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We have considered some static properties of the 41Ca and 17O in the relativistic shell model. The nuclei 41Ca and 17O can be 
modeled as a doubly-magic 40Ca and 16O core, with one additional nucleon (valence) in the lf7/2 and 1d5/2 levels. Then we have 
selected the modified Hulthen plus quadratic Yukawa potentials for interaction between core and single nucleon. By using 
Parametric Nikiforov-Uvarov method, we have calculated the energy values and wave function. Finally, we calculated the 
charge radius and electric quadruple moment for 41Ca and 17O. Our results were in agreement with experimental values and 
hence this model could be applied for similar nuclei. 
 

 

           1. Introduction 
 
The goals of the study of nuclear physics are to 
understand the force between nucleons, the structure 
of nuclei, and the nature of nuclear interactions with 
each other and with other subatomic particles. 
Nuclear structure research focuses on properties of 
nuclei such as the energies of excited states, nuclear 
shapes, electromagnetic moments and transition 
rates between excited states and the ground state, 
and how nuclei transform into different nuclei.  
    In addition to providing information about the 
structure of individual nuclei, nuclear structure 
studies provide experimental information that can be 
used by theorists to explain the nature of nuclear 
forces [1]. The best evidence for single-particle 
behavior is found near magic (also called closed-
shell) nuclei, where the number of protons and/or 
neutrons in a nucleus fills the last shell before a 
major or minor shell gap. For example, the nuclei 
41Ca and 17O can be modeled as a doubly-magic 40Ca 
and 16O core, with one additional (valence) nucleon 
in the lf7/2 and 1d5/2 levels. The ground-state spin and 
parity of 41Ca and 17O are Jπ=7/2-, 5/2+ which 
corresponds to the spin and parity of the level where 
the valence nucleon resides [2].  
    The standard analytical method to solve the 
Schrödinger equation, Dirac equation, and Klein-
Gordon equation with a variable coefficient is to 
expand the solution in a power series of the 
independent variable r and then find the recursion 
relations for all the expansion coefficients [20]. This 
method has more details to reach the solution. 
Numerical and analytical methods complement each 
other to find an exact or approximate solution of the 
quantum, and each would be poorer without the 
other.  
 

 
The ab-initio method is one of the numerical 
methods that have been used to explore the structure 
of light nuclei. Recently, Pieper and Wiringa used 
ab-initio calculations based on the Green’s function 
Monte Carlo (GFMC) method for the 4He ground 
state energy and radius obtained from the nucleon-
nucleon (NN) Argonne V8 potential [21, 22]. But in 
our article we use simple “hand-power methods”, 
namely analytical methods, because it's more 
revealing to see the solution stages of the problem, 
and so it would be more meaningful than the 
numerical solution.  
    Since these isotopes have one nucleon out of core, 
we utilize the relativistic Dirac equation to 
investigate them. We apply the modified Hulthen 
plus quadratic Yukawa potentials between core and 
a single particle because these potentials are 
important nuclear potentials for description of 
interaction between single nucleon and whole 
nuclei. Now that the potential is selected, the next 
step is solution of the Dirac equation for the nuclei 
under investigation. We use the Parametric 
Nikiforov-Uvarov (PNU) method [3, 4, 5] to solve 
the Dirac equation.  
    The organization of this paper is as follows: in 
Sec. 2, the PNU method is reviewed; in Sec. 3 we 
review Basic Dirac Equations briefly; in Sec. 4 
Relativistic Analytical Method is presented, and 
Results and discussion are given in Sec. 5. 

        2. Review of Parametric Nikiforov-Uvarov 
Method 
The NU method has been used to solve the 
Schrodinger, Dirac, and Klein-Gordon wave 
equations for a certain kind of potential. In this 
method the differential equations can be written as 
follows [4, 6]. 
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2

τ(s) σ(s)
Ψ (s) Ψ (s) Ψ (s) 0

σ(s) σ (s)
   

                       (1)             

Where σ(s) and σ(s) are polynomials at most second 

degree and τ(s) is a first degree polynomials.  

