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Abstract

The expanding use of lithium-ion batteries in electric vehicles and other industries has
accelerated the need for new efficient charging strategies to enhance the speed and reli-
ability of the charging process without decaying battery performance indices. Numerous
attempts have been conducted to establish optimal charging techniques for commercial
lithium-ion batteries during the last decade. However, a few of them are devoted to the
comprehensive analysis and comparison of the charging techniques from the control-
oriented perspective for a battery pack. To fill this gap, a review of the most up-to-date
charging control methods applied to the lithium-ion battery packs is conducted in this
paper. They are broadly classified as non-feedback-based, feedback-based, and intelligent
charging methods. Finally, the paper concludes with a comprehensive discussion of the
strengths and weaknesses of the reviewed techniques.

1 INTRODUCTION

Renewable and clean energy sources are necessary to assist in
developing sustainable power that supplies plenty of possible
innovative technologies, such as electric vehicles (EVs), solar
and wind power systems [1, 2]. They must reduce our current
reliance on some limited sources of energy such as fossil fuel
and uranium to alleviate worries about energy, environment,
and economy [3]. Consequently, the need for storage has raised
up dramatically while rechargeable electrochemical batteries are
employed in practically every energy storing device [4].

Recent advancements in lithium-ion batteries demonstrate
that they exhibit some advantages over other types of recharge-
able batteries, including greater power density and higher cell
voltages, lower maintenance requirements, longer lifetime, and
faster-charging speeds with lower self-discharge rates [5, 6].
However, some drawbacks limit the broad adaption of the
lithium-ion batteries, associated explicitly with their high cost,
short life-cycle, constrained performance temperature, and pos-
sible safety infractions caused by overcharge, over-discharge,
short circuit, and production defects [5, 7]. In addition, a sin-
gle lithium-ion cell’s voltage is limited in the range of 2.4–4.2
V [8], which is not enough for high voltage demand in practi-
cal applications; hence, they are usually connected in series as a
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battery pack to supply the necessary high voltage [9]. However,
a battery pack with such a design typically encounter charge
imbalance among its cells, which restricts the charging and dis-
charging process [10]. Positively, a lithium-ion pack can be out-
fitted with a battery management system (BMS) that supervises
the batteries’ smooth work and optimizes their operation [11].
Consequently, plenty of studies have been dedicated to advanc-
ing the BMS functions, such as state-of-charge (SOC) and state-
of-health (SOH) monitoring, thermal control as well as intel-
ligent cell balancing [12]. Battery charging control is another
crucial and challenging part of the BMS since it can control
the overcharging, overvoltage, charging rate, and charging pat-
tern. These functions lead to a better battery performance with
improved lifetime and reduced safety hazard and capacity fade
risks [13].

There has been a substantial amount of literature published
to analyze and compare the performance of different types
of battery charging methods focusing on the lithium-ion bat-
tery systems [14–17]. For instance, paper [14] classifies dif-
ferent charging techniques of lithium-ion batteries based on
their charging time and lifespan. In light of this, a detailed
review of the literature regarding current charging techniques
for the lithium-ion battery has been provided. Authors in [16]
presented the recent developments in various battery optimal
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charging algorithms. The first aspect presented in their work
is passive charging, where their characteristics are summarized
and compared. Then, they introduced the generalized structure
of active optimal charging protocol. Finally, the reviewed opti-
mal charging protocols, including their data, results, and exam-
ined battery types and charging methods, are briefly compared.
Paper [17] reviews numerous studies and organizes the relevant
research under three topics: impedance modeling, data acquisi-
tion, and application under the premise of electric vehicle imple-
mentation. Consequently, the advantages and drawbacks of the
research in each subject are discussed. Based on the research,
the capabilities and importance of impedance in onboard BMS
are revealed.

Despite these efforts, no study comprehensively reviews
the recent work about the charging methods applied to the
lithium-ion battery packs. Subsequently, those techniques suit-
able for the battery packs involving several series or parallel-
connected battery cells have never been taken into classifica-
tion. This emphasizes the need for cell balancing at the same
time as charging to enhance the batteries’ charge efficiency
and health. Besides, none of the review papers consider the
control-oriented classification of lithium-ion battery charging
techniques. Accordingly, for a coherent comprehension of the
state-of-the-art of battery charging techniques for the lithium-
ion battery systems, this paper provides a comprehensive review
of the existing charging methods by proposing a new classifi-
cation as non-feedback-based, feedback-based, and intelligent
charging methods, applied to the lithium-ion battery packs. Sub-
sequently, their strengths and shortcomings are discussed. The
main contributions of this paper can be summarized as fol-
lows:

1. There is no comprehensive review paper to consider a
control-oriented classification for the charging lithium-ion
battery packs. This paper considers this for the first time,
including reviewing the charging methods proper for the bat-
tery packs comprising several connected cells;

2. In this paper, the charging methods for the lithium-ion bat-
tery packs are categorized based on non-feedback-based,
feedback-based, and intelligent approaches, which have
never been classified like this in other studies. This classifica-
tion provides researchers a benchmark for better interpret-
ing and understanding various charging methods applied to
lithium-ion battery packs.

The remainder of this paper is organized as follows. In Sec-
tion 2, simplified representations of different battery charger
circuits are presented. In addition, a novel classification of
charging techniques for lithium-ion battery packs is proposed
based on a control-oriented perspective. In Sections 3, 4, and 5,
the non-feedback-based, feedback-based, and intelligent charg-
ing methods are reviewed and discussed, respectively. A discus-
sion is presented in Section 6 to comprehensively review the
introduced charging methods along with their strengths and
weaknesses as well as related literature. Section 7 concludes
the paper.

BMS

Charger

Battery Pack

Power Source

FIGURE 1 Battery charging system with BMS

2 CHARGING SYSTEM MODEL

The optimal operation of any rechargeable battery system
depends on its charger circuit topology and the associated con-
trol scheme. A battery charger has three primary functions: ini-
tiate charging, rate optimization, and charge termination. Sim-
ply speaking, the charging process measures the voltage across
the battery, then initiates the charging process until a specific
voltage is reached, after which the charging process is termi-
nated [18]. This way, every charging system has a BMS that
coordinates all charging operations. In other words, the battery,
charger, and load communicate through the BMS as shown in
Figure 1.

2.1 Battery charger circuit topologies

Circuit topologies for lithium-ion battery charging systems
monitored by the BMS fall broadly into three main categories:
linear, switch mode, and pulse chargers, as shown in Figure 2.

A linear charger performs in the same simple way as a lin-
ear regulator, as shown in Figure 2a. In linear regulators, the
linear regulating element reduces the input voltage to a specific
output voltage through a resistor or a transistor. There is a dif-
ference between the linear regulator and linear charger as the
charger has added circuitry meant to control and protect battery
charge. Its simplicity and low price make linear chargers appeal-
ing, but constant current continuously flows through the regu-
lating element, resulting in heat dissipation and an inefficient
charger.

With pulse chargers, as illustrated in Figure 2b, the current is
pulsed into the battery by switching a transistor. An extra cir-
cuit in pulse chargers can control pulse width and period to
improve efficiency and make charging faster. A pulse charger
is more straightforward than a switch-mode charger and more
efficient than a linear charger. An input voltage for pulse charg-
ers needs to be tightly controlled. Because of this, an increase in
cost is incurred.
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FIGURE 2 Simplified representation of different battery charger circuits: (a) linear charger; (b) pulse charger; (c) switch mode charger

The switch-mode chargers and switch-mode power supplies
are the same, except that switch-mode chargers utilize a com-
plex circuit design to regulate charging and protect the battery.
Since the switches for switch-mode chargers are not always on,
they consume less power to operate and dissipate less heat.
However, switch-mode chargers are much more complicated
and costly than linear chargers. Figure 2c shows the simple rep-
resentation of the switch-mode charger.

2.2 Battery charging control schemes

In this paper, different battery charging algorithms that have
been published recently are evaluated and classified from the
perspective of the control algorithm, basically divided into non-
feedback-based, feedback-based, and intelligent techniques as
shown in Figure 3 and briefly described below:

∙ Non-feedback-based charging methods are open-loop con-
trol techniques commonly found with linear and pulse
charging systems where either the current waveform or
the voltage waveform or both are transformed to improve
charging profiles. These kinds of charging control tech-
niques are widely used in battery charging applications [13,
16, 19, 20], and regarding the control-oriented structure
could be further categorized as traditional, fast, optimized,
and electrochemical-parameter-based (EP-based) charging
methods.

∙ Feedback-based charging methods utilize a closed-loop con-
trol structure to monitor the switch-mode chargers by taking
into account a valid battery model such as equivalent circuit
model (ECM) or electrochemical model (EM) [21–29].

∙ Intelligent charging methods are estimation-based-tracker
algorithms usually used in charging a battery pack contain-
ing several series or parallel connected cells. Accordingly, a
nominal model of battery cells is utilized to generate an opti-
mal average trajectory regarding the batteries’ efficiency and
healthcare parameters such as SOC balancing and SOH. For
this purpose, a multi-objective optimization problem is typi-
cally formulated and solved. Also, a distributed charging strat-
egy may be needed to ensure that the cells’ measured parame-

ters follow the pre-scheduled trajectory, where observers can
correct the cells’ model bias online [23, 30–32].

3 NON-FEEDBACK-BASED CHARGING
METHODS

Batteries with non-feedback-based charging strategies are
charged under pre-set instructions, and chargers cease the
charging process when the battery reaches the terminal con-
dition. Despite the fact that these algorithms are easy and
straightforward to implement, the feedback of battery state
and health-related optimization parameters are neglected dur-
ing the charging process, which causes charging process degra-
dation [33–35]. In general, the available lithium-ion battery
non-feedback-based charging strategies can be divided into
four model-free methodology classes, including traditional, fast,
optimized, and electrochemical-parameter-based (EP-based)
charging approaches as shown in Figure 3 [36–40].

3.1 Traditional approaches

Many charging approaches have been developed conventionally
to solve battery charging problems with various objectives and
termination conditions. These typical approaches fall into three
main groups: constant current (CC), constant voltage (CV), and
constant current-constant voltage (CC-CV).

The CC charging scheme is a straightforward method of
charging batteries with a low, constant current to achieve a full
charge at the end of the charging cycle. Once the CC charging
time reaches a predefined threshold, the charge is terminated.
A battery’s behavior in CC charging is highly dependent on the
charging current. Hence it is crucial to find a charging current
that optimizes charging speed and capacity utilization [41].

