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 In this paper, the main focus is on blood glucose level control and the possible sensor and actuator faults which can be 

observed in a given system. To this aim, the eligibility traces algorithm (a Reinforcement Learning method) and its 

combination with sliding mode controllers is used to determine the injection dosage. Through this method, the optimal dosage 

will be determined to be injected to the patient in order to decrease the side effects of the drug. To detect the fault in the 

system, residual calculation techniques are utilized. To calculate the residual, it is required to predict states of the normal 

system at each time step, for which, the Radial Basis Function neural network is used. The proposed method is compared 

with another reinforcement learning method (Actor-Critic method) with its combination with the sliding mode controller. 

Finally, both RL-based methods are compared with a combinatory method, neural network and sliding mode control. 

Simulation results have revealed that the eligibility traces algorithm and actor-critic method can control the blood glucose 

concentration and the desired value can be reached, in the presence of the fault. However, in addition to the reduced injected 

dosage, the eligibility traces algorithm can provide lower variations about the desired value. The reduced injected dosage 

will result in the mitigated side effects, which will have considerable advantages for diabetic patients.  
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I. INTRODUCTION 

Currently, diabetes, as a silent epidemic disease, is spreading 

throughout the world. Main causes of diabetes are namely lack 

of physical activities and the growing obesity. Recent reports 

from the World Health Organization (WHO) and diabetes 

International Federation have stated that diabetes mellitus is an 

endocrine disease related to the level of glucose and insulin in 

body. This can be determined by hyperglycemia due to 

shortage of insulin or insulin operation, or both. Two types of 

most common diabetes are due to insulin generation reduction 

(Diabetes type 1) and reduction in body’s response to the 

insulin (Diabetes type 2). Both types of diabetes mellitus will  

result in hyperglycemia and finally, symptoms of diabetes will 

appeared. These symptoms include frequent peeing out, 

become thirstier and increase in the fluid intake, blurred vision, 

unplanned weight loss and fatigue. Human body needs to 

preserve the glucose level within 70 and 110 (mg/dL) range. If 

the glucose level is significantly out of this range, the 

individual is said to have a plasma glucose problem. Hence, 

monitoring the blood glucose level for diabetic and non-

diabetic individuals’ health is vital [1].  

It should be noted that the level of blood glucose is the lowest 

in the morning and before breakfast. Two or three hours after 

eating a meal, depending on the type of food a person has 

eaten, the level of blood glucose will increase. For a normal 

person, the blood glucose level will reach 175 (mg/dL) after 

each meal. Over time, this value will approach the normal 

value, which normally happens faster in non-diabetic people 

comparing to a diabetic patient [2].  

Employing medical methods to control the level of blood 

glucose in diabetic patients is time-consuming. In some cases, 

this may disturb the level of blood glucose and puts the patient 

in danger. Due to this reason, employing intelligent methods 

to control it in diabetic patients have become a necessity. Such 

methods will accelerate the process of controlling the level of 

blood glucose. Moreover, this procedure will be performed 

with minimum dosage injection, mitigating the side effects as 
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much as possible. In the following, a case is discussed in which 

researches performed blood glucose level control employing 

RL methods. 

In [3], Q-learning algorithm -in the RL problem- is used to 

regulate the blood glucose level in type-1 diabetic patients. The 

learning agent explores in the environment and learns to select 

the best action, which is achieving the optimal insulin dosage. 

Blood hemoglobin changes are considered as states of the 

environment and classified into 6 states. Using the Q-learning 

algorithm, the agent receives immediate rewards and over 

time, it will learn to select the optimal insulin dosage for 

injection so as to preserve the blood glucose level in diabetic 

patients within the desired range. In [4], the RL approach is 

used for regulating the blood glucose level in diabetic type-2 

patients. As reported, physical exercise is useful for diabetic 

patients. In this investigation, diabetic patients are encouraged 

to do physical exercises, e.g. walking. Using the RL approach, 

every week a message was sent to 27 patients’ cell phones 

reminding them about their diet and required physical 

exercises. Results implied that patients treated by this 

algorithm had more reduction in their blood glucose level. In 

[5] the glucose level was controlled using Temporal Difference 

(TD) methods. Indeed, in this paper, the Palumbo model was 

used in which two dimensional states, including glucose level 

and insulin, were considered. The drug dosage was considered 

as the action in RL problem. In [6], the RL method is employed 

to control the Glycaemia concentration in septic patients. 

Results have revealed that the proposed method can potentially 

provide physicians a private glycemic control strategy, based 

on the optimal policy it has learned. Besides, this method is 

able to decrease the mortality rate, from 31% to 24.7%. In [7], 

a hybrid method, involving the RL and feed-forward neural 

networks, is used to control the blood glucose level and 

regulate the insulin dosage of injection in patients with 

diabetes type-1. The Kalman Filter is used to estimate the 

unmeasurable states of patients. Simulation results have 

revealed that the proposed controller offered a better 

performance than the Proportional Integral Derivative (PID) 

controller in terms of regulating variations in the blood glucose 

level. Furthermore, the proposed controller can prevent an 

increase in the level of Hypoglycemia. 