To make the application of the NU method simpler 
and direct without need to check the validity of 
solution. We present a shortcut for the method. 
Hence, firstly, we write the general form of the 

Schrodinger-like equation (Eqn. (1)) in a rather more 
general form as [7, 8] 

22
2 1 01 2

n2 2 2
3 3

( χ s χ s χ )ε ε sd d
Ψ (s) 0

s(1 ε s) dsds s (1 ε s)

   
                                                                                      

(2) 
We set the wave function as:  
Ψ (s) (s)y(s)f                                                   (3)                                                                                                   
Secondly, we compare Eqn. (2) with its counterpart 
Eq. (1) to obtain the following parameter values, 

1 2τ(s) ε ε s  3σ(s) s(1 ε s) 
, 

2
2 1 0σ(s) χ s χ s χ   

                                         (4)                                                                
Now, following the NU method, we obtain the 
following energy equation: 
𝑛𝜖ଶ − (2𝑛 + 1)𝜖ହ + (2𝑛 + 1)(ඥ𝜖ଽ + 𝜖ଷඥ𝜖଼ +

𝑛(𝑛 − 1)𝜖ଷ + 𝜖଻ + 2𝜖ଷ𝜖଼ + 2ඥ𝜖଼𝜖ଽ = 0            (5) 
And the corresponding wave functions 

10 11ε ε

3ρ(s) s (1 ε s)  ,
12 13ε ε

3Φ(s) s (1 ε s) 

12 13ε 0,ε 0                                                            (6)  

,                                                        
10 11

n

(ε ,ε )
n 3 10 11y (s) P (1 2ε s),ε 1,ε 1                     (7)                                                                                     

  and                                                         
13 10 1112 ε (ε ,ε )ε

n,k n,k 3 n 3Ψ (s) N s (1 ε s) P (1 2ε s)  
  

       (8) 

Where 
n

(μ,ν)P (x) (μ>− 1, v >− 1 and x € [−1, 1]) are 

Jacobi polynomials with the following constants: 
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3
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ε 1 ε 2ε ε 1,ε 0

ε
        

12 4 8ε ε ε 0  
                           

 13 4 9 5 3
3

1
ε ε ε ε 0,ε 0

ε
                              (9)                                           

Where ɛ12> 0, ɛ13> 0 and s € [0, 1/ɛ3], ɛ3≠ 0, In the 
rather more special case of ɛ3=0, ɛ11, ɛ13 becomes 

11 2 5 9 3 8ε ε 2ε 2( ε ε ε   
            

                                                                                                                  

13 5 9 3 8ε ε ( ε ε ε )  
                                  

  (10) 

The wave function (Eqn.8) becomes        
10 11 10

3

( ε ,ε ) ε
n 3 n 11ε 0

lim P (1 2ε s) L (ε s)


                          (11)                                                                                                                 

  
1312

3

ε sε
3ε 0

lim (1 2ε s) e


 
                                        (12)

                                                                                                                                     

  13 1012 ε s εε
n,k n,k n 11Ψ (s) N s e L (ε s)

                           
 (13) 

And
α
nL (x)are the Laguerre polynomials [9]. 

       3. Basic Dirac Equations 
 
In the relativistic description, the Dirac equation of 
a single-nucleon with the mass moving in an 
attractive scalar potential S(r) and a repulsive vector 
potential V (r) can be written as [10] 

      r r

2
n ,k n ,k

ˆˆˆ[ i c . (Mc S(r))] [E V(r)]      
     

                                                                            (14)
 