CV charging is also a conventional charging method that
applies a constant voltage to charge the batteries. Besides avoid-
ing over-voltage and irreversible side reactions, another advan-
tage of using CV charging is that the battery life will be
extended. This approach, however, needs a high current to
maintain constant terminal voltage during the early stages of the
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FIGURE 3 Control-oriented classification of lithium-ion battery charging techniques

charging process, which is quite detrimental to the battery lat-
tice and could cause its poles to break. Setting a proper constant
voltage to obtain the right balance among charging speed, elec-
trolyte degradation, and capacity utilization is a real challenge
[36].

Integrating CC and CV charging has created a hybrid charg-
ing approach named CC-CV. The simple CC-CV charging algo-
rithm is widely implemented for many types of electrochemi-
cal batteries, including the lithium-ion batteries [34, 42, 43]. In
the CC-CV algorithm, the battery is initially charged to a preset
maximum voltage with a constant current. Then the charge volt-
age is held constant until a preset minimum current is reached
[12, 16, 44]. The charging profile of the standard CC-CV charg-
ing is shown in Figure 4.

In CC-CV charging algorithms, the CC and CV stages com-
plement each other somehow, with the capacity loss due to high
electrochemical polarization potential in the CC stage effec-
tively compensated by the corresponding large electrochemical
polarization potential at CV stage. Thus, the CC-CV charging
approach is superior to the sole CC charge alone as well as the
sole CV charge and has been chosen to provide a benchmark for
the evaluation of the performance of various battery charging
approaches. While the standard CC-CV charging method is rela-
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FIGURE 4 CC-CV charging profile

tively simple, the real challenge is choosing the correct constant
current value at the CC stage and constant voltage at the CV
stage. The total charging time in the CC-CV charging method
varies depending on the battery capacity and the value of the
charging current in the CC mode. Generally, the battery life and
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charging efficiency increase as the charging current decreases
under the CC mode. In addition, batteries charged with the
CC-CV algorithm requires no microcontrollers; instead, only
a voltage sensor, current sensor, and temperature sensor are
required. Consequently, the CC-CV charging algorithm is sim-
ple to implement [37].

3.2 Fast charging approaches

Many researchers have shown that the fast-charging idea that
adjusts the current levels during charging may lead to reduction
in cell degradation and shorter charging time. These approaches
are commonly designed to reduce heat generation, lithium plat-
ing, and mechanical stresses [45]. Subsequently, the lithium-ion
battery fast charging techniques can be categorized mainly into
multistage constant current-constant voltage (MCC-CV), pulse
charging (PC), boost charging (BC), and sinusoidal ripple cur-
rent (SRC) charging [15].

One of the first fast-charging strategies is the MCC-CV. It
uses multi-CC stages, followed by a final CV stage. Higher cur-
rent levels will often be used in the initial stages of CC since
it is hardly probable that the anode potential becomes negative.
However, some authors have taken a reverse approach, in which
the current level increases in later CC stages due to the lower
resistance of cells [36, 46–48]. Paper [46] studies the charging
strategy’s effect on the lithium-ion battery life using the MCC-
CV charging method. Accordingly, the utilized MCC-CV charg-
ing technique consists of two CC steps, starting from low cur-
rent charging to initiating 10% of capacity. It then succeeded by
a high current charging as long as the cell voltage reaches 4.2
V. The resulted outcomes revealed that the battery’s life cycle is
explicitly dependent on the charging procedure even if the same
charging rate is applied. Also, it is shown that for a standard two
CC stages MCC-CV, if the current rate is NC , a charging time of
1∕N can be calculated for various averaged C-rates, as shown in
Figure 5

PC is a charging method that has been explored as one of
the fast-charging techniques for lithium-ion batteries. This tech-
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FIGURE 6 PC charging profile [15]

nology employs continuous current pulses with certain pulse
width until the battery is fully charged. Accordingly, the charg-
ing current is periodically interrupted with short rest intervals
or discharge pulses, as shown in Figure 6. Actually, this strat-
egy is meant to lower concentration polarization by reducing
the risk of anode potential becoming negative at the local scale
or by reducing mechanical stresses due to uneven extraction and
lithium insertion [15, 49–52].

In [49], authors examine the PC technique’s effects on
lithium-ion batteries’ charge-discharge characteristics. The find-
ings reveal that pulse charging is useful in removing concen-
tration polarization, improving the power transfer rate, and
decreasing charge time by eliminating the actual constant volt-
age charging in the traditional method. With their proposed
method, charging time is reduced, and active materials are uti-
lized better, resulting in higher discharge capacity and longer
battery life. In this case, the battery needs about one hour to be
fully charged by the PC method at the 1C charging rate. Another
research that employed a PC approach for charging lithium-ion
batteries is described in [50], in which the lithium saturation
is avoided by correctly selecting the parameters, allowing sig-
nificantly higher rates of charging. Subsequently, full charging
is demonstrated in less than 3∕4 of an hour with nonlinearly
decreasing current density profiles.

A BC algorithm is similar to the CC-CV technique but has
additional charging intervals at the beginning of the charging
process. By enabling the charger to spend more time delivering
its maximum current, this method lowers recharge time owing
to a high voltage mode. The charging process is characterized
by the highest average current in the early stages of charge, fol-
lowed by the CC-CV stage with more moderate currents. In
this case, to avoid long-lasting charging, one should temporar-
ily raise the charging voltage during batteries recharge above the
normal float setting. Accordingly, the first stage of the boost-
charge could assume a simple CC profile, a CV profile where
the cell instantly reaches maximum voltage through a high cur-
rent (CV-CC-CV) or an entire double CC-CV (CC-CV-CC-CV)
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profile. The boost-charge stage should provide higher currents
or higher maximum voltages than the following CC-CV step
to reduce the overall charging time. As illustrated in Figure 7,
before the charge is fully transferred into the cell, a high current
Iboost is applied, and a maximum voltage Vboost or a time value
tboost can be used to limit the boost interval. The charger then
switches to CC-CV mode after the boost interval, where Iboost
and tboost can adapt the charge rate [53–55].

For an example of battery charging with the BC method,
the authors in [54] examine the feasibility of this technologi-
cal approach while comparing its long-term characteristics to
those obtained using CC-CV charging strategies. This study
reveals that close-to-full discharged batteries could be charged
for a short time with very high currents without introducing
detrimental effects. By doing so, a battery with a completely
discharged state was easily recharged to one-third of its rated
capacity in just five minutes without inducing any other degra-
dation consequences. It is also shown that both cylindrical and
prismatic lithium-ion batteries can be charged with BC.

3.3 Optimized

This subsection discusses the optimized methods that have
been found in the literature for the corresponding non-
feedback-based charging protocols. In various applications, fac-
tors such as current rate and voltage threshold have a signif-
icant impact on charging performance; therefore, it is vital to
optimize these critical factors and create optimal charging pro-
files. There have been many attempts to address this problem
by improving battery charging performance with various charg-
ing objectives. In the non-feedback-based methods, the bat-
tery states are predicted, and the electrical elements are cal-
culated using historical experimental data. Accordingly, differ-
ent types of estimation algorithms and optimization techniques
are adopted to estimate and improve the charging performance
[56–65]. The following part gives some examples from these
approaches found in the literature.
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3.3.1 CC-CV charging optimization

The CC-CV charging process is a basic method for charging
lithium-ion batteries. Many methods have taken the CC-CV
charging process, and accordingly, some suggestions have been
given to improve it [43, 66, 67].

In order to illustrate CC-CV charging optimization, paper
[66] proposes a charging technique for the lithium-ion battery
charging by utilizing a flyback DC-DC converter. Accordingly,
the proportional-integral (PI) controller tuned by the particle
swarm optimization (PSO) algorithm is used. The PSO algo-
rithm optimizes the parameter values of PI controller, which
maintain constant current and constant voltage during charg-
ing leading to highly efficient charging results. In another work,
in paper [43] a battery charger is proposed, including a charging
circuit and a dc-dc buck converter applied with a variable supply
voltage (ASV). Accordingly, an accurate and ripple-free charg-
ing current is achieved utilizing the charging circuit switched
between different charging modes. Accordingly, the redundant
power loss is reduced on the charging circuit by applying an
adaptive supply voltage on the buck converter. Additionally, in
this paper, the non-switching and zero current detection control
strategies are being used to reduce the power consumption of
DC-DC converter in CV mode. The experimental results prove
the theoretical analysis of the proposed charger. This battery
charger is as efficient as 88.3%, and the maximum efficiency
improvement achieved with this charger is 11.6% compared to
the charger with a fixed supply voltage. Paper [67] proposes a
method to automatically switch from the CC to the CV thresh-
old during the charging process using a novel clamp coil and
inductive power transfer (IPT) battery charger. This charger
offers high robustness with no battery SOC detection and wired
feedback connections. The proposed system employs a stan-
dard series-series (SS) compensation topology in the primary
and secondary to deliver CC charging. Additionally, the inher-
ent CC-to-CV conversion capability also eliminates open-circuit
risk during CC charging. Experiments confirm the theoretical
analysis well.

3.3.2 MCC-CV charging optimization

The MCC-CV charging method provides a solution to the
lengthy charging process that lasts in the CV phase of the CC-
CV. In order to shorten the charging time, a high current must
be used to charge the battery. However, this causes the voltage
to reach its upper limit before the expected charging capacity
is achieved. This problem can be solved by implementing an
optimized MCC-CV charging technique. This way, the charging
process continues until the battery voltage reaches the upper
limit of the cut-off voltage, after which the charging process
switches to the following preset current. This charging process
is then repeated until the full range of preset charging currents
is reached. At each stage, the charging current falls gradually,
preventing the battery from reaching the maximum limit of
cut-off voltage too quickly. Besides the upper cut-off voltage,
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the shifting condition may also be set based on the SOC interval
limit. Accordingly, this part introduces the charging methods
for the voltage-based [68–70] and the SOC shifting conditions
[71–73]. subsequently, the following equation calculates the
current for each stage using a multi-target function:

J (Ic ) = 𝜀1J1(Ic ) + 𝜀2J2(Ic ), (1)

where Ic is the charging current, J1 and J2 are the functions of
Ic , which stand for different optimization objectives; 𝜀1 ≥ 0 and
𝜀2 ≥ 0 are arbitrary weight coefficients, which can be adjusted
based on the importance of each corresponding objective.

