers oper-
ator in trace class.

Theorem 3.1 Let σ ∈ ML1(Ĝ2,H)
(or ∈ L1(Ĝ2,R) in the case of scalar inner product)

and ϕ ∈ ML2(G2,R)∩L4(G2,R)∩L∞(G2,R) (or ϕ ∈ L2(G2,R)∩L4(G2,R)∩L∞(G2,R)

in the case of scalar inner product) such that ‖ϕ‖2 = 1. Then the wavelet multiplier
operator ϕTσ ϕ̄ is in S1 and ‖ϕTσ ϕ̄‖S1 ≤ ‖σ‖1.
Proof By Remark 2.5 (Remark 2.10) the proof is clear. 
�

Now we are going to show that the wavelets multipliers operators ϕTσ ϕ̄ is in Sp

for 1 ≤ p ≤ ∞, where σ ∈ MLp(Ĝ2,H)
(∈ L p(Ĝ2,R)). To do this, we need to recall

some notations and terminologies.
Let B0 and B1 be two complex Banach spaces, we called B0 and B1 compatible if

we have Bk ⊆ V , k = 0, 1 for some complex vector space V . Suppose that S = {z ∈
C : 0 ≤ Re(z) ≤ 1} and let B be any complex Banach space, a function f : S → B
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is called analytic on S if for every g (bounded linear functional on B ) we have the
composition g ◦ f : S → C is analytic on S. Now, let F(B0, B1) (B0 and B1 are
compatible Banach spaces), be the set of all bounded and continuous functions f from
S into B0 + B1 such that f is analytic on S and the mappings

R � y → f (k + iy) ∈ Bk, k = 0, 1,

are continuous from R into Bk , k = 0, 1. Now one can show that F(B0, B1) is a
complex Banach space with the norm ‖ ‖F defined as

‖ f ‖F = max
k=0,1

sup
y∈R

‖ f (k + iy)‖Bk′ , f ∈ F(B0, B1).

For any θ in the interval [0, 1], Bθ is the subspace of B0+B1 consisting of all elements
b in B0 + B1 such that b = f (θ) for some f in F(B0, B1), then Bθ is a complex
Banach space with respect to the norm ‖ ‖θ defined as

‖b‖θ = inf
b= f (θ)

‖ f ‖F , b ∈ Bθ ,

and the interpolation space between the spaces B0 and B1 is Bθ , which denoted by
[B0, B1].

Suppose that we have two pairs of compatible Banach spaces, like B0, B1 and
B̃0, B̃1, and let T be any bounded linear operator from B0 + B1 into B̃0 + B̃1, so as,
T is a bounded linear operator from Bk into B̃k with norm less than or equal to Mk ,
k = 0, 1. Then for any real number θ in the interval (0, 1), T is a bounded linear
operator from [B0, B1]θ into [B̃0, B̃1]θ with a norm not bigger than M1−θ

0 Mθ
1 .

In particular for 1 ≤ p ≤ ∞,

[L1(X , μ), L∞(X , μ)] 1
q

= L p(X , μ),

and

[S1,S∞] 1
q

= Sp,

where (X , μ) is a measure space and q is the conjugate index of p. See [17,18] for
more details.

Theorem 3.2 Letσ ∈ MLp(Ĝ2,H)
(or∈ L p(Ĝ2,R) in the case of scalar inner product),

1 ≤ p ≤ ∞ and ϕ ∈ ML2(G2,R)∩L4(G2,R)∩L∞(G2,R) (or ∈ L2(G2,R) ∩ L4(G2,R) ∩
L∞(G2,R) in the case of scalar inner product) with ‖ϕ‖2 = 1. Then the wavelet

multiplier operator ϕTσ ϕ̄ is in Sp and ‖ϕTσ ϕ̄‖Sp ≤ ‖ϕ‖
2
q

L∞(G2,H)
‖σ‖L p(Ĝ2,H)

.

Proof For p = 1 the proof follows from Theorem 3.1; and for p = ∞ the proof
follows from Theorems 2.4 and 2.9, thus for 1 < p < ∞ the interpolation Theorem
as mentioned above complete the proof. 
�
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In the following theorem, we investigate the trace of the wavelet multiplier operator.