Medical systems are highly sensitive and their accurate 

performance is of great importance. Faulty performances in 

such systems will cause intensive physical harms. Therefore, 

quick, accurate and on time fault detection and isolation (FDI) 

and fault tolerant control (FTC) in medical systems have 

attracted a significant attention in recent years. One of the most 

widely used methods in fault detection and fault tolerance 

control is methods using artificial intelligence, which is one of 

the latest methods is RL, some examples of which are 

elaborated on the following.  

In [8], a fault detection procedure is put into practice in a 

system with uncertainty using RL. To this end, states of the 

main system are estimated, the related error is obtained, and 

then fault detection and identification are implemented. In 

effect, the eligibility traces algorithm is used for the considered 

purpose. In [9], the impact of different faults on the system is 

investigated and the Q-learning algorithm is used for FDI 

purpose. Results showed that the Q-learning algorithm is more 

accurate in detecting and identifying system faults compared 

with the case that no intelligent learning agent is utilized. In 

[10], a nonlinear Temporal Difference (TD) learning is used 

for FTC. Since there are noise and disturbance in the 

considered system, Extended Kalman Filter (EKF) is used to 

design the observer and estimate states of the system. In [11], 

FTC is investigated in nonlinear systems. In this regard, actor-

critic method of RL and ANNs are utilized. It is shown that the 

actor-critic method is faster than ANNs in terms of detecting 

faults and controlling the system in the presence of faults. In 

[12], for tracking and controlling the linear system against 

faults more efficiently, residual calculation methods is used in 

combination with 𝐻∞. In the proposed method, the Q-learning 

is used for an optimal tracking performance. The main 

objective of the paper is data-based space identification. For 

the fault detection process, an adaptive threshold is determined 

through which false detection of noise is prevented. In [13], 

assuming there is no information about the applied fault to the 

system, RL is used for the fault detection and control purposes. 

For stability analysis of the system, Lyapunov theory is used. 

Likewise, the actor-critic method, one of the efficient class of 

methods in RL, is employed. In [14], an advanced method, 

Auto-Step algorithm, contributed to RL. In this sense, the 

proposed method is compared with the Recursive Least 

Squared (RLS) method which is used to estimate states of the 

system. It is revealed that a combinatory use of RL and Auto-

Step algorithm has detected and minimized system faults with 

a higher accuracy and convergence speed.    

A number of studies have focused on fault diagnosis and fault 

tolerant control of the processes. Some works  have 

investigated the fault diagnosis and fault tolerant control of 

diabetes in patients such as In [15], where a metabolic model 

is used for patients with Diabetes type-1. Also, the fault 

detection procedures were implemented based on sensor faults 

including the disconnection fault in blood glucose level 

detection sensors as well as disconnection or leakage faults in 

insulin injection devices. Here, fault detection is indeed 

applied within 20 minutes. In [16], the unscented Kalman filter 

is employed to detect and compensate sensor faults and detect 

unannounced meals related to the blood glucose tracking in 

diabetic patients. To this aim, a simulated model of the diabetic 

patient is used and it is assumed that the system is affected by 

two sensor faults, drift and Pressure Induced Sensor 

Attenuation (PISA). Simulation results revealed that the 

proposed method is able to control the blood glucose level 

continuously in the presence of both sensor faults. In [17], 

detecting different faults in the artificial pancreas system in 

patients with diabetes type-1 is investigated. The main reason 

for this research is that this can help to determine the insulin 

dosage. The authors had used remodulated dynamic time 

warping to synchronize the signal trajectories and have 

employed the Svitzky-Golay filter for real-time calculations of 

numerical derivatives in the multiway principal component 

analysis. To prepare the required data, 4 patients had been 

tested for 60 hours accompanied by changes in their meals and 

physical exercises. Results revealed the efficient performance 

of their real-time method to detect different sensor faults and 

accurate labeling. The main advantage of this work was a 

considerable contribution to preventing hypoglycemia. In [18], 

an overview of different fault detection methods for the blood 

glucose level control in patients with diabetes is represented. 

In [19], the importance of the accurate performance of 

Continuous Glucose Monitoring (CGM) sensors is 
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emphasized. It is stated that the accurate operation of such 

sensors affected by the fault is quite vital for artificial pancreas 

systems in patients suffering from diabetes type-1. In this 

sense, the sparse recursive kernel filtering algorithm is used for 

the purpose of fault detection and improvement of the 

measurement accuracy purposes. The proposed algorithm is 

designed in a way that the noisy system can detect the fault and 

keep its operation. In [20], fault detection methods in diabetes 

management system are studied. Some of prominent methods 

include ANNs, Deep Learning, Decision Tree and Fuzzy Logic 

Control.  

In the following, a review of papers on fault detection and 

isolation in different systems is represented. 

In [21], the performance of wind turbines based on Doubly-

Fed Induction Generators (DFIG) in the presence of the fault 

is investigated. Here, an adaptive programmable controller is 

employed, which is able to control the turbines against the 

occurring faults. In [22], the fault detection and control is 

investigated in photovoltaic systems using Sliding mode 

control method. In [23], the Local Model Network (LMN) 

method is utilized to model the system and identify the 

occurring faults. The main reason for adopting this method is 

high dimensionality of inputs and number of parameters. The 

adopted method can considerably reduce and optimize the 

exploration space of the considered problem. In [24], the fault 

detection procedure is practiced in discrete-time nonlinear 

systems in time-delayed networks (Patri nets). 
A significant issue that should be noted is the fact that after the 

learning phase, the policies learned by the agent can be applied 

to real diabetic patients. However, in this case, the RL agent 

will have a reduced and negligible trial and error on the real 

diabetic patient. In this regard, the agent will adopt the optimal 

policy based on the intrinsic characteristics of the patient. This 

is known as drug personalization in the new literature and 

considered as a brand-new concept for biomedical engineering 

researchers and scholars. 