By solving the optimization problem in Equation (1) under
the given constraints, it is possible to determine each stage’s
charging current. Accordingly, Figures 8a and 8b show the
MCC-CV charging profile involving n stages in which the cur-
rent shifting condition is based on a defined upper cut-off volt-
age and SOC intervals, respectively.

As an illustration of the upper-cut-off-voltage-based MCC-
CV approach, an optimization approach based on particle
swarm optimization (PSO), in conjunction with a fuzzy-
deduced fitness evaluator (FDFE), has been developed in [70]
to determine the optimal charging pattern that secures the most
significant discharge within the shortest charging time. The
optimization problem’s objective function is maximizing the
cost efficiency of the performed charging scheme considering
the charging time and the normalized discharge capacity to com-
bine them into a unified cost function to adequately examine
the multiple performance characteristics index in the charging
process. Based on the experimental results, it is evident that the
obtained pattern can charge the batteries to above 80% capacity
in 51 min. Compared with the conventional constant current-
constant voltage method, the devised approach improves batter-
ies’ charging times, lifetimes, and charging efficiency by approx-
imately 56.8%, 21%, and 0.4%, respectively.

For illustrative purposes of the SOC-interval-based MCC-CV
method, in [73], a new charging approach of lithium-ion bat-
teries has been proposed by utilizing both the Taguchi method

(TM) and SOC estimation, in which the TM is applied to seek
an optimal charging current pattern. An adaptive switching gain
sliding mode observer (ASGSMO) is considered for SOC esti-
mation while controlling and terminating the charging process.
The experimental results indicate that the proposed charging
method can significantly reduce charging time, limits the tem-
perature variation, and maximizes the energy efficiency over
CC-CV charging.

3.3.3 Pulse charging optimization

The PC optimization is meant by adding a short-time rest inter-
val (i.e. duty) or discharging period through the charging process
to diminish or eliminate polarization voltage in batteries. Charge
efficiency can be improved by increasing the ion concentra-
tion equilibrium during the charging process, which affects the
degree of ion diffusion in a lithium-ion battery. Consequently,
the battery life can be increased and charge time optimized with
this strategy; so it is widely used in advanced battery-charge sys-
tems [51, 52, 74]. Accordingly, different types of pulse charging
can be classified into two groups: voltage pulse charging and
current pulse charging.

Several techniques can be used to charge batteries utiliz-
ing voltage pulses, including duty-varying voltage pulses and
variable-frequency voltage pulses. To determine the duty in a
commercial battery pulse charge system, a duty-varied voltage
pulse-charge strategy is proposed in [74] and [75]. This method
improves the battery charge speed and charges efficiency by
detecting the suitable pulse charge duty and supplying the
appropriate charge pulse to the battery. Experiments indicate
that the charging speed and the efficiency are improved by 14%
and 3.4% with the proposed strategy compared to the standard
CC-CV charge strategy. Also, compared with conventional duty-
fixed voltage pulse-charge, the proposed approach improves the
charging speed and efficiency by about 5% and 1.5%, respec-
tively. These lead to a longer life for lithium-ion batteries. Sub-
sequently, To determine the optimal pulse charge frequency in
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a lithium-ion battery, a variable frequency pulse charge system
(VFPCS) strategy is proposed in [76]. This method can identify
the optimal pulse charge frequency and provide an optimal PC
charging to the battery, decreasing the charging time. Compared
to the standard CC-CV charge system, the proposed method
increases the charging speed by about 21%.

The current PC approach applies the CC pulse with defined
pulse width as long as the battery is fully charged. The authors
in [77] studied how pulse width current affects the charging effi-
ciency and capacity loss of a lithium-ion battery. Accordingly,
four lithium-ion batteries of the same type with the same capac-
ity were used and affected by several controllable current pulses.
Each ten charge-discharge cycle was analyzed to determine the
effect of the charging method on the capacity loss. The batter-
ies were charged using constant current (1C) for 30 min to fill
half of each battery’s total capacity and then continued by pulse
current at different pulse widths till each battery had full capac-
ity. Furthermore, one hour of continuous charging was done for
each battery for the sake of comparison to that of pulse current
charging data. Consequently, battery capacity degradation has
been observed on a similar scale. However, the percentage of
loss of capacity is different. Based on the results, it was estab-
lished that charging using pulse width current in 8 minutes can
reduce the charging time and limits the capacity loss. As a result,
due to the reduced capacity loss and the shortened charging
time, this method is considered as one of the effective charg-
ing methods.

3.3.4 Boost charging optimization

The previous discussion on boost charging involves applying
a very high current for short periods at the beginning of the
charging cycle to charge a completely depleted battery, followed
by charging at CC-CV with moderate currents. Boost charging
will, therefore, not negatively impact lithium-ion batteries. In
reality, this additional charge interval will decrease the charging
time without any loss in life, as batteries are more resistant to
lithium plate failure at lower SOC. However, defining the boost
time tboost and boost current Iboost is a challenge that can be cov-
ered by proposing a reasonable control charging optimization
method [37, 55].

3.4 Electrochemical-parameter-based
charging method

Electrochemical-parameter-based (EP-based) charging opti-
mization techniques involve more complex charging protocols,
including adaptive procedures that regulate charging current
based on the properties of lithium-ion cell ’during the charg-
ing time. Accordingly, various methods have been introduced,
which calculate the optimal charging profile to ensure fulfill-
ment of electrochemical constraints. The optimality conditions
usually entail the charging time and capacity fade reduction
or the increasing of the charge stored at a given time instant
[78–80]. Accordingly, the following constraints must be satis-
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FIGURE 9 Charging with a preset voltage trajectory [55]

fied simultaneously: solid-phase and electrolyte-phase concen-
trations [81], intercalation-induced stresses [80], temperature
[82], and lithium plating [78].

In several charging procedures, varying-current profiles are
used, to begin with, high charging currents and decrease those
currents with increasing SOC. Various optimization methods
are used to achieve fast charging without exceeding specific
voltages, temperatures, stress, or concentration thresholds [80,
83]. Accordingly, the charging profiles may be derived exper-
imentally or mathematically from simulation models to estab-
lish the maximum charging currently practicable without caus-
ing lithium plating. Paper [84] proposes a fast lithium-ion bat-
tery charge using a varying current decay (VCD) charging pro-
tocol. Following the VCD protocol, the battery’s performance
was compared with the performance of batteries charged using
conventional protocols. The results showed reduced capacity
fade with the number of cycles charged. However, [84] and
[85] reveal that maximum charging currents have hardly ever
been determined in practical applications because those cur-
rents appear to vary considerably with temperature and degra-
dation of the cell. The need for accurate information about the
actual polarization or concentration within the cell necessitates
the need for additional estimation procedures within the cell
that include determining internal variables of the cell that are
affected by the short and long-term load history. Also, there
are some protocols for charging batteries that feature a lower
charging current at the beginning with the internal resistance
being at its highest levels at low SOC, and a low charging cur-
rent or steadily rising current to minimize losses as shown in
Figure 9 [55].

As other examples of utilizing EP-based charging
approaches, papers [86] and [87] get benefits of implanting
reference electrodes to achieve a faster charging. It has been
reported that [87] implanted reliable reference electrodes within
the cells in order to provide anode potential signals throughout
the charging process, whose performances were thoroughly
investigated. Accordingly, both anode potential and tempera-
ture were strictly maintained within the safety regions with the
charger current modulated. Consequently, using the proposed
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approach, the full charging capability of the cell was exploited
and charging speed was achieved twice as fast as the strategy of
the manufacturer.

Though the non-feedback-based charging algorithms are
simple to realize, health-related considerations and feedbacks
of battery states are not included during the charging process,
which could potentially shorten the lifespan of the battery [35,
54, 73]. To the best knowledge of the authors, the current non-
feedback charging techniques cannot achieve the overall optimal
charging objective in terms of charging duration, implementa-
tion, and requirements for health-conscious applications. This
problem calls for other more advanced charging algorithms,
which will be introduced in the following sections.

4 FEEDBACK-BASED CHARGING
METHODS

A typical feedback-based battery charging management design
includes battery model, state estimator, and model-based con-
troller. A model-based charging method calculates the opti-
mal charging rate of a battery based on its empirical or EM
model aiming to optimize the charging process by control-
ling the polarization voltage [65, 88–93]. Accordingly, taking
into account the process noise, the optimal charging strategy
for the battery is described with a closed-loop control struc-
ture represented in Figure 10. A battery model is generally
intended to be low-order and easily implementable for a remark-
able level of controllability [81, 94–96]. A battery model of
this kind is constructed to simulate the fundamental battery
cycle dynamics under the specified charging current profile.
Subsequently, an observer is used to analyze the output vari-
ables of the model integrated with the noise vector caused by
the unmeasurable state variables of the battery, such as con-
centration and overpotential. Therefore, accurate and precise
model-based estimators are necessary to observe the internal
states of a battery system. Accordingly, the optimized charg-
ing strategy is developed based on a reduced-order battery
model and state estimator. Moreover, to achieve better charg-
ing performances, factors affecting battery health such as tem-
perature rise, side reactions rate, and so on are needed to be
considered.

4.1 Empirical-model-based

The empirical-model-based charging method which is based on
the battery’s ECM, is widely employed in the BMS of the elec-
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FIGURE 11 RC network ECM: (a) first-order, (b) second-order

tronics and automobile industries due to its advantages such
as fast computation [97–101]. These models are based on the
historical experimental data collected for the battery in order
to predict its future states. Accordingly, based on the distribu-
tion of electric charge and discharge signals such as cell poten-
tial and current, the main elements of the models are deter-
mined. In particular, empirical models have the advantage of
simplicity and ease of implementation. On the other hand,
they also suffer from some drawbacks such that the parame-
ters of the physical model cannot be determined. In addition,
battery characteristics do not change as the battery ages, and
empirical models are not applicable to other types of batter-
ies. Therefore, after a certain charging cycle, models based on
empirical data fail to function properly. In general, this method
can be divided into temperature-based, power-loss-based, and
electrical-thermal-aging models which are described as follows
[102–107].