Theorem 3.3 Let σ ∈ ML1(Ĝ2,H)
(or ∈ L1(Ĝ2,R) in state scalar inner product) and

ϕ ∈ ML2(G2,R)∩L4(G2,R)∩L∞(G2,R) (or ∈ L2(G2,R) ∩ L4(G2,R) ∩ L∞(G2,R) in
state scalar inner product) be such that ‖ϕ‖2 = 1. Then

tr(ϕTσ ϕ̄) =
∫

Ĝ2
σ(ξ)dξ.

Proof Let {ϕk}∞k=1 be an orthonormal basis for L2(G2,R). We get

tr(ϕTσ ϕ̄) = tr(Pσ,ϕ) =
∞∑

k=1

(Pσ,ϕϕk, ϕk)

=
∞∑

k=1

∫

Ĝ2
σ(ξ)|(ϕk, πq(ξ)ϕ)|2dξ

=
∫

Ĝ2
σ(ξ)

∞∑

k=1

|(ϕk, πq(ξ)ϕ)|2dξ

=
∫

Ĝ2
‖πq(ξ)ϕ‖22σ(ξ)dξ

= ‖ϕ‖22
∫

Ĝ2
σ(ξ)dξ

=
∫

Ĝ2
σ(ξ)dξ.

For σ ∈ L1(Ĝ2,R) with scalar inner product by the same way. 
�

4 The Landau–Pollak–Slepian opearator

Herewewill give the Landau–Pollak–Slepian (L.P.S) operator QC P�QC : ML2(G2,H)

→ ML2(G2,H) where C and � are compact neighborhoods of identity elements of

G2 and Ĝ2, respectively, and we will also investigate some properties of the L.P.S.
operator and finally we consider the trace of this operator. At first, let us define the
linear operators P�, QC : ML2(G2,H) → ML2(G2,H) by (P� f )∧(ξ) = χ�(ξ) f̂ (ξ)

and (QC f )(x) = χC (x) f (x), for all f ∈ ML2(G2,H), which are in fact orthogonal
projections, as the following proposition shows.

Proposition 4.1 With the notations as above, P�, QC : ML2(G2,H) → ML2(G2,H) are
orthogonal projections.

Proof Note that

(P� f , g) = ((P� f )∧, ĝ)
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=
∫

Ĝ2
χ�(ξ) f̂ (ξ)ĝ(ξ)dξ

=
∫

Ĝ2
f̂ (ξ)χ�(ξ)ĝ(ξ)dξ

=
∫

Ĝ2
f̂ (ξ)(P�g)∧(ξ)dξ

= ( f̂ , (P�g)
∧) = ( f , P�g).

Therefore, P� : ML2(G2,H) → ML2(G2,H) is self-adjoint. Also,

(QC f , g) =
∫

G2
(QC f )(x)g(x)dx

=
∫

G2
χC (x) f (x)g(x)dx

=
∫

G2
f (x)χC (x)g(x)dx

=
∫

G2
f (x)(QCg)(x)dx

= ( f , QCg).

Therefore, QC : ML2(G2,H) → ML2(G2,H) is self-adjoint. On the other hand, we have

(P2
� f , g) = (P� f , P�g) = ((P� f )∧, (P�g)

∧)

=
∫

Ĝ2
(P� f )∧(ξ)(P�g)∧(ξ)dξ

=
∫

Ĝ2
χ�(ξ) f̂ (ξ)χ�(ξ)ĝ(ξ)dξ

=
∫

Ĝ2
χ�(ξ) f̂ (ξ)ĝ(ξ)dξ

=
∫

Ĝ2
(P� f )∧(ξ)ĝ(ξ)dξ

= ((P� f )∧, ĝ)

= (P� f , g).

Thus P2
� = P� and hence P� : ML2(G2,H) → ML2(G2,H) is an orthogonal projection.

Also,

(Q2
C f , g) = (QC f , QCg)

=
∫

G2
(QC f )(x)(QCg)(x)dx

=
∫

G2
χC (x) f (x)χC (x)g(x)dx
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=
∫

G2
χC (x) f (x)g(x)dx

=
∫

G2
(QC f )(x)g(x)dx

= (QC f , g).