If the optimal control method is used for controlling the level 

of blood glucose, the system must be linearized. When 

linearizing the system, an estimation of the main system will 

be obtained, which will not show a precise behavior of the 

main system. Hence, classic methods cannot reveal the 

specifications of a suitable performance when facing a real 

patient. Moreover, this method highly depends on the 

mathematical model of the system. Consequently, in this paper, 

the model-free approach of Eligibility Traces Algorithm is 

employed. Opposite to the optimal control approach, the 

eligibility traces algorithm is model-free and can be 

implemented and adapted to all nonlinear systems. Due to the 

lack of access to the real patients, a time-delay mathematical 

model of a diabetic patient is used.    

To describe the operation of this method, first, several trials 

and errors are taken by the agent on the mathematical model. 

Hence, the agent learns to determine different dosages (dosage 

to be injected) for different states of the patient. Using the 

eligibility traces algorithm to determine the optimal injected 

dosage for each individual patient- drug personalization- is 

considered as one of the prominent important aspects of this 

algorithm. Drug personalization is one of the most recent 

subjects, which is quite vital and emphasized by different 

researchers. For realizing the drug personalization using 

eligibility traces algorithm, the obtained Q-table is used and 

learning is performed for each real patient, separately. In this 

case, less trails and errors are taken on the real patients to 

determine the optimal injected dosage, which has its own 

prominent advantages.    

The remainder of this paper is organized as follows. In section 

2, the mathematical model used in this study is represented and 

described. In section 3, RL, the eligibility traces algorithm and 

the actor-critic method are explained briefly. In section 4, the 

proposed method for blood glucose level regulation and 

control is given. Finally, the proposed method is simulated in 

MATLAB Software and simulation results are represented, 

discussed and concluded.       

II. MATHEMATICAL MODEL 

Using appropriate models to express the biological behavior 

of Glucose-insulin diabetic patients is an important issue. 

Different mathematical models have been proposed to 

describe diabetes [2, 25-33]. The model of Diabetes we use in 

this paper was introduced by Palumbo et. al. [34], which  has 

some advantages over other mathematical models. The most 

important advantages are considering delaying time (𝜏𝑔) and 

Plasma insulin concentrations decline index ( 𝐾𝑥𝑖) . 

Considering the delay in nonlinear model reduces the systems 

degree, but the analysis would be more complex. This model 

takes the form of  

 

(1) 
𝑑𝐺(𝑡)

𝑑𝑡
= −𝐾𝑥𝑔𝑖𝐼(𝑡)𝐺(𝑡) +

𝑇𝑔ℎ

𝑉𝑔
  

(2) 
𝑑𝐼(𝑡)

𝑑𝑡
= −𝐾𝑥𝑖𝐼(𝑡) +

𝑇𝑖𝑔𝑚𝑎𝑥

𝑣𝑖
𝑓 (𝐺(𝑡 − 𝜏𝑔)) + 𝑢(𝑡)  

where G(t) [mM], and I(t) [pM] are plasma glycemia and 

insulinemia, respectively. The variable u represents the control 

unit. In this model, parameters are: 

 𝐾𝑥𝑔𝑖[𝑚𝑖𝑛−1𝑃𝑀−1]: Saved rate of glucose-insulin 

dependent manufacturing. 

 𝑇𝑔ℎ [𝑚𝑖𝑛−1 (
𝑚𝑚𝑜𝑙

𝐾𝑔𝐵𝑊
)]: index of hepatic glucose and 

glucose intake. 

 𝑉𝑔 [
𝐿

𝐾𝑔𝐵𝑊
]: Distribution rate of glucose. 

 𝐾𝑥𝑖[𝑚𝑖𝑛−1]: Plasma insulin concentrations decline 

index. 

 𝑇𝑖𝑔𝑚𝑎𝑥 [𝑚𝑖𝑛−1 (
𝑝𝑚𝑜𝑙

𝐾𝑔𝐵𝑊
)]: The maximum rate of 

insulin secretion in the second phase. 

 𝑉𝑖 [
𝐿

𝐾𝑔𝐵𝑊
]: Plasma insulin distribution rate. 

Nonlinear function f(G(t)) which describes the rate of insulin 

delivery is: 

𝑓 (𝐺(𝑡 − 𝜏𝑔)) =
(

𝐺(𝑡−𝜏𝑔)

𝐺∗(𝑡−𝜏𝑔)
)𝛿

1+(
𝐺(𝑡−𝜏𝑔)

𝐺∗(𝑡−𝜏𝑔)
)𝛿

  (3) 

where 

 𝛿 : Positive constant parameter, which describes the 

ability of the pancreas to the cycle of glucose in 

plasma. If 𝛿  = 0, the pancreas would not reply to 

glucose circulation at all; if 𝛿  = 1, the pancreas 

would reply according to a Michaelis-Menten 

dynamics [34]. 
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 𝐺∗[𝑚𝑀]: is the glycemia level, at which the insulin 

release is the half of its maximum rate; at a glycemia 

equal to G∗ corresponds an insulin secretion equal 

to
𝑇𝑖𝑔𝑚𝑎𝑥

2
  

The structure of the equations guarantees non-negative 

solutions for state variables. System constants are shown in 

Table I. 
TABLE I 

SYSTEM CONSTANTS [34] 