4.1.1 Temperature-based model

In [108] a first-order RC battery model is constructed to analyze
the battery’s dynamic characteristics during charging. Based on
the equivalent circuit model shown in Figure 11a, the dynamic
model is described using an open circuit voltage Uocv , an ohmic
resistance Ri , and a resistive-capacitive network RC , with com-
ponents that can be described as diffusion resistance Rd and dif-
fusion capacitor Cd , respectively. The offered method balances
the increased charging temperature and time necessary to reach
charging capacity. Accordingly, the genetic algorithm is applied
to the ECM, and thermal models, and the charge capacity is
measured experimentally. Experiments show that the proposed
charging method can decrease both the charging time duration
and charging temperature rise.

In Figure 11, Ud is the polarization voltage (also known as
the diffusion voltage from the RC network), and I is the load
current; Ut is the terminal voltage.

In another study, the authors in [64] propose a model-based
control approach in order to manage battery charging oper-
ations. Based on Figure 11b, a fully coupled electrothermal
model is utilized to formulate the charging strategy as a linear-
time-varying model predictive control problem. In addition, var-
ious constraints are specifically established to prevent the bat-
tery from overcharging and overheating. To provide the state-
feedback control, the battery internal states involving SOC and
core temperature are estimated through a nonlinear observer.
Accordingly, this paper reveals that their proposed method is
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capable of optimally balancing time and temperature rise. Addi-
tionally, simulations show that this model predictive control
algorithm is well suited for real-time deployment.

4.1.2 Power-loss-based model

Paper [109] studies the charging strategies for the lithium-ion
battery using a power loss model with optimization algorithms
to find an optimal current profile that reduces battery energy
losses and, consequently, maximizes the charging efficiency.
Subsequently, a cost function for power loss minimization is for-
mulated as:

J = (x1(t f ) − SOC ∗ )2 + ∫
t f

0
Ploss d𝜏, (2)

where SOC ∗ stands for the battery desired state of charge, Ploss
represents the power loss in the resistive components of the bat-
tery model shown in Figure 11b, and x⃗ = [SOC vc1 vc2 ] denotes
the state variables of the circuit with vc1 and vc2 as the capacitor
voltages. In the case that the temperature is constant, CC-CV is
nearly optimal for energy loss minimization. If the temperature
is viewed as a state variable, an optimal profile different from
CC-CV should be found. By using the new profile, batteries will
warm up on cold days, reducing the need to rely on existing bat-
tery heating systems. Consequently, a vehicle can achieve signif-
icant energy savings by engaging in driving soon after its charg-
ing process ends because of its heat. Accordingly, the authors in
[109] present not just a classic optimization problem of classical
form, but also one with a high degree of nonlinearity and time
variation. Accordingly, the charging techniques obtained in their
work have a considerable impact on how plug-in hybrid electric
vehicles are charged and deployed.

4.1.3 Electrical-thermal-aging model

A combined electrical-thermal-aging battery model is proposed
in [100]. A two-state thermal submodel that entails a multi-
objective optimal control problem determines the core temper-
ature of an electro-thermal sub model. Figure 12 illustrates com-
bining three sub-models to get a coupled electro-thermal-aging
model, which is used to optimize the charging protocol.

Subsequently, to solve the resulting highly nonlinear six-state
optimal control problem, they utilize the Legendre–Gauss–
Radau (LGR) pseudo-spectral algorithm with adaptive multi-

mesh-interval collocation. The optimal tradeoff between charge
time and degradation depends on both electrical and thermal
constraints, where the minimum-time, minimum-aging, and bal-
anced charge conditions are analyzed in detail. Additionally,
the effects of the upper voltage bound, ambient temperature,
and cooling convection resistance on the circuit are examined.
Accordingly, the objective cost function J for the whole charg-
ing process is expressed as:

J = 𝛽
t f − t0

tmax − t0
+ (1 − 𝛽)[SOH (t0) − SOH (t f )], 0 < 𝛽 < 1,

(3)
where t0 and t f indicate the initial and final charging times,
respectively; 𝛽 represents the weights of the relative significance
among the charging time and capacity loss. Accordingly, exper-
imental results for comparing their proposed method with a
traditional charging protocol are presented, and their tradeoffs
are discussed. Additionally, optimization results have been pre-
sented for three illustrative charging paradigms: the minimum
time charge, the minimum aging charge, and a balanced charge,
where it is assumed that there is no modeling, measurement, or
control uncertainty. Moreover, aging results depict the effects of
the charging protocols during the individual charge durations.

The ECM- and waveform-based charging approaches can-
not take into consideration the battery’s internal chemical reac-
tions, internal potential change, and Lithium-ions concentra-
tions. This problem can be addressed by improving the optimal
charging based on the EM-based methods, which are described
in what follows[81, 110].

4.2 Electrochemical-model-based methods

The EM-based charging techniques are based on chemical and
electrochemical kinetics and transport equations that can be
deployed to simulate the characteristics and reactions of the
lithium-ion battery [111–114]. A lithium-ion battery may expe-
rience some side reactions when the charging current is very
high, which can cause the battery temperature to rise rapidly
[115]. In this case, the EM-based method relies on applying as
high a charging current as possible to restrict side reactions that
may cause the precipitation of lithium inside the battery. Fol-
lowing this, one-dimensional-based (1D) model, Pseudo-two-
dimensional (P2D) model, single particle model (SPM), and
simplified-model-based methods are among the best-recognised
EM-based charging methods [80, 116–119].

4.2.1 One-dimensional-model-based method

Paper [120] presents a lithium-ion battery one-dimensional
model with a reduced set of partial differential algebraic equa-
tions that can serve as an observer. Using a coarse spatial grid,
these equations can be solved, resulting in a simplified model
with a simpler charging structure that still reflects the main
dynamics. In another work, the authors of [121] solve the opti-
mization problem under temperature constraints and potential
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imbalance ranges utilizing a nonlinear model predictive control
(NMPC). In [83], based on the one-dimensional EM charging
method, dynamic optimization is carried out to estimate the
optimal charging current profile via control vector parametriza-
tion (CVP). Subsequently, the system behavior is analyzed by
simulating an efficient and straightforward reformulated model
of the lithium-ion battery system. Consequently, the dynamic
optimization becomes feasible due to the computationally effi-
cient feature of the reformulated model. It is determined that
if the battery is charged utilizing the optimal profile assessed by
dynamic optimization, more power can be preserved as com-
pared with typical charging of the battery. Accordingly, the
authors tried to realize the dynamics of lithium-ion battery with
competing transport and reaction phenomena at different scales
and locations inside the battery.

4.2.2 Pseudo-two-dimensional-model-based
method

In the pseudo-two-dimensional (P2D) model, the Porous elec-
trode theory, the concentrated solution theory, and the kinet-
ics equations have been utilized to form an efficient charging
technique [122–124]. This model has been widely applied in
lithium-ion battery research, and its predictions are pretty accu-
rate and have shown consistency with experimental data [80,
103, 125]. The authors in [80] show the use of a dynamic opti-
mization framework to derive optimal charging profiles using
a reformulated P2D model considering intercalation-induced
stresses. Accordingly, the analysis indicates that the average
pore wall flux varies considerably from the local pore wall
flux; thus, a P2D model is required to capture the peak radial
and tangential stresses correctly. Consequently, as the interface
between the anode and the separator faces more stress than
the rest of the anode, more innovative charging profiles can be
derived to reduce mechanical and electrical damage caused by
stress.

The P2D model-based charging method has mostly been
used for the lithium-ion battery design, but they cannot be
implemented in real-time control systems because of their pro-
hibitively high computational cost [126]. With the incorpora-
tion of nonuniformity of electrodes, a variety of electrochemi-
cal state estimators have been developed mostly based on the
extended Kalman filter (EKF), the unscented Kalman filter
(UKF), and the particle filter (PF) [127–129]. However, these
state estimators are computationally complex. Recently, new
techniques have been developed that can be applied to P2D
models to achieve online state estimation. One example is how
the authors in [130] developed a method for estimating the
state of lithium-ion batteries in advanced battery management
systems by using a degradation-conscious, high-fidelity elec-
trochemical thermal model. Thus, the computational burden
caused by the nonlinear nature of the battery model is effec-
tively reduced by utilizing an ensemble-based state estimator
based on the singular evolutionary interpolated Kalman filter
(SEIKF).

4.2.3 Single-particle-model-based method

In order to minimize the computational effort, a simplistic ver-
sion of the P2D model, namely the single-particle-model (SPM)
charging method, has been introduced [80, 100, 131]. In the
SPM, the electrolyte characteristics are ignored, and the trans-
port phenomena are simplified. Besides, the impacts of the ther-
mal conditions on the performance of lithium-ion battery are
reflected [132–134]. The SPM has the following advantages:
(1) it is straightforward; (2) it does not require much com-
putation; (3) it can be applied for various functions, such as
online estimation and lithium-ion batteries’ life modeling [132].
Despite its advantages, it comes with a drawback because of
thick electrodes and high discharge rates, which require precise
tuning related to electrolyte properties [111]. However, there
exist improved versions of the SPM that are meant to solve these
problems [135, 136].

4.2.4 Simplified-model-based method

While the P2D-model-based charging method is remarkably rig-
orous and accurate, it is too complex and slow to apply to the
BMS. Moreover, the SPM-based method is improper for bat-
teries with high discharge rates and thick electrodes. The short-
comings with the SPM-based approach and the complexity of
the P2D-model based method prompted the development of
simplified versions of the P2D model that could be imple-
mented in various BMS applications. These simplified models
have been developed especially for optimization control tech-
niques. The BMS based on simplified models has some advan-
tages over the empirical models due to using physical-based
equations that lead to more accuracy. Besides, these methods
can be utilized for the lithium-ion cells’ parameter estimation
and age prediction and can be modified as the batteries age
to prevent some significant inaccuracies of the empirical based
models [80, 85, 117, 136–139].

The authors in [137] developed a reduced-order model
(ROM) utilizing proper orthogonal decomposition (POD) for
a physical lithium-ion battery model. The process of obtaining
the appropriate orthogonal modes and analyzing their optimal-
ity are also included. Accordingly, the POD-based ROM for
a lithium-ion battery is employed to simulate a charge or dis-
charge process as well as the behavior of a battery pack. As
a result, the computational time to complete the ROM is sig-
nificantly less than the physical model, and there is excellent
agreement between the two models. In paper [136], a seventh-
order electrolyte enhanced (simplified) single particle model
(ESPM) under electrolyte diffusion and temperature-dependent
parameters (ESPM-T) is proposed. Accordingly, temperature
dependence can be easily realised by explicitly addressing the
impedance transfer function coefficients in terms of model
parameters. A commercial finite volume model is also compared
to the ESPM-T model, and the results demonstrate that the
ESPM-T has accurate matching pulse responses across a wide
range of temperature (T) and cutting-edge rates (I).