Where E is the relativistic energy, M is the mass of 
a single particle and α and β are the 4 ×4 Dirac 
matrices. For a particle in a central field, the total 

angular momentum J and ˆˆ ˆˆK ( .L )    

commute with the Dirac Hamiltonian where L is the 
orbital angular momentum. For a given total angular 

momentum j, the Eigen-values of the K̂ are k=± 
(j+1/2) where negative sign is for aligned spin and 
positive sign is for unaligned spin. The wave-
functions can be classified according to their angular 
momentum j and spin-orbit quantum number k as 
follows: 

     r

r

r

l
n ,k jm

n ,k l
n ,k jm

F (r)Y ( , )1
(r, , )

r iG (r)Y ( , )

  
    
   



            

 (15) 

Where
rn ,kF (r) and 

rn ,kG (r) are upper and lower 

components, 
l
jmY ( , )  and 

l
jmY ( , ) 


 are the 

spherical harmonic functions. nr is the radial 
quantum number and m is the projection of the 
angular momentum on the z axis. The orbital angular 

momentum quantum numbers l and l  represent to 
the spin and pseudo-spin quantum numbers. 
Substituting Eqn. (15) into Eqn. (14), we obtain 
couple equations for the radial part of the Dirac 
equation as follows: 

r r

r r

2
n ,k n ,k

2
n ,k n ,k

d k 1
( )F (r) [Mc E (r)]G (r)
dr r c
d k 1

( )G (r) [Mc E (r)]F (r)
dr r c

     

     






(16)                                

Where Δ (r)=V(r)-S(r) and ∑(r)=V(r)+S(r) are the 
difference and the sum of the potentials V(r) and 
S(r), respectively. 
Under the condition of the spin symmetry, i.e., Δ(r) 
=0, Eqn. (16) reduces into 

r

2
2 2

n ,k2 2 2 2

d k(k 1) 1
[Mc E][Mc E (r)] F (r) 0

dr r c

 
        
 

     

                                                                       (17) 



    The African Review of Physics (2019)14:0008 

68 
 

Under the condition of the pseudo-spin symmetry, 
i.e., ∑(r) =0 Eqn. (16) turns to the following form 

r

2
2 2

n ,k2 2 2 2

d k(k 1) 1
[Mc E][Mc E (r)] G (r) 0

dr r c

 
        

 
     

                                                                       (18) 
We consider bound state solutions that demand the 

radial components satisfying
r rn ,k n ,kF (0) G (0) 0 

, and 
r rn ,k n ,kF ( ) G ( ) 0    [10]. 

     4. Relativistic Analytical Method 

4.1 Energy Spectrum of 41Ca and 17O Isotope 
Under the condition of the spin symmetry, i.e., Δ(r) 
= 0, the upper component Dirac equation could be 
written as 

r

2
2 2

n ,k2 2 2 2

d k(k 1) 1
[Mc E][Mc E (r)] F (r) 0

dr r c

 
        

 

     

                                                                       (19) 
The modified Hulthen plus quadratic Yukawa 
potentials is defined as [11, 12] 

  

r r
0 1

r 2

v e v e
V(r)

(1 e ) r

 

  
                    

 (20)                  

                                       
Where the parameters v0 and v1 are real parameters, 
these are strength parameters, and the parameter α is 
related to the range of the potential.  
Using the transformation, s exp( r)   [11], 

Eqn. (19) brings into the form 

𝐹ᇱᇱ(𝑠) +
ଵ

௦
𝐹ᇱ(𝑠)  +

ଵ

௦మ ቄ
ா 

మିெమ௖ర

ℏమ௖మఈమ +

ா 
మାெమ௖ర

ℏమ௖మఈమ ቂ−2𝑣଴
௦

ఈ(ଵି௦)మ 2𝑣ଵ
௦మ

ఈ(ଵି௦)మቃ − 𝑘(𝑘 +

1)
௦

(ଵି௦)మቅ 𝐹(𝑠) = 0                           (21) 

Eqn. (21) is exactly solvable only for the case of k = 
0. In order to obtain the analytical solutions of Eqn. 
(21), we employ the improved Pekeris 
approximation and replace the spin–orbit coupling 
term with the expression that is valid for α ≤ 1, [13-
14]. 