Value Parameter Value Parameter 

0.187 𝑉𝑔 6.14 Gb 

1.211 × 10−2 𝐾𝑥𝑖 93.669 Ib 

0.003 𝑇𝑔ℎ 1.573 𝑇𝑖𝑔𝑚𝑎𝑥 

0.25 𝑉𝑖 3.205 𝛿 

 

III. REINFORCEMENT LEARNING 

In RL, two components play key roles, agent and the 

environment. At each moment, the agent acquires new 

information from the environment, through the trial and error 

and updates its performance. In fact, RL is neither a supervised 

nor an unsupervised learning. The best action is not determined 

for the learning agent. After a sufficient number of iterations, 

through trial and error in the environment and receiving 

rewards or penalties, the agent will find out the best action. 

Conceptually, the best action will lead to the optimal policy. In 

solving an optimization problem in the RL framework, three 

important components have also key roles, namely states, 

actions and rewards. At each moment, the learning agent 

observes the current state of the environment (𝑠𝑡), takes the 

action (𝑎𝑡), and transits to the next state (𝑠𝑡+1) receiving the 

immediate reward (𝑟𝑡+1) from the environment. This reward 

will affect the previous states or states-actions pairs [35].  

Fig.1 illustrates the state-action chain in the RL framework.  

 

 
Fig. 1. State-action chain in RL 

 

Equ. )4( represents the state value estimation under the policy 

𝜋 denoted by 𝑉𝜋. 

𝑉𝜋(𝑠) = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠∞
𝑘=0 }  (4) 

where 𝛾 is the discount rate, within [0,1] and k denote the time 

step. The value of each state under the policy 𝜋  equals the 

expected value of sum of the discount rate multiplied by 

rewards received from the environment, from the current 

moment ( 𝑠𝑡 ) to the end of the path. At each moment, 

multiplying 𝛾𝑘by the value of the current state (𝑠𝑡), illustrates 

the effect of received rewards on the value of the current state. 

Equ. )5( gives the same concept for a pair of state-action at 

each time step. 
 

(5) 
𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} =

𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠,∞
𝑘=0 𝑎𝑡 = 𝑎}  

Here, the value of each state-action pair under a specific policy 

𝜋 is represented. As represented, this can be obtained by sum 

of the discount rate multiplication by the value of received 

rewards, from the current moment to the end of the episode.  

 

A. Eligibility Traces Algorithm 
The eligibility traces algorithm can be considered as an 

interaction between two solving methods of RL, Monte-Carlo 

(MC) and Temporal Difference (TD). In this method, the value 

of each state-action pair is updated at every step. Beside the 

forward view in each state (𝑠𝑡), there exists a backward view, 

as well. So, there is a bilateral view; that is the value of state-

action pair at the next time step as well as the total value of 

previous state-action pairs affect updating the value of the 

current state-action pair. This will accelerate the convergence 

and in our specific application, this will accelerate the process 

of controlling the reduction in the level of blood glucose, 

through determining the optimal dosage. Moreover, the side 

effects will be significantly decreased [35]. Fig.2 illustrates the 

backward view in the eligibility traces algorithm. 

 

 
 

Fig. 2. Backward view in the eligibility traces algorithm  

 

The eligibility of a state-action pair is obtained using Equ. )6(. 
 

𝑒 (𝑠𝑡 , 𝑎𝑡) = 𝑒 (𝑠𝑡 , 𝑎𝑡) + 1  (6) 

For updating the value of the state-action pair Equ. (7) is 

proposed, which enables faster convergence than previous 

methods 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 +

𝛾 ∑ 𝜋(𝑠𝑡 , 𝑎)𝑄(𝑠𝑡+1, 𝑎)𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡)] 𝑒 (𝑠𝑡 , 𝑎𝑡)  
(7) 

where 𝛼  and 𝛾  are learning rate and forgetting factor 

respectively. 𝑟𝑡+1  denotes the received reward and 

𝑄(𝑠𝑡+1, 𝑎𝑡+1) represents the value of the state-action pair at the 

next time step (t+1). 
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The eligibility of the state-action pair at each time step can be 

obtained using Equ.)8(. 
 

𝑒𝑡(𝑠, 𝑎) = 𝛾𝜆 × 𝑒𝑡(𝑠, 𝑎) (8) 

where λ is a constant value, ranges within [0,1] and weighting 

rewards from the current step till the end of the episode. Based 

on this relation, the eligibility of the current state-action pair is 

obtained by multiplying the eligibility of the state-action pair 

at previous time step by γλ factor [35]. It should be noted that 

the action selection is performed by the Softmax method in this 

paper. 

 

B. Actor-Critic method 
In this method a separate memory structure is considered to 

represent policies which are independent from the value 

function. The structure of the policy indicates the actor and 

actions are generated by the actor. The estimated value 

function indicates the critic, which criticizes the actions made 

by the actor [35]. The general structure of the actor-critic 

method is shown in Fig. 3.   