12 GHAEMINEZHAD AND MONFARED

1e

1B

2e

3e 2be –

3be – 1be –

2B
3B 2bB – 1bB – bB

Charger

1B 2B
3B 2bBb– 1bBb– bBb

kcap yretta
B

In
te

ll
ig

en
t c

ha
rg

in
g 

sy
st

em

1e 3e3 2beb–

Charaa ger

2e 3beb– 1bbeb–

FIGURE 13 Schematic of a typical intelligent charging system for a
serially connected battery pack [142, 147]

Existing battery model-based charging approaches suffer
from significant limitations. For example, the ECM-based
methods do not usually capture information about the inter-
nal state of the battery pack and are only reliable under
a limited range of conditions, hence cannot generally be
extended to all charging scenarios. Furthermore, full-order
electrochemical models tend to be infeasible for real-time
implementation due to their intended high fidelity. Accord-
ingly, further optimising the charging process for individ-
ual cells in a pack is required to avoid local degradation
or overcharging. In this respect, the BMS must provide cell
balancing capabilities, which is the idea behind intelligent
charging.

5 INTELLIGENT CHARGING
METHODS

Since the internal impedance of each battery is not exactly iden-
tical, series-connected batteries must be balanced while charg-
ing in order to preserve their capacity [140–142]. Moreover,
a lithium-ion battery pack must not be overcharged, there-
fore requires monitoring during charging and necessitates a
controller to perform efficient charging protocols [13, 23, 32,
143–147]. Accordingly, Figure 13 illustrates the schematic dia-
gram of an intelligent charging system with cell to cell balanc-
ing topology for a battery pack containing b number of serially
connected cells and b − 1 number of equalizers ei , 1 ≤ i ≤ b − 1
[142, 147].

The study in [146] offers a model predictive controller (MPC)
that can be used to design optimal charging protocols utiliz-
ing statistical data regarding the state of health of the battery.
The designed controller balances the competing factors, such as
battery lifetime, and charging time. Accordingly, only the opti-
mal charging is considered since discharging is user-dependent.
The authors claim that their proposed framework may also be
applied to optimize the discharge profile. However, a sophis-
ticated power electronic circuit is required to incorporate this.
Further, because both the objective function and constraints
are based on the total charging time, the prediction time hori-
zon must be adjusted to match the total charging time. Subse-
quently, multiple constant currents (like multi-stage CC charg-
ing) are considered for the remaining charging time applying

a control horizon. To implement the proposed method online,
they have presented a state estimator that can approximate the
initial concentrations of the system based on the data from volt-
age and current measurements. As a result, using the MPC and
state estimator together, lithium-ion batteries can be improved
in terms of life and charge carrying capacity.

The voltage and current profiles derived using this study for
a single cycle are presented in Figure 14. Based on their pro-
posed intelligent charging mode, it is observed that charging
takes approximately 2400 s. However, a standard CC-CV charg-
ing process takes approximately 6600 s.

The authors in [32] established an optimal charging control
method for the lithium-ion battery pack using a cell to pack
balancing topology as shown in Figure 15. In their study, fol-
lowing a multi-module charger, a user-involved methodology
with the leader-followers structure is developed to control the
charging of a series-connected lithium-ion battery pack. In other
words, they are exploiting a nominal model of battery cells.
An efficient average SOC trajectory is first produced by defin-
ing and solving a multi-objective optimization problem con-
cerning user demand and battery pack power loss. The next
step involves proposing a distributed charging strategy. It tracks
the cells’ SOCs on the pre-planned trajectory, where observers
are designed for online compensation of the cells’ model bias.
This work highlights the superiorities of the suggested leader-
followers-based charging structure. Accordingly, this method
integrates offline scheduling and online closed-loop control for
battery pack charging. It brings advantages to significantly min-
imize the computational burden for the charging control and
enhance the robustness to prevent the harmful effects caused
by the model bias of the cell.

Over the past few years, artificial intelligence (AI) methods
have become increasingly popular thanks to their ability to pro-
vide the most accurate results in less time than other meth-
ods, especially when it comes to battery SOC and SOH estima-
tions [148–158]. In [149], the authors employed machine learn-
ing approach to optimize parameter spaces for a six-step, ten-
minute fast-charging protocol, that minimized the anxiety that
some drivers have when charging their electric vehicles. In this
regard, an early-prediction model that predicts cycle life from
first-cycle data is combined with a Bayesian optimization algo-
rithm that efficiently probes the parameter space of charging
protocols. This leads to a time reduction per experiment. As
a result, they optimized a fast-charging protocol for a lithium-
ion battery pack within only one month; similar results would
have taken two years without the aid of AI. In another work, the
authors in [150] proposed a battery health and uncertainty man-
agement pipeline (BHUMP) as a machine-learning-based solu-
tion to trade-off between accuracy and computational efficiency
of the battery SOH estimation. As opposed to the conventional
methods, this pipeline is able to adapt to different charging pro-
tocols and discharge current rates and predicts without knowl-
edge of multiple battery characteristics, including design, chem-
istry, and temperature. In [151], a feed-forward artificial neu-
ral network (ANN) was used for the first time to estimate the
SOC of lithium-ion pouch cells. In order to develop calendar life
data, galvanostatic charge/discharge cycles were applied under
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technique [32]

different storage conditions (fully discharging or fully charg-
ing) and temperatures (35◦C and 60◦C). For a duration of 10
months, data was collected at varying C-rates at one-month
intervals. A separate ANN was trained for the discharge and
charge data in order to include the hysteresis effect. Based on
the performance of the ANN, the Root Mean Square Error
(RMSE) for discharge data was 1.17% and 1.81% for charging
data, confirming the network’s ability to identify input-output
dependency. In [155], the authors presented a new method
for accurately estimating SOC by applying machine-learning-
based optimization. In this respect, recurrent nonlinear autore-
gressive (RNARX) neural network as a well-known subclass of
machine learning algorithms was magnified in terms of com-
putational capability by using lightning search algorithm (LSA),
thus increasing SOC estimation accuracy. In addition to its accu-
racy and robustness, the proposed method can also be used to
estimate cells’ SOC under a broad range of charging and dis-
charging conditions. In [157], a novel battery charging control
method was proposed based on reinforcement-learning (RL) to
minimize battery charging costs. This method has the impor-
tant feature of not requiring a high-accuracy battery model, as
it is model-free. Therefore, it overcomes the limitations of bat-
tery models and the risks associated with parametric uncertain-
ties inherent in real-world implementations. Further, given the

necessity for accurate predictions of electricity prices, a long
short-term memory (LSTM) network was utilized to improve
the prediction accuracy. Consequently, to minimize the cost of
charging, an optimal charging profile was designed as the final
control objective. As a result, the presented control algorithm
provides a basic framework for a more complex electricity mar-
ket in which there exist different energy storage systems, gen-
erators, and loads. In another work, authors in [158] showed
that the complicated multivariable channel geometry optimiza-
tion problem can be efficiently solved by using machine learning
and the Markov chain Monte Carlo gradient descent optimiza-
tion. Their results indicate that, under certain geometrical con-
ditions, thermal capacity, specific energy, and specific power can
all be improved considerably. Moreover, this can also result in a
significant reduction in the maximum first principal stress in the
region of the separator next to the cathode, improving mechan-
ical integrity. The optimization of channel design leads to 79%
larger specific energy than conventional cell designs without
electrolyte channels. Consequently, the method and design strat-
egy proposed result in significant performance improvements
for charging and discharging batteries.

6 COMPARISON AND DISCUSSION

6.1 Comparison

Different charging techniques are proposed to achieve tradeoffs
among optimization objectives such as charging time, tempera-
ture rising rates, charging efficiency (or minimal energy loss),
and battery life cycles. It is essential to compare some of the
most fundamental aspects of these charging techniques to deter-
mine which one is the most suitable for a particular application.
Accordingly, Table 1 provides such a comparison from differ-
ent aspects.

In general, among the non-feedback-based charging
approaches, the traditional charging control techniques benefit
from ease of implementation, high capacity utilization, and
low complexity. However, it is hard to optimize some more
advanced objectives such as charging speed, power loss, and
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TABLE 1 Comparison of different battery charging methods applied to lithium-ion battery systems

Charging methods Advantages Disadvantages Literature

Non-feedback-based Traditional Easily implemented; high capacity
utilization; low complexity.

Hard to balance objectives such as
charging speed, power loss, and
temperature variation; long
charging time; low efficiency;
short cycle life; lack of
robustness against noises.

[34, 36, 37, 41–43]

Fast-charging Easily implemented; fast charging
time.

Hard to balance objectives such as
battery cycle life , charging
speed, and capacity utilization;
short cycle life; lack of
robustness against noises.

[15, 36, 46–55]

Optimized Current rate and voltage threshold
are optimized; a very accurate
and ripple-free charging current
is achieved; power loss is
reduced; high efficiency, short
charging time, high cycle life.

Lack of robustness against noises;
difficult to implement.

[37, 43, 51, 52, 55, 66, 68–74,
77, 145].

EP-based Reduced capacity fade; high
efficiency, short charging time,
high cycle life.

Lack of robustness against noises;
difficult to implement.

[55, 78–85]

Feedback-based Empirical-model-based Widely employed in the BMS; fast
charging; fast computation; high
efficiency; high cycle life.

Complexity and indeterminacy of
the model’s physical parameters;
battery characteristics do not
adjust as the batteries age.

[64, 81, 97–100, 102, 103, 108,
109]

EM-based Restrains side reactions that may
cause the precipitation of
lithium inside the battery; fast
charging time; high efficiency;
high cycle life.

High complexity; high
computational cost.

[80, 83, 85, 103, 111, 115–117,
120–123, 125, 131–138]

Intelligent Suitable for battery packs with
multiple cells; it balances the
cells’ SOC during charging,
enhances the batteries’ health,
and trades off between
competing factors as it
maximizes battery life and
battery charging time.

High control complexity; it usually
needs a multi layer control
structure.