 
  

2 r

2 r 2

k(k 1) e
k(k 1)

r (1 e )





 
 

                            
 (22)                                                                                                         

We can write the Eqn. (24) as summarized below 

2
n,k n,k 2 1 0 n,k2 2

(1 s) 1
F (s) F (s) [ s s ]F (s) 0

s(1 s) s (1 s)

      
 

     

                                                                       (23) 
Where the parameters χ2, χ1 and χ0 are considered as 
follows: 

   

0 1
2

2 2 2 4

0
1 2 2 2 2 2 2

0

v v
2

E Mc E M cv
2 2 k(k 1); ,

c c

         

                
  

 
     

                                                                       (24) 
Comparing Eqn. (23) with Eqn. (2), we can easily 
obtain the coefficients ɛi (i = 1, 2, 3) as follows: 
ɛ1= ɛ2= ɛ3=1                                                        (25)                                                                                                 
The values of the coefficients ɛi (i = 4, 5 …13) are 
also found from Eqn. (9) and Eqn. (10) as below in 
Table 1.

 
Table 1.The coefficients ɛi (i = 4, 5 …13) 

 
   

   

   

  

 

Using the energy equation, Eqn. (5) for energy 
Eigen-values we have: 

 

 

 

 

(2𝑛 + 1) ቎ඨ𝜂ଶ − 𝜂ଵ + 𝜂଴ +
1

4
+ ඥ𝜂଴
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1

4
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1

2
  

6 2
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4
   7 1   8 0 
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4
       10 02 

11 2 1 0

1
2

4
      

12 0 

13 2 1 0

1 1
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    +2ට𝜂଴(𝜂ଶ − 𝜂ଵ + 𝜂଴ +
ଵ

ସ
) + 2𝜂଴ − 𝜂ଵ +

ଵ

ସ
= 0             

                                                                            (26) 

Let us find the corresponding wave functions. In 
reference to Eqn. (6), Eqn. (7) and using of the 
coefficients ɛi in Table 1, we can obtain the upper 
wave function 

𝐹௡,௞(𝑟) =
𝑁

𝑟
(𝑒ିఈ )ඥఞబ(1 − 𝑒ିఈ௥)

(ටఞమିఞభାఞబା
భ

ర
ା

భ

మ
)
 

              × 𝑃௡

(ଶඥఞబ,ଶටఞమିఞభାఞబା
భ

ర
)

(1 − 2𝑒ିఈ௥     (27) 
Where N is the normalization constant, on the other 
hand, the lower component of the Dirac spinor can 
be calculated from Eqn. (28) as 

    
r r

2 2

n ,k n ,k2

c d k
G (r) ( )F (r)

dr rE Mc
 


  (28)                                                                                            

And wave function for Dirac equation can be 
calculated from Eqn. (29) as 
𝜓௡ೝ,௞(𝑟, 𝜃, 𝜙)

= 𝑁 ቎
𝑌௝௠

௟ (𝜃, 𝜙)

௜

ൣெାா೙ೝ,ೖ൧
ቂ

ௗ

ௗ௥
+

௞

௥
ቃ 𝑌௝௠

௟ ෩ ቏ (𝑒ିఈ௥)ඥᵪబ  

  × (1 − 𝑒ିఈ௥)
ටᵪమିᵪభାᵪబା

భ

ర
ା

భ

మ𝑃௡

(ଶඥᵪబ,ଶටᵪమିᵪభାᵪబା
భ

ర
)

 
     × (1 − 2𝑒ିఈ௥)                                               (29) 

     4.2 Calculation of charge radius and electric 
quadrupole moment 

The radial wave function is obtained from equation 
(29), so we can easily calculate the charge radius of 
studied isotopes by calculating <r2>1/2 by using of 
the Eqn. (29) and Eqn. (30). 