 
Fig. 3. The actor-critic architecture 

 

uEvaluating the action is done by the critic, as Eq . (9) 

 

(9) 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑣(𝑠𝑡+1) − 𝑣(𝑠𝑡)  

where 𝑣 is the current value function implemented by the critic 

and 𝑟𝑡+1  indicates the reward received by the agent. The 

action-selection probability can be calculated as Equ. (10).  

(10) 𝜋𝑡(𝑠, 𝑎) = Pr{𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠} =
𝑒𝑝(𝑠,𝑎)

∑ 𝑒𝑝(𝑠,𝑏)
𝑏

  

where 𝑝(𝑠, 𝑎)  are the values at time step t of the modifiable 

policy parameters of the actor and can be calculated as Equ. 

(11): 

(11) 𝑝(𝑠𝑡 , 𝑎𝑡) = 𝑝(𝑠𝑡 , 𝑎𝑡) + 𝛽𝛿𝑡(1 − 𝜋𝑡(𝑠𝑡 , 𝑎𝑡))  
where 𝛽  is a constant positive value, 𝛽 ∈ [0,1] . If 𝛿𝑡  is 

positive, then the selected action will be good and suggested 

for the next steps. In contrast, if 𝛿𝑡 is negative, then the agent 

will not tend to select this action in the future. In this method, 

the update of the state-action value at the present time step can 

be formulated as Equ. (12):   

(12) 
𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 +

𝛾 ∑ 𝜋(𝑠𝑡 , 𝑎)𝑄(𝑠𝑡+1, 𝑎)𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡)]  
as shown in Equ. (12), the value of the state-action pair at each 

time step depends on the value of the state-action pair at that 

time step and the sum of the product of the probability of 

selecting each action in that state and value of the next state-

action pair. 𝛼 indicates the learning rate, which is a constant 

positive value.   

 

C. Proposed Control Strategy in the Presence of Fault  

 In this section, for the diabetes system, an RL structure is 

introduced with the aim of fault tolerant control. At this point, 

it is assumed that sensor and actuator faults have occurred in 

the system. In this study, the eligibility traces algorithm is 

employed to control the blood glucose concentration in 

diabetic patients. Fig.4 depicts the blood glucose control 

process using the eligibility traces algorithm. In this method, 

RBF is used to estimate the states of the system while Sliding 

Mode Controllers are employed. Estimated values from RBF 

neural network are compared with real outputs of the diabetic 

system, and the level of residual is then calculated. Sliding 

Mode Control (SMC) is a simple method to control nonlinear 

systems, which is robust against noise and disturbance. To 

design the controller by SMC, a sliding surface should be 

defined. System states should converge to this sliding surface 

[36].  

The functionality of the control architecture shown in Fig. 4 is 

as follows. First, The RBF neural network is used to obtain the 

model of the normal system. When the fault occurs in the 

system, the blood glucose level will be controlled following a 

certain procedure. In the first step, the value of both variables 

(blood glucose and insulin) are given to the RL-based 

controller, as inputs. The intelligent agent sends the selected 

action (uR) to the output. Based on whether the blood glucose 

level control is effective or not, the immediate reward is 

allocated. At each time step, values of mentioned two variables 

are estimated, using the RBF neural network.  At each time 

step, estimated values are the same as measured values, in the 

absence of the fault and disturbance in the system. Therefore, 

the difference between the estimated values and measured 

ones, known as residuals, will be given as inputs to the sliding 

mode controller. On the other hand, the difference between 

estimated values and desired values, known as errors, will be 

given to the sliding mode controller. These values have effect, 

when calculating the drug dosage for the blood glucose level 

control. Corresponding relations are represented in the 

following.      

As shown in Fig.4, the considered system is unknown. 

However, since there was no access to real patients, the 

mathematical model of the diabetic patient is employed. It 

should be noted that the adopted approach is able to be 

implemented on the real patient. 

In this paper, the sliding surface is defined on the basis of the 

errors and the residuals. The sliding surface for the normal 

system can be stated as Equ. (13) [11]: 

𝑠𝑁 = (
1
0

) 𝑒2
𝑁 + (

1
1

) 𝜆𝑒1
𝑁  (13) 
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Fig. 4. Blood glucose concentration control using the eligibility traces control, in the presence of faults

 

where 𝑠𝑁 denotes the sliding surface definition on the normal 

system and 𝑠𝑅  is the definition of the sliding surface on the 

residual value. In Eq. (13), e denotes the difference between 

the desired value of glucose and insulin and output of the main 

system, at each time step. In Eq. (14), the error is calculated 

based on the difference between the main output and the 

desired value. 

(14) 𝑒 = 𝑦𝑛𝑒𝑤 − 𝑥𝑑  
where 𝑦𝑛𝑒𝑤 denotes the output value at the current time step 

and 𝑥𝑑 represents the output desired value. Also, 𝜆 represents 

a strictly constant value. The sliding surface is calculated based 

on the residue, as Eq. (15) 

𝑠𝑅 = (
1
0

) 𝑅2 + (
1
1

) 𝜆𝑅1  (15) 

In Eq. (15), R is the residual and represents the difference 

between the output of the main system and the estimated 

system. where the residual can be obtained based on Eq. (16). 

The residual is the difference between the main output and the 

estimated value of the main system. 