[23, 32 140, 141, 143, 144 146]

temperature variation with these methods. Therefore, they usu-
ally suffer from a long charging time, low efficiency, and short
cycle life. Fast charging techniques offer a short charging time;
however, their control is considerably more complex than the
traditional methods. A variety of improved charging techniques
such as improved CC-CV charging, MCC-CV charging, pulse
charging, and boost charging are already developed based on
CC, CV, and CC-CV. With these techniques, the current rate
and voltage threshold are decided more accurately. An accurate
and ripple-free charging current is achieved with these methods.
In addition, they reduce the power loss, enhance the charging
efficiency, give rise to charging speed, and increase the batter-
ies’ cycle life. Although, it is challenging to implement these
kinds of charging approaches because of their high complexity.
Table 1 also illustrates that the EP-based charging techniques
reduce the capacity fade and increase the charging efficiency,
speed, and cycle life but at the cost of losing simplicity.

Among the feedback-based charging methods, the empirical-
model-based charging techniques are widely employed. These

techniques provide low computation, high efficiency, and
improved cycle life as compared to non-feedback-based meth-
ods. However, these techniques are still relatively complex.
Besides, the parameters of the physical model cannot be deter-
mined, and battery characteristics do not change as the battery
ages. As another technique of feedback-based charging, EM-
based requires comparably higher computational effort, costly
charging tools, and massive data recording in comparison to
empirical-model-based techniques. Hence, the waveform-based
charging strategies based on simplified models with predeter-
mined energy input should be adopted with EM-based charging
methods. This way, however, is highly dependent on the bat-
tery parameters’ accuracy. Several optimization algorithms have
been devised to attain the best charging current for the multi-
stage charging schemes used in EM-based methods. In this
regard, the charging period has been significantly minimised,
and the battery life cycle extended; however, further effort must
be dedicated to minimizing the computational and operating
costs of the EM-based charging techniques.
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Intelligent charging technique is ideal for battery packs con-
taining multiple cells because it balances the cells’ SOC dur-
ing charging. Consequently, compared to non-feedback-based
and feedback-based methods, the batteries gain greater health,
more cycle life, and higher charging capacity. Furthermore, they
make a trade-off between competing factors, like battery life and
charging time. These charging techniques, however, have high
control complexity since they usually require a multilayer con-
trol structure.

6.2 Discussion and suggestion

Table 1 systematically reviews and compares the present charg-
ing methods for lithium-ion battery packs. Different charging
methods are compared with their performances in minimiz-
ing the charging time, enhancing the charging efficiency, and
extending the battery life. The reviewed literature shows that
charging with the non-feedback-based methods is one of the
most widely used charging strategies because of its relatively
simple and straightforward structure. However, these tech-
niques are not highly efficient. They need to get optimized to
enhance the charging performance. In light of this, it is impor-
tant to complement further study with more valuable experi-
ences. In fact, the internal charging mechanism of a lithium-ion
battery is closely tied to the chemical reactions of the battery.
Consequently, the chemical reaction mechanisms, such as inter-
nal potential, the polarization of the battery, and the alteration
of lithium-ion concentration, have a significant role in the charg-
ing process. These necessitate a precise electrochemical model
to be analyzed.

The feedback-based charging techniques appear to be the
most promising option for the optimal charging of a single
lithium-ion battery cell concerning health considerations; how-
ever, it is crucial to make the battery charging system con-
trollable and straightforward. It is also essential to choose an
optimization method that is computationally efficient and well-
suited to the battery model. This review study also reveals
that, based on specific optimization objectives, feedback-based
charging methods can be flexibly combined with other mod-
els. For example, a combination of ECM and a temperature
model can solve the optimal current distribution when the
temperature rise rate must be strictly controlled. In a similar
way, when the power loss requires to be decreased, a power
loss model can be integrated with ECM to reach the opti-
mization target. The charging method using the aging model
has impressed much attention by obtaining better-charging
performance. Accordingly, future studies can consider battery
degradation on electrical parameters and charging current pat-
terns through investigating the aging mechanism of battery
charging.

For a battery pack with multiple connected cells , the intel-
ligent charging method offers a multi-layer control structure
with great flexibility that balances complexity and efficiency.
This approach allows for multi-objective battery charging to be
achieved simultaneously. The batteries’ charging performance is
enhanced, and the battery cells’ SOC gets balanced.

From the last discussion, it can be concluded that for battery
packs with many series-connected cells, the intelligent charging
technique, as a smart charging approach, outperforms all other
charging techniques in terms of shorter charging time, higher
efficiency, and extended cycle life. However, this method is not
highly efficient for charging a single lithium-ion battery due to
its control complexity, leading to an expensive charging sys-
tem for such a single battery application. Moreover, the charg-
ing efficiency is highly dependent on the cells’ SOC balancing
topology. Therefore, the intelligent method must be comple-
mented by more research to determine which charging method
and balancing topology are most suitable for each other. In
turn, this would also reduce the charging control complexity.
Much research remains to be done on the connection between
cell level and pack level battery charging. While multiple charg-
ing strategies for single battery cells have been demonstrated
recently, the effects, feasibility, and cost of implementing them
in battery packs have not been get examined well.

7 CONCLUSION

This review paper takes a novel control-oriented perspective of
categorizing the recent charging methods for the lithium-ion
battery packs, in which the charging techniques are treated as
the non-feedback-based, feedback-based, and intelligent charg-
ing approaches. Accordingly, the proposed charging methods’
classification provides comprehensive data about the most up-
to-date charging methods. In addition, a comprehensive com-
parison between different charging techniques is given that pro-
vides a general guideline for the proper charging method selec-
tion of the lithium-ion battery balancing system in practical
applications. The results coming from the reviewed literature
and comparison reveal that the non-feedback-based charging
methods gain a simple structure, but noises can compromise
their robustness. The feedback-based charging methods gain
some advantages over the non-feedback-based charging tech-
niques due to the structure of their closed loop control. How-
ever, they cannot adapt their characteristics as the battery ages;
moreover, they are not applicable for the battery packs con-
taining several connected battery cells. Subsequently, the intel-
ligent charging method benefits both non-feedback-based and
feedback-based charging schemes. It is suitable to charge the
battery pack considering the battery cells’ balancing and health.
However, its control complexity is higher than other lithium-ion
battery packs’ charging methods due to its multi-layer control
structure. Recently, the AI-based fast charging, as a kind of intel-
ligent method, is shown to be promising for charge optimization
in time-consuming experiments by providing more accurate bat-
tery SOC and SOH estimation results in less time.
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65. Zou, C., Manzie, C., Nešić, D.: Model predictive control for lithium-ion
battery optimal charging. IEEE/ASME Trans. Mech. 23, 947–957 (2018)

66. Hoque, M., Hannan, M., Mohamed, A.: Optimal cc-cv charging of
lithium-ion battery for charge equalization controller. In: 2016 Interna-
tional Conference on Advances in Electrical, Electronic and Systems
Engineering (ICAEES), pp. 610–615. IEEE, Piscataway (2016)

67. Huang, Z., Wang, G., Yu, J., Qu, X.: A novel clamp coil assisted ipt battery
charger with inherent cc-to-cv transition capability. IEEE Trans. Power
Electron. 36(8), 8607–8611 (2021)

68. Liu, Y.-H., Hsieh, C.-H., Luo, Y.-F.: Search for an optimal five-step charg-
ing pattern for li-ion batteries using consecutive orthogonal arrays. IEEE
Trans. Energy Convers. 26, 654–661 (2011)

69. Liu, Y.-H., Teng, J.-H., Lin, Y.-C.: Search for an optimal rapid charging
pattern for lithium-ion batteries using ant colony system algorithm. IEEE
Trans. Ind. Electron. 52, 1328–1336 (2005)

70. Wang, S.-C., Liu, Y.-H.: A pso-based fuzzy-controlled searching for the
optimal charge pattern of li-ion batteries. IEEE Trans. Ind. Electron. 62,
2983–2993 (2014)

71. Ikeya, T., Sawada, N., Murakami, J.-i., Kobayashi, K., Hattori, M.,
Murotani, N., Ujiie, S., Kajiyama, K., Nasu, H., Narisoko, H., et al.:
Multi-step constant-current charging method for an electric vehicle
nickel/metal hydride battery with high-energy efficiency and long cycle
life. J. Power Sources 105, 6–12 (2002)

72. WANG, H.-y., LI, G.-k., JIANG, Z.-x., SHEN, J.: Research on fast charge
method for lithium ion battery. Chinese J. Power Sources 11 (2012)

73. Vo, T.T., Chen, X., Shen, W., Kapoor, A.: New charging strategy for
lithium-ion batteries based on the integration of taguchi method and state
of charge estimation. J. Power Sources 273, 413–422 (2015)

74. Chen, L.: A design of optimal pulse charge system by variable frequency
technique. IEEE Trans. Ind. Electron. 54, 398–405 (2007)

75. Chen, L.-R.: Design of duty-varied voltage pulse charger for improving
li-ion battery-charging response. IEEE Trans. Ind. Electron. 56, 480–487
(2008)

76. Chen, L.-R.: A design of an optimal battery pulse charge system by
frequency-varied technique. IEEE Trans. Ind. Electron. 54, 398–405
(2007)

77. Majid, N., Hafiz, S., Arianto, S., Yuono, R., Astuti, E., Prihandoko, B.:
Analysis of effective pulse current charging method for lithium ion bat-
tery. J. Phys.: Conf. Series 817, 012008 (2017)

78. Liu, J., Li, G., Fathy, H.K.: A computationally efficient approach for opti-
mizing lithium-ion battery charging. J. Dyn. Syst., Meas., Control 138(2),
021009 (2016)

79. Pathak, M., Sonawane, D., Santhanagopalan, S., Braatz, R.D., Subra-
manian, V.R.: Analyzing and minimizing capacity fade through optimal
model-based control-theory and experimental validation. ECS Trans. 75,
51 (2017)

80. Suthar, B., Northrop, P.W., Braatz, R.D., Subramanian, V.R.: Opti-
mal charging profiles with minimal intercalation-induced stresses for



18 GHAEMINEZHAD AND MONFARED

lithium-ion batteries using reformulated pseudo 2-dimensional models.
J. Electrochem. Soc. 161, F3144 (2014)

81. Zou, C., Hu, X., Wei, Z., Wik, T., Egardt, B.: Electrochemical estima-
tion and control for lithium-ion battery health-aware fast charging. IEEE
Trans. Ind. Electron. 65, 6635–6645 (2017)