     n ,k n ,kr r

n ,k n ,kr r

1
2 3 21

2 2
3

(r)r (r)d r
r

(r) (r)d r





  
   
   


                 

 (30)                                                                                              

The nuclear electric quadrupole moment is a 
parameter which describes the effective shape of the 
ellipsoid of nuclear charge distribution. A non-zero 
quadrupole moment Q indicates that the charge 
distribution is not spherically symmetric.  
When the neutron or proton number is close to the 
full layer, the nucleus basically is spherical. 
Therefore, in this region for odd-A nuclei, the 
electric quadrupole moment (Q) is essentially 
determined by the nucleon with the odd number. So, 
we expect that if the difference between the neutron 
number or proton number, with the full layer in a 
nucleus is equal to one, the equations for this nucleus 
below will be correct. Of course, by considering this 
point that if there is a single cavity in the shell, so Q 
is positive and if there is an extra particle in addition 
to the full layer, Q is negative. 

  
2

2
0 0

3K I(I 1) 3
Q Q , Q ZeR

(I 1)(2I 3) 5

 
  

      
 (31)                                                                                      

The quantity Q0 is the classical form of the 
calculation represents the departure from spherical 
symmetry in the rest frame of the nucleus. The 
expression for Q is the quantum mechanical form 
which takes into account the nuclear spin I and the 
projection K in the z-direction. For the ground state 
of an odd-A nucleus that I=K, the above equation is 
converted to the following equation where β is the 
deformation parameter. 

   
0

I(2I 1)
Q Q

(I 1)(2I 3)




                                        
 (32)                                                                        

     5. Results and discussion 
 
We consider 41Ca and 17O isotopes with a single 
nucleon on top of the 40Ca and 16O isotopes core. 
Since these isotopes have one nucleon out of core, 
these isotopes could be considered as single particle 
model in relativistic shell model. Relativistic mean 
field (RMF) theory, as a covariant density functional 
theory, has been successfully applied to the study of 
nuclear structure properties [15]. The RMF theory 
incorporates from the beginning very important 
relativistic effects, such as the existence of two types 
of potentials (Lorentz scalar and four-vector) and 
the resulting strong spin-orbit interaction, a new 
saturation mechanism by the relativistic quenching 
of the attractive scalar field, and the existence of 
antiparticle solutions. Therefore, it is interesting to 
apply RMF theory to investigate the binding energy 
difference of mirror nuclei [16]. So we could use of 
Dirac equation for investigation them. The ground 
state and first excited energies of 41Ca and 17O 
isotopes are obtained by using Eq.(26). These results 
are compared with the experimental data in Table 2 
[17].  
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Table 2. Ground state energy of 41Ca and 41Sc isotopes 

 

The calculated energy levels have good agreement 
with experimental values. Therefore, the proposed 
model can well be used to investigate other similar 
isotopes. We obtain the charge radius by using Eqn. 
(29) and Eqn. (30) and electric quadrupole moment 
by using Eqn. (32) for 41Ca and 17O isotopes. In  

Table 3 we show the charge radius and electric 
quadrupole moment for ground state 41Ca and 17O 
isotopes and compare with experimental data and 
others work. We consider β=0.08 for 41Ca and 
β=0.17 for 17O isotopes. 

 

Table 3. Charge radius and the electric quadruple moment for 41Ca and 41Sc isotopes for ground state energy 

 

 
Isotope 

charge radius Quadrupole moment  

Our work  Experimental [18] Our work Experimental [19] 

41Ca 3.4560 3.4780 6.7505 6.65 

17O 2.6769 2.6932 2.6346 2.56 

 

The charge radius obtained for ground state 41Ca and 
17O isotopes has good agreement with experimental 
value. We can also predict the electric quadruple 
moment for 41Ca and 17O isotopes. These results 

 

show that our model could be useful to check other 
similar isotopes which can be investigated in a 
similar way. 
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