(16) 𝑅 = 𝑦𝑛𝑒𝑤 − �̂�𝑛  
where �̂�𝑛  is the estimated value related to the output of the 

main system. 

The control input in the considered system, 𝑢𝑁can be defined 

as Eq.(17). 

𝑢𝑁 = 𝜂𝑁𝑠𝑔𝑛(𝑠𝑁) − (
1
0

) (𝑓𝑁(�̂�𝑁) − 𝑥𝑑
(𝑛)) −

(
1
1

) 𝜆1𝑒2
𝑁 − (

2
2

) 𝜆2𝑒2
𝑁  

(17) 

where 𝜂𝑁  is a positive constant value. 𝑓𝑁(�̂�𝑁)  is the 

estimation of states in the normal system at each moment, and 

𝑥𝑑is the desired output. 

 

 

For the eligibility traces part, considered states are two  

dimensional, including the blood glucose level and insulin 

level. The reward function for the eligibility traces algorithm 

is determined based on Eq.(18) [11]. 

𝑟(𝑡) = −𝜆𝑅(𝑠𝑅 �̇�𝑅) (18) 

where 𝜆𝑅 is a positive constant value. �̇�𝑅 is the derivative of 

the function 𝑠𝑅 and can be calculated as Eq.(19). 

�̇�𝑅 = (
1
0

) (𝑓(𝑥𝑓) − 𝑓(𝑥𝑁)) + (
1
0

) (𝐹(𝑛) + 𝑑 +

𝑢𝑓 + 𝑢𝑁) + (
1
1

) 𝜆1𝑅2  

(19) 

where 𝑓(𝑥𝑓) and 𝑓(𝑥𝑁) are output of the faulty system and 

output of the normal system respectively. 𝐹(𝑛)  Indicates a 

system fault that is estimated by the neural network. According 

to Eq. (18), when 𝑠𝑅�̇�𝑅 is positive, the energy of the system 

has increased and the stability has decreased. So, the reward 

will be negative. Otherwise, the energy of the system has 

decreased and the stability has increased. Therefore, the 

reward will be positive [11]. Mathematically proof of this 

argument is fully stated in [11]. 

The control input uT is calculated based on the action that the 

agent will select. This can be described as Eq. (20). 

𝑢𝑇 = −𝑢𝑅 − (𝜂𝑅𝑠𝑔𝑛(𝑠𝑅))  (20) 

where 𝜂𝑅 is a constant, positive value and uR is the practical 

input, selected by the agent. Finally, the input of the system is 

the dosage of the drug injected to the diabetic patient, denoted 

by 𝑢𝑓and can be calculated as Eq.(21).  

(21) 𝑢𝑓 = 𝑢𝑁 + 𝑢𝑇   

The blood glucose level control using the eligibility traces 

algorithm is shown in Fig. 5. 
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Eligibility Trace Algorithm 

 

     States  𝑆 = {1, … , 𝑛𝑠}         Glucose and Insulin 

     Actions   𝐴 = {1, … , 𝑛𝑎}                   (𝑢𝑅) 

     Reward function R:  𝑆 × 𝐴 → ℝ      𝑟(𝑡) = −𝜆𝑅(𝑠𝑅�̇�𝑅) 

     Black-box (probabilistic) transition function 𝑇: 𝑆 × 𝐴 → 𝑆  

     Learning rate  𝛼𝜖[0,1], typically 𝛼 = 0.5 

     Discounting factor 𝛾𝜖[0.1], typically 𝛼 = 0.9 

    Trade-off between TD and MC: 𝜆𝜖[0,1] 
    Procedure QLEARNING (S, A, R, 𝛼, 𝛾, 𝜆) 

        Initialize Q: 𝑆 × 𝐴 → ℝ arbitrarily 

        Initialize e: 𝑆 × 𝐴 → ℝ with 0    ⊳ eligibility trace 
       While Q is not converged do 

             Select (𝑠, 𝑎)𝜖 𝑆 × 𝐴 arbitrarily 
            While s is not terminal do 

                 𝑟 ← 𝑅(𝑠, 𝑎) 

                 𝑠′ ← 𝑇(𝑠, 𝑎)      ⊳ Receive the new state 

                 Calculate 𝜋 based on Q (휀 − 𝑔𝑟𝑒𝑒𝑑𝑦) 

                 𝑎′ ← 𝜋(𝑠′) 

                 𝑒(𝑠, 𝑎) ← 𝑒(𝑠, 𝑎) + 1 

                 𝛿 ← 𝑟 + 𝛾. 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎) 

                 for (�̃�, �̃�)𝜖 𝑆 × 𝐴 𝒅𝒐 

                       𝑄(�̃�, �̃�) ← 𝑄(�̃�, �̃�) + 𝛼. 𝛿. 𝑒(�̃�, �̃�) 

                       𝑒(�̃�, �̃�) ← 𝛾. 𝜆. 𝑒(�̃�, �̃�) 

                 𝑠 ← 𝑠′ 

                 𝑎 ← 𝑎′ 
    return Q 

Fig. 5. Blood glucose level control by using the eligibility traces 

algorithm 

IV. SIMULATION 

In this paper, the blood glucose level control is investigated 

in the presence of faults in the system. To this aim, the 

eligibility traces algorithm is used. All simulations are 

performed by MATLAB Software. Initial conditions are 

considered for diabetic patient are as follows: 𝐺0 =
6.1915 𝑚𝑀, 𝐼0 = 98.6056𝑃𝑀 . The optimal value (which 

finally should be reached) for the blood glucose level is 5.6 

mM and for the insulin level is 96 PM. The injected dosage of 

the drug, denoted by uf, should be determined such that the 

proposed method can control the blood glucose level and 

preserve it at the desired level, even in the case the fault has 

occurred in the system. 