82. Klein, R., Chaturvedi, N.A., Christensen, J., Ahmed, J., Findeisen, R.,
Kojic, A.: Optimal charging strategies in lithium-ion battery. In: Proceed-
ings of the 2011 American Control Conference, pp. 382–387. IEEE, Pis-
cataway (2011)

83. Methekar, R., Ramadesigan, V., Braatz, R.D., Subramanian, V.R.: Opti-
mum charging profile for lithium-ion batteries to maximize energy stor-
age and utilization. ECS Trans. 25, 139 (2010)

84. Sikha, G., Ramadass, P., Haran, B., White, R.E., Popov, B.N.: Compar-
ison of the capacity fade of sony us 18650 cells charged with different
protocols. J. Power Sources 122, 67–76 (2003)

85. Tippmann, S., Walper, D., Balboa, L., Spier, B., Bessler, W.G.: Low-
temperature charging of lithium-ion cells part i: Electrochemical mod-
eling and experimental investigation of degradation behavior. J. Power
Sources 252, 305–316 (2014)

86. Kim, N., Chae, S., Ma, J., Ko, M., Cho, J.: Fast-charging high-energy
lithium-ion batteries via implantation of amorphous silicon nanolayer in
edge-plane activated graphite anodes. Nat. Commun. 8, 1–10 (2017)

87. Liu, J., Chu, Z., Li, H., Ren, D., Zheng, Y., Lu, L., Han, X., Ouyang, M.:
Lithium-plating-free fast charging of large-format lithium-ion batteries
with reference electrodes. Int. J. Energy Res. 45, 7918–7932 (2021)

88. Rahimian, S.K., Rayman, S.C., White, R.E.: Maximizing the life of a
lithium-ion cell by optimization of charging rates. J. Electrochem. Soc.
157, A1302 (2010)

89. Savoye, F., Venet, P., Millet, M., Groot, J.: Impact of periodic current
pulses on li-ion battery performance. IEEE Trans. Ind. Electron. 59,
3481–3488 (2011)

90. Haizhou, Z.: Modeling of lithium-ion battery for charging/discharging
characteristics based on circuit model. Int. J. Online Eng. 13(6) (2017)

91. Li, W., Cao, D., Jöst, D., Ringbeck, F., Kuipers, M., Frie, F., Sauer, D.U.:
Parameter sensitivity analysis of electrochemical model-based battery
management systems for lithium-ion batteries. Appl. Energy 269, 115104
(2020)

92. Xie, W., Liu, X., He, R., Li, Y., Gao, X., Li, X., Peng, Z., Feng, S., Feng, X.,
Yang, S.: Challenges and opportunities toward fast-charging of lithium-
ion batteries. J. Energy Storage 32, 101837 (2020)

93. Li, Y., Li, K., Xie, Y., Liu, J., Fu, C., Liu, B.: Optimized charging of lithium-
ion battery for electric vehicles: Adaptive multistage constant current–
constant voltage charging strategy. Renew. Energy 146, 2688–2699 (2020)

94. Lu, B., Song, Y., Zhang,J.,: Selection of charge methods for lithium ion
batteries by considering diffusion induced stress and charge time. J. Power
Sources 320, 104–110 (2016)

95. Amanor-Boadu, J.M., Abouzied, M.A., Sánchez-Sinencio, E.: An efficient
and fast li-ion battery charging system using energy harvesting or conven-
tional sources. IEEE Trans. Ind. Electron. 65, 7383–7394 (2018)

96. Wang, S., Fernandez, C., Yu, C., Fan, Y., Cao, W., Stroe, D.-I.: A novel
charged state prediction method of the lithium ion battery packs based on
the composite equivalent modeling and improved splice kalman filtering
algorithm. J. Power Sources 471, 228450 (2020)

97. Salkind, A.J., Fennie, C., Singh, P., Atwater, T., Reisner, D.E.: Determi-
nation of state-of-charge and state-of-health of batteries by fuzzy logic
methodology, J. Power Sources 80, 293–300 (1999)

98. Verbrugge, M.W., Conell, R.S.: Electrochemical and thermal characteriza-
tion of battery modules commensurate with electric vehicle integration. J.
Electrochem. Soc. 149, A45 (2001)

99. Waag, W., Sauer, D.U.: Adaptive estimation of the electromotive force of
the lithium-ion battery after current interruption for an accurate state-of-
charge and capacity determination. Appl. Energy 111, 416–427 (2013)

100. Perez, H., Dey, S., Hu, X., Moura, S.: Optimal charging of li-ion batter-
ies via a single particle model with electrolyte and thermal dynamics. J.
Electrochem. Soc. 164, A1679 (2017)

101. Xie, Y., Zheng, J., Hu, X., Lin, X., Liu, K., Sun, J., Zhang, Y., Dan, D., Xi,
D., Feng, F.: An improved resistance-based thermal model for prismatic
lithium-ion battery charging. Appl. Thermal Eng. 180, 115794 (2020)

102. Northrop, P.W., Suthar, B., Ramadesigan, V., Santhanagopalan, S., Braatz,
R.D., Subramanian, V.R.: Efficient simulation and reformulation of
lithium-ion battery models for enabling electric transportation. J. Elec-
trochem. Soc. 161, E3149 (2014)

103. Bizeray, A.M., Zhao, S., Duncan, S.R., Howey, D.A.: Lithium-ion battery
thermal-electrochemical model-based state estimation using orthogonal
collocation and a modified extended Kalman filter. J. Power Sources 296,
400–412 (2015)

104. Zhang, C., Jiang, J., Gao, Y., Zhang, W., Liu, Q., Hu, X.: Charging opti-
mization in lithium-ion batteries based on temperature rise and charge
time. Appl. Energy 194, 569–577 (2017)

105. Chen, Z., Shu, X., Xiao, R., Yan, W., Liu, Y., Shen, J.: Optimal charging
strategy design for lithium-ion batteries considering minimization of tem-
perature rise and energy loss. Int. J. Energy Res. 43, 4344–4358 (2019)

106. Yin, Y., Choe, S.-Y.: Actively temperature controlled health-aware fast
charging method for lithium-ion battery using nonlinear model predic-
tive control. App. Energy 271, 115232 (2020)

107. Chen, S., Bao, N., Garg, A., Peng, X., Gao, L.: A fast charging–cooling
coupled scheduling method for a liquid cooling-based thermal man-
agement system for lithium-ion batteries. Engineering 7(8), 1165–1176
(2021)

108. Ye, M., Gong, H., Xiong, R., Mu, H.: Research on the battery charging
strategy with charging and temperature rising control awareness. IEEE
Access 6, 64193–64201 (2018)

109. Inoa, E., Wang, J.: Phev charging strategies for maximized energy saving.
IEEE Trans. Veh. Technol. 60, 2978–2986 (2011)

110. Li, Y., Vilathgamuwa, M., Wikner, E., Wei, Z., Zhang, X., Thiringer, T.,
Wik, T., Zou, C.: Electrochemical model-based fast charging: Physical
constraint-triggered pi control. IEEE Trans. Energy Convers. (2021)

111. Ramadesigan, V., Northrop, P.W., De, S., Santhanagopalan, S., Braatz,
R.D., Subramanian, V.R.: Modeling and simulation of lithium-ion batter-
ies from a systems engineering perspective. J. Electrochem. Soc. 159, R31
(2012)

112. Chu, Z., Feng, X., Lu, L., Li, J., Han, X., Ouyang, M.: Non-destructive fast
charging algorithm of lithium-ion batteries based on the control-oriented
electrochemical model. Appl. Energy 204, 1240–1250 (2017)

113. Ringbeck, F., Garbade, M., Sauer, D.U.: Uncertainty-aware state estima-
tion for electrochemical model-based fast charging control of lithium-ion
batteries. J. Power Sources 470, 228221 (2020)

114. Malik, M., Li, G., Chen, Z.: An optimal charging algorithm to minimise
solid electrolyte interface layer in lithium-ion battery. J. Power Sources
482, 228895 (2021)

115. Asadi, H., Kaboli, A., Mohammadi, A., Oladazimi, M.: Fuzzy logic con-
trol technique in li-ion battery charger. In: Planetary Scientific Research
Center Conference Proceedings, vol. 2 (2011)

116. Luo, W., Lyu, C., Wang, L., Zhang, L.: A new extension of physics-based
single particle model for higher charge–discharge rates. J. Power Sources
241, 295–310 (2013)

117. Suthar, B., Sonawane, D., Braatz, R.D., Subramanian, V.R.: Optimal low
temperature charging of lithium-ion batteries. IFAC-PapersOnLine 48,
1216–1221 (2015)

118. Hovestadt, L., Lux, S., Koellner, N., Schloesser, A., Hanke-Rauschenbach,
R.: Model based investigation of lithium deposition including an
optimization of fast charging lithium ion cells. J. Electrochem. Soc.
(2021)

119. Dhillon, S., Hernández, G., Wagner, N.P., Svensson, A.M., Brandell,
D.: Modelling capacity fade in silicon-graphite composite electrodes for
lithium-ion batteries. Electrochim. Acta 377, 138067 (2021)

120. Klein, R., Chaturvedi, N.A., Christensen, J., Ahmed, J., Findeisen, R.,
Kojic, A.: State estimation of a reduced electrochemical model of a
lithium-ion battery. In: Proceedings of the 2010 American Control Con-
ference, pp. 6618–6623. IEEE, Piscataway (2010)

121. Findeisen, R. Imsland, L., Allgower, F., Foss, B.A.: State and output feed-
back nonlinear model predictive control: An overview. European J. Con-
trol 9, 190–206 (2003)

122. Thomas, K.E., Newman, J., Darling, R.M.: Mathematical modeling of
lithium batteries. In: Advances in Lithium-Ion Batteries, pp. 345–392.
Kluwer Academic Publishers, New York (2002)



GHAEMINEZHAD AND MONFARED 19

123. Newman, J., Thomas-Alyea, K.E.: Electrochem Systems. John Wiley &
Sons, Hoboken (2012)

124. Pozzi, A., Torchio, M., Raimondo, D.M.: Film growth minimization in
a li-ion cell: a pseudo two dimensional model-based optimal charging
approach. In: 2018 European Control Conference (ECC), pp. 1753–1758.
IEEE, Piscataway (2018)