Thus Q2
C = QC and hence, QC : ML2(G2,H) → ML2(G2,H) is an orthogonal projec-

tion. 
�
Using the fact that P� and QC are orthogonal projections, we get

sup

{
‖P�QC f ‖22

‖ f ‖22
: f ∈ ML2(G2,H), ‖ f ‖2 �= 0

}

= sup

{
(P�QC f , P�QC f )

‖ f ‖22
: f ∈ ML2(G2,H), ‖ f ‖2 �= 0

}

= sup

{
(P2

�QC f , QC f )

‖ f ‖22
: f ∈ ML2(G2,H), ‖ f ‖2 �= 0

}

= sup

{
(P�QC f , QC f )

‖ f ‖22
: f ∈ ML2(G2,H), ‖ f ‖2 �= 0

}

= sup

{
(QC P�QC f , f )

‖ f ‖22
: f ∈ ML2(G2,H), ‖ f ‖2 �= 0

}

= sup
{
(QC P�QC f , f ) : f ∈ ML2(G2,H), ‖ f ‖2 = 1

}
.

Since QC P�QC : ML2(G2,H) → ML2(G2,H) is self-adjoint, it follows from the above
that

sup{‖P�QC f ‖22
‖ f ‖22

: f ∈ ML2(G2,H), ‖ f ‖2 �= 0} = ‖QC P�QC‖B(L2(G2,H)).

Theorem 4.2 Let ϕ be the function on G2 defined by ϕ(x) = 1

|C | 12
χC (x), where |C |

denotes the Haar measure of C, and let σ be the function on Ĝ2 defined by σ(ξ) =
χ�(ξ). Then the operator QC P�QC : ML2(G2,H) → ML2(G2,H) is unitarily equivalent
to scalar multiple of the wavelet multiplier ϕTσ ϕ : ML2(G2,H) → ML2(G2,H). In fact
QC P�QC = |C |(ϕTσ ϕ).

Proof From the definition of ϕ, we get that ϕ ∈ ML2(G2,R)∩L∞(G2,R) with ‖ϕ‖22 =
∫
G2 |ϕ(x)|2dx = 1

|C|
∫
C dx = 1, so for all u, ν ∈ ML2(G2,H) we have,

(ϕTσ ϕu, ν) =
∫

Ĝ2
σ(ξ)(u, πq(ξ)ϕ)(πq(ξ)ϕ, ν)dξ,
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and

(u, π(ξ)ϕ) =
∫

G2
u(x)πq(ξ)ϕ(x)dx

=
∫

G2
u(x)ξ j (x2)ϕ(x)Cr (ξi (x1))dx

=
∫

G2
u(x)Cr (ξi (x1))ϕ(x)ξ j (x2)dx

=
∫

G2
u(x)Clξi (x1)

1

|C | 12
χC (x)ξ j (x2)dx

= 1

|C | 12
∫

G2
ξi (x1)χC (x)u(x)ξ j (x2)dx

= 1

|C | 12
∫

G2
ξi (x1)(QCu)(x)ξ j (x2)dx

= 1

|C | 12
(QCu)∧(ξ).

So

(u, π(ξ)ϕ) = 1

|C | 12
(QCu)∧(ξ) and (π(ξ)ϕ, ν) = 1

|C | 12
(QCν)∧(ξ).

Now

(ϕTσ ϕu, ν) =
∫

Ĝ2
σ(ξ)(u, π(ξ)ϕ)(π(ξ)ϕ, ν)dξ

= 1

|C |
∫

Ĝ2
σ(ξ)(QCu)∧(ξ)(QCν)∧(ξ)dξ

= 1

|C |
∫

Ĝ2
χ�(ξ)(QCu)∧(ξ)(QCν)∧(ξ)dξ

= 1

|C |
∫

Ĝ2
(χ�(QCu)∧)(ξ)(QCν)∧(ξ)dξ

= 1

|C |
∫

Ĝ2
(P�(QCu))∧(ξ)(QCν)∧(ξ)dξ

= 1

|C | ((P�(QCu))∧, (QCν)∧) = 1

|C | (P�QCu, QCν)

= 1

|C | (QC P�QCu, ν) for all functions u, v ∈ ML2(G2,H).

So

QC P�QC = |C |(ϕTσ ϕ).


�



On wavelet multiplier and Landau–Pollak–Slepian operators… Page 17 of 17     1 

Theorem 4.3 With the above notations tr(QC P�QC ) = |C ||�|.
Proof Theorem 4.3 is an immediate consequence of Theorems 4.2 and 3.3. 
�
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