In this paper, the proposed method is used to control the blood 

glucose concentration in patients with diabetes and make a 

comparison with the actor-critic (represented in [11] for a class 

of unknown nonlinear systems). At first, proposed method of 

[11] is simulated on the diabetes model and compared with our 

proposed eligibility traces based approach.  

In this paper, to demonstrate a successful performance of the 

eligibility traces algorithm for controlling the blood glucose 

level, a comparison is made with the ANNs method. All 

mathematical relations related with the ANNs approach to 

control the fault are adopted from [11]. 
Actuator and sensor faults applied to the system are shown in 

Fig. 6 and 7. 

 
Fig. 6. Actuator fault applied to the system 

 

 
Fig. 7. Sensor fault applied to the system 

 

In this section, the sensor fault and actuator fault are 

investigated separately. Fig. 8 and Fig. 9 show the blood 

glucose level and insulin level in diabetic patients, in the 

presence of the sensor fault and actuator fault, respectively. In 

both cases, eligibility traces algorithm, actor-critic and neural 

network methods are compared. 
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Fig. 8 (a) 

 
Fig. 8 (b) 

Fig. 8. Simulation results in the presence of sensor fault; (a) 

blood glucose concentration; (b) insulin concentration 

 

 
Fig. 9 (a) 

 

Fig. 9 (b) 

Fig. 9. Simulation results in the presence of actuator fault; (a) 

blood glucose concentration; (b) insulin concentration 
 

As can be observed in Fig.8, the eligibility traces algorithm can 

control the blood glucose level and bring it to the desired level 

under the sensor fault, when compared with other two 

methods. The proposed method uses a lower dosage of the drug 

and results in reduced side effects. Also, in the case the ANNs 

method is used, under the sensor fault, the blood glucose level 

will have higher variations about the desired value. This may 

have dangerous outcomes for diabetic patients. Also, insulin 

variations in the desired value is higher than two other 

methods, which may result in the death of the diabetic patient.  

According to Fig.9, under the actuator fault in the system and 

using the ANNs method, although a higher dosage is injected, 

blood glucose and insulin have higher variations about their 

desired values. However, when the actor-critic method is used, 

such variations are low. The eligibility traces algorithm can 

significantly control blood glucose and insulin levels and with 

lower variations, under the actuator fault in the system.  
Fig.10 represents the blood glucose and insulin variations, for 

three mentioned methods, in the case both sensor and actuator 

faults are present in the system. 
 

 

Fig. 10. (a) 
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Fig. 10 (b) 

Fig. 10. Simulation results in the presence of sensor-actuator 

fault; (a) blood glucose concentration; (b) insulin concentration 
 

As shown in Fig.10, if both sensor and actuator faults are 

simultaneously applied to the system, the eligibility traces 

algorithm can control the blood glucose and insulin levels with 

a lower variations and drug dosage and keep them about the 

desired values, when compared with two other methods. Table 

II represents the injected dosage determined by the three 

considered methods, in the presence of sensor and actuator 

faults. 
TABLE II 

TOTAL DOSAGE INJECTED TO THE DIABETIC PATIENT, USING THE 

ELIGIBILITY TRACES ALGORITHM, ACTOR-CRITIC METHOD, AND 

NEURAL NETWORK 

 

As shown in Table 2, when the ANNs method is used and there 

is a fault in the system, the injected dosage determined by this 

method is higher than two other methods. This will lead to 

higher side effects.  
Table 3, represents changes in the blood glucose and insulin 

concentration control using the eligibility traces algorithm as 

well as the actor-critic method and neural networks, in the case  
 

 

 

 

 

V. CONCLUSIONS 
 

In this paper, the eligibility traces algorithm is used as one of 

the best methods in the RL framework. On fault control, this 

method is compared with two previous works[11], i.e. actor-

critic and ANNs. Simulation results revealed that the eligibility 

traces algorithm due to the fact that a backward view for 

updating the value of the state-action pair at the current time 

step can control the blood glucose level with an increased 

speed, lower dosage and reduced changes about the desired 

value and bring it to the desired value, in the case the sensor or 

actuator fault occurs in the system. However, the ANNs 

method has a lower speed and uses a higher dosage. Therefore, 

in the presence of faults, the proposed method shows a better 

performance in terms of accuracy and the drug dosage use, 

which implies the mitigated side effects for diabetic patients. 

In order to detect the fault, a residual calculation method was 

used. For calculating the residual, system states were supposed 

to be estimated at each time step. To this aim, the RBF neural 

network was employed and the estimated values from the RBF 

neural network were compared with the real outputs of the 

diabetic system, so the level of residual was calculated. Results 

obtained from the proposed method and ANNs method [11] 

were compared. Based on the results, if any fault (either sensor 

or actuator fault) occurs in the system, the ANNs method fails 

to control the blood glucose and insulin levels and there will 

be severe variations in the desired level. Also, the injection 

dosage determined by the ANNs method is high, which will 

cause side effects for diabetic patients and in some cases, this 

may result in the patients’ death. 