125. Kumaresan, K., Sikha, G., White, R.E.: Thermal model for a li-ion cell. J.
Electrochem. Soc. 155, A164 (2007)

126. Doyle, M., Newman, J.: Modeling the performance of rechargeable
lithium-based cells: design correlations for limiting cases. J. Power Sources
54, 46–51 (1995)

127. Tulsyan, A., Tsai, Y., Gopaluni, R.B., Braatz, R.D.: State-of-charge estima-
tion in lithium-ion batteries: A particle filter approach. J. Power Sources
331, 208–223 (2016)

128. Sturm, J., Ennifar, H., Erhard, S.V., Rheinfeld, A., Kosch, S., Jossen, A.:
State estimation of lithium-ion cells using a physicochemical model based
extended kalman filter. Appl. Energy 223, 103–123 (2018)

129. Marelli, S., Corno, M.: Model-based estimation of lithium concentra-
tions and temperature in batteries using soft-constrained dual unscented
kalman filtering. IEEE Trans. Control Syst. Technol. 29, 926–933 (2021).
https://doi.org/10.1109/TCST.2020.2974176

130. Li, Y., Wei, Z., Xiong, B., Vilathgamuwa, D.M.: Adaptive ensemble-based
electrochemical-thermal-degradation state estimation of lithium-ion bat-
teries. IEEE Trans. Ind. Electron. (2021)

131. Zhang, D., Popov, B.N., White, R.E.: Modeling lithium intercalation of a
single spinel particle under potentiodynamic control. J. Electrochem. Soc.
147, 831 (2000)

132. Santhanagopalan, S., Guo, Q., Ramadass, P., White, R.E.: Review of mod-
els for predicting the cycling performance of lithium ion batteries. J.
Power Sources 156, 620–628 (2006)

133. Bandhauer, T.M., Garimella, S., Fuller, T.F.: A critical review of thermal
issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1 (2011)

134. Bernardi, D., Pawlikowski, E., Newman, J.: A general energy balance for
battery systems. J. Electrochem. Soc. 132, 5 (1985)

135. Rahimian, S.K., Rayman, S., White, R.E.: Extension of physics-based sin-
gle particle model for higher charge–discharge rates. J. Power Sources
224, 180–194 (2013)

136. Tanim, T.R., Rahn, C.D., Wang, C.-Y.: A temperature dependent, single
particle, lithium ion cell model including electrolyte diffusion. J. Dyn.
Syst., Meas., Control 137, 011005 (2015)

137. Cai, L., White, R.E.: Reduction of model order based on proper orthog-
onal decomposition for lithium-ion battery simulations. J. Electrochem.
Soc. 156, A154 (2008)

138. Remmlinger, J., Tippmann, S., Buchholz, M., Dietmayer, K.: Low-
temperature charging of lithium-ion cells part ii: Model reduction and
application. J. Power Sources 254, 268–276 (2014)

139. Yin, Y., Bi, Y., Hu,Y., Choe, S.-Y.: Optimal fast charging method for
a large-format lithium-ion battery based on nonlinear model predictive
control and reduced order electrochemical model. J. Electrochem. Soc.
167, 160559 (2021)

140. Ouyang, Q., Han, W., Zou, C., Xu, G., Wang, Z.: Cell balancing control for
lithium-ion battery packs: A hierarchical optimal approach. IEEE Trans.
Ind. Inf. 16, 5065–5075 (2019)

141. Han, W., Zou, C., Zhang, L., Ouyang, Q., Wik, T.: Near-fastest battery
balancing by cell/module reconfiguration. IEEE Trans. Smart Grid 10,
6954–6964 (2019)

142. Ghaeminezhad, N., Ouyang, Q., Hu, X., Xu, G., Wang, Z.: Active cell
equalization topologies analysis for battery packs: A systematic review.
IEEE Trans. Power Electron. (2021)

143. Elias, M., Nor, K., Arof, A.: Design of smart charger for series lithium-
ion batteries. In: 2005 International Conference on Power Electronics
and Drives Systems, vol. 2, pp. 1485–1490. IEEE, Piscataway (2005)

144. Sivaranjani, J., Sandeep, B., Olety, V.R., Karanth, N.: Intelligent charg-
ing system for dedicated applications using lithium ion battery. In: 2016

Online International Conference on Green Engineering and Technolo-
gies (IC-GET), pp. 1–7. IEEE, Piscataway (2016)

145. Velho, R., Beirão, M., Calado, M.D.R., Pombo, J., Fermeiro, J., Mariano,
S.: Management system for large li-ion battery packs with a new adaptive
multistage charging method. Energies 10, 605 (2017)

146. Suresh, R., Rengaswamy, R.: Modeling and control of battery systems.
part ii: A model predictive controller for optimal charging. Comput.
Chem. Eng. 119, 326–335 (2018)

147. Ouyang, Q., Xu, G., Fang, H., Wang, Z.: Fast charging control for bat-
tery packs with combined optimization of charger and equalizers. IEEE
Trans. Ind. Electron. (2020)

148. Choi, Y., Ryu, S., Park, K., Kim, H.: Machine learning-based lithium-
ion battery capacity estimation exploiting multi-channel charging profiles.
IEEE Access 7, 75143–75152 (2019) https://doi.org/10.1109/ACCESS.
2019.2920932

149. Attia, P.M., Grover, A., Jin, N., Severson, K.A., Markov, T.M., Liao, Y.-H.,
Chen, M.H., Cheong, B., Perkins, N., Yang, Z., et al.: Closed-loop opti-
mization of fast-charging protocols for batteries with machine learning.
Nature 578, 397–402 (2020)

150. Roman, D., Saxena, S., Robu, V., Pecht, M., Flynn, D.: Machine learning
pipeline for battery state-of-health estimation. Nat. Mach. Intell. 3, 447–
456 (2021)

151. Kashkooli, A.G., Fathiannasab, H., Mao, Z., Chen, Z.: Application of
artificial intelligence to state-of-charge and state-of-health estimation of
calendar-aged lithium-ion pouch cells. J. Electrochem. Soc. 166, A605
(2019)

152. Sidhu, M.S., Ronanki, D., Williamson, S.: State of charge estimation
of lithium-ion batteries using hybrid machine learning technique. In:
IECON 2019-45th Annual Conference of the IEEE Industrial Elec-
tronics Society, vol. 1, pp. 2732–2737. IEEE, Piscataway (2019) https:
//doi.org/10.1109/IECON.2019.8927066

153. Chandran, V., KPatil, C., Karthick, A., Ganeshaperumal, D. Rahim, R.,
Ghosh, A.: State of charge estimation of lithium-ion battery for electric
vehicles using machine learning algorithms. World Electr. Veh. J. 12, 38
(2021)

154. Tejaswini, P., Sivraj, P.: Artificial intelligence based state of charge esti-
mation of li-ion battery for ev applications. In: 2020 5th International
Conference on Communication and Electronics Systems (ICCES), pp.
1356–1361. IEEE, Piscataway (2020)

155. Hannan, M.A., Lipu, M.H., Hussain, A., Ker, P.J., Mahlia, T.I., Man-
sor, M., Ayob, A., Saad, M.H., Dong, Z.: Toward enhanced state of
charge estimation of lithium-ion batteries using optimized machine learn-
ing techniques. Sci. Reports 10, 1–15 (2020)

156. Park, S., Pozzi, A., Whitmeyer, M., Perez, H., Joe, W.T., Raimondo, D.M.,
Moura, S.: Reinforcement learning-based fast charging control strategy
for li-ion batteries. In: 2020 IEEE Conference on Control Technology
and Applications (CCTA), pp. 100–107. IEEE, Piscataway (2020) https:
//doi.org/10.1109/CCTA41146.2020.9206314

157. Chang, F., Chen, T., Su, W., Alsafasfeh, Q.: Control of battery charg-
ing based on reinforcement learning and long short-term memory net-
works. Comput. Electr. Eng. 85, 106670 (2020). https://doi.org/10.
1016/j.compeleceng.2020.106670

158. Gao, T., Lu, W.: Physical model and machine learning enabled electrolyte
channel design for fast charging. J. Electrochem. Soc. 167, 110519 (2020)

How to cite this article: Ghaeminezhad, N.,
Monfared, M.: Charging control strategies for
lithium-ion battery packs: Review and recent
developments. IET Power Electron. 1–19 (2021).
https://doi.org/10.1049/pel2.12219

https://doi.org/10.1109/TCST.2020.2974176
https://doi.org/10.1109/ACCESS.2019.2920932
https://doi.org/10.1109/ACCESS.2019.2920932
https://doi.org/10.1109/IECON.2019.8927066
https://doi.org/10.1109/IECON.2019.8927066
https://doi.org/10.1109/CCTA41146.2020.9206314
https://doi.org/10.1109/CCTA41146.2020.9206314
https://doi.org/10.1016/j.compeleceng.2020.106670
https://doi.org/10.1016/j.compeleceng.2020.106670
https://doi.org/10.1049/pel2.12219

	Charging control strategies for lithium-ion battery packs: Review and recent developments
	Abstract
	1 | INTRODUCTION
	2 | CHARGING SYSTEM MODEL
	2.1 | Battery charger circuit topologies
	2.2 | Battery charging control schemes

	3 | NON-FEEDBACK-BASED CHARGING METHODS
	3.1 | Traditional approaches
	3.2 | Fast charging approaches
	3.3 | Optimized
	3.3.1 | CC-CV charging optimization
	3.3.2 | MCC-CV charging optimization
	3.3.3 | Pulse charging optimization
	3.3.4 | Boost charging optimization

	3.4 | Electrochemical-parameter-based charging method

	4 | FEEDBACK-BASED CHARGING METHODS
	4.1 | Empirical-model-based
	4.1.1 | Temperature-based model
	4.1.2 | Power-loss-based model
	4.1.3 | Electrical-thermal-aging model

	4.2 | Electrochemical-model-based methods
	4.2.1 | One-dimensional-model-based method
	4.2.2 | Pseudo-two-dimensional-model-based method
	4.2.3 | Single-particle-model-based method
	4.2.4 | Simplified-model-based method


	5 | INTELLIGENT CHARGING METHODS
	6 | COMPARISON AND DISCUSSION
	6.1 | Comparison
	6.2 | Discussion and suggestion

	7 | CONCLUSION
	CONFLICT OF INTEREST
	ORCID
	REFERENCES