In addition, determining an individual drug plan for each 

patient and the drug personalization concept are important 

issues, which have received much attention in recent years. 

One of the principal advantages of the Reinforcement Learning 

method is the fact that it takes this issue into consideration for 

each individual patient in the real world. In this sense, after the 

learning has occurred for the nominal model of the patient, the 

Q-table, containing the value of each state-action pair, will be 

used and another learning phase will be performed for each 

real patient. In this case, less trial and error will take place and 

the optimal drug plan will be specified for each person 

individually. In this paper, since there was no access to real 

patients, all simulations were performed on the nominal model. 

However, it is possible to determine the drug plan for a real 

diabetic patient, when learning is terminated and the Q-table is 

obtained. The proposed algorithm can be used for real patients. 

In future works this algorithm can be examined on other types 

of faults. Also, for further works, Continues RL can be 

implemented on this model. 

 

 

 

Control 

Input 
Method 

Applied Fault 

Type 

Total 

Injected 

Dosage 

𝑢𝑓 

Eligibility 

Traces 

Sensor 19.01 mg 

Actuator 18 mg 

Sensor-Actuator 18.01 mg 

Actor-Critic 

Sensor 20.48mg 

Actuator 34.05 mg 

Sensor-Actuator 25.64mg 

Neural 

Network 

Sensor 357.8235mg 

Actuator 325.1007mg 

Sensor-Actuator 368.1947mg 
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TABLE III 

GLUCOSE AND INSULIN VALUES AFTER EACH 1000 MINUTES 

Glucose Concentration (Sensor fault) 

Time 

Method 
1 min 1000 min 2000 min 3000 min 4000 min 5000 min 6000 min 

Eligibility trace 6.98(mM) 5.67(mM) 5.57(mM) 5.56(mM) 5.662(mM) 5.571(mM) 5.57(mM) 

Actor-Critic 6.981(mM) 5.67(mM) 5.571(mM) 5.58(mM) 5.677(mM) 5.58(mM) 5.58(mM) 

Neural Network 6.954(mM) 5.57(mM) 5.6(mM) 5.75(mM) 5.63(mM) 5.43(mM) 5.44(mM) 

Insulin Concentration (Sensor fault) 

Time 

Method 
1 min 1000 min 2000 min 3000 min 4000 min 5000 min 6000 min 

Eligibility trace 105(PM) 96.2(PM) 92(PM) 96.3(PM) 96(PM) 93.1(PM) 93(PM) 

Actor-Critic 105(PM) 97(PM) 92.3(PM) 96.3(PM) 96.3(PM) 92.2(PM) 93(PM) 

Neural Network 112(PM) 93(PM) 95(PM) 92(PM) 98(PM) 93(PM) 92(PM) 

Glucose Concentration (Actuator fault) 

Time 

Method 
1 min 1000 min 2000 min 3000 min 4000 min 5000 min 6000 min 

Eligibility trace 6.198(mM) 5.535(mM) 5.58(mM) 5.39(mM) 5.58mM) 5.58(mM) 5.57(mM) 

Actor-Critic 6.199(mM) 5.536(mM) 5.581(mM) 5.38mM) 5.577(mM) 5.58(mM) 5.58(mM) 

Neural Network 6.1(mM) 5.376(mM) 5.485(mM) 5.44(mM) 5.611(mM) 5.43(mM) 5.423(mM) 

Insulin Concentration (Actuator fault) 

Time 

Method 
1 min 1000 min 2000 min 3000 min 4000 min 5000 min 6000 min 

Eligibility trace 109(PM) 89(PM) 93(PM) 96(PM) 93(PM) 93.3(PM) 93(PM) 

Actor-Critic 109(PM) 90(PM) 93.2(PM) 97(PM) 94(PM) 92.2(PM) 92.8(PM) 

Neural Network 111(PM) 94(PM) 95(PM) 96.7(PM) 92.5(PM) 92.5(PM) 95(PM) 

Glucose Concentration (Sensor and Actuator faults) 

Time 

Method 
1 min 1000 min 2000 min 3000 min 4000 min 5000 min 6000 min 

Eligibility trace 6.198(mM) 5.5(mM) 5.58(mM) 5.39(mM) 5.68mM) 5.585(mM) 5.59(mM) 

Actor-Critic 6.199(mM) 5.52(mM) 5.581(mM) 5.38mM) 5.681(mM) 5.588(mM) 5.587(mM) 

Neural Network 6.198(mM) 5.325(mM) 5.6(mM) 5.4(mM) 5.65(mM) 5.6(mM) 5.6(mM) 

Insulin Concentration (Actuator and Sensor faults) 

Time 

Method 
1 min 1000 min 2000 min 3000 min 4000 min 5000 min 6000 min 

Eligibility trace 110(PM) 98(PM) 93(PM) 101(PM) 97(PM) 93.3(PM) 93(PM) 

Actor-Critic 220(PM) 100(PM) 93.3(PM) 101.1(PM) 97.8(PM) 93.8(PM) 92.8(PM) 

Neural Network 111(PM) 102(PM) 92.5(PM) 96.5(PM) 97(PM) 92.5(PM) 92.5(PM) 
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