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a b s t r a c t 

Bipartite consensus of multiple fractional-order nonlinear systems with output constraints is assessed 

under signed graph. The agents’ model is completely unknown with high-order heterogeneous strict- 

feedback dynamics and external disturbances, which cover single- and double-integrator integer-order 

systems as special forms. To ensure the bipartite consensus task, a novel fully distributed controller is 

developed based on backstepping technique and neuro-adaptive update mechanism. A barrier Lyapunov 

function is introduced to limit the followers’ outputs within the preset bounds. Algebraic graph theory 

and Lyapunov fractional-order stability theorem are employed to deal with the analysis difficulties caused 

by the network of fractional-order dynamics. Sufficient conditions on bipartite consensus is established, 

and it is also shown that all the closed-loop error signals are uniformly ultimately bounded. The simula- 

tion results are carried out to demonstrate the effectiveness of the proposed approach. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 1 

In the past decade, different perspectives of design and analysis 2 

on collective behavior of multi-agent systems (MASs) have been 3 

considered, such as consensus (or synchronization) of multiple ma- 4 

nipulators [26] , formation control of robot teams [30] , connectivity 5 

preserving for a group of Euler –Lagrange systems [48] , rendezvous 6 

of multiple spacecrafts [8] , etc. Among them, consensus of MASs 7 

aims at designing distributed control laws to make follower agents 8 

reach an agreement on some desired value or trajectory, see, 9 

for instance [6,31–33,53] , and the references therein). However, 10 

the aforementioned control protocols are only applicable on the 11 

collaborative networks, where interactions between all the agents 12 

are represented via nonnegative classical graphs. 13 

In numerous realistic systems, such as social networks and 14 

multi-robotic systems, the collective behavior of multiple agents 15 

is modeled over networks with cooperative and competitive 16 

communications. In this case, a signed bipartite graph is intro- 17 

duced to represent the communication among agents. In a signed 18 

bipartite graph, the adjacency matrixes entries are capable of 19 
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1 This paper attempts to design adaptive output constraint controllers for a class 

of uncertain MASs described by fractional-order uncertain strict-feedback dynamics. 

being both positive and negative. Cooperative and competitive 20 

relationship between the agents are associated with the positive 21 

and negative weights, respectively. The bipartite consensus deals 22 

with extending distributed control protocols for agents such that 23 

the outputs/states converge to a common value asymptotically in 24 

modulus, but different in sign for antagonistic agents. The bipartite 25 

consensus control design for first-order MASs was first introduced 26 

in [1] . Subsequently, some effective bipartite consensus approaches 27 

have been established for different classes of linear MASs under 28 

signed graph, [13,24,45,52] . The bipartite consensus problem of 29 

MASs with nonlinear dynamics has recently received significant at- 30 

tention due to practical demands. In [14,43] , the uniform ultimate 31 

bound stability method was utilized for bipartite consensus control 32 

problem of multiple nonlinear systems with external disturbances, 33 

where the unknown nonlinearities in the followers’ dynamics were 34 

handled with the adaptive compensator technique and robust con- 35 

trol mechanism. In [46] , an adaptive control approach was studied 36 

for strict-feedback MASs to achieve bipartite consensus in a fixed 37 

time. The output-feedback bipartite consensus control problem 38 

was investigated in [50] for strict-feedback nonlinear systems. 39 

Although the distributed control design for consensus of MASs 40 

have extensively been considered, the followers’ outputs constraint 41 

is rarely studied. This problem is still a technical challenge to be 42 

solved due to the existence of many physical constraints in real- 43 

world systems. It is well known that using the barrier Lyapunov 44 

function (BLF) is an effective strategy to cope with output con- 45 

straint issue. In contrast to the conventional quadratic Lyapunov 46 
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functions [13,14,24,43,45,46,52] , a BLF is not radially unbounded, 47 

however it grows to infinity whenever its arguments tend to some 48 

finite limits. According to this property and based on the Lya- 49 

punov method, it is guaranteed that the system’s output/states are 50 

limited to predefined bounds. Moreover, compared to the conven- 51 

tional quadratic Lyapunov function based designs, it is shown in 52 

[24] that the BLF based control design approaches require less re- 53 

strictive initial conditions on closed-loop state variables. Recently, 54 

some adaptive control schemes using the BLF design approach 55 

have been developed in [11,12,21,22,38,49] for nonlinear uncertain 56 

systems with output or states constraints. Nevertheless, these con- 57 

trol schemes do not consider the network communication for un- 58 

certain nonlinear systems. In [7] , a distributed output constraint 59 

control method was presented to realize the consensus perfor- 60 

mance in a finite time for multiple uncertain Euler-Lagrange sys- 61 

tems. However, this result is limited to the agents with nonlinear 62 

dynamics in Brunovsky structure. In [40] , a distributed adaptive 63 

control structure was studied based on the BLFs to cope with the 64 

constrains on states for strict-feedback MASs. An event-triggered 65 

consensus scheme with state constraints was studied for strict- 66 

feedback MASs by utilizing the BLF in [54] . However, the aforemen- 67 

tioned synchronization methods are limited to integer-order MASs. 68 

Many real-world coordination behaviors such as robot forma- 69 

tion and multi-vehicle systems in complex environments are mod- 70 

eled by a network of fractional-order dynamics. This includes 71 

autonomous underwater vehicles moving on the top of macro- 72 

molecule fluids, high-speed aircraft traveling in dust storm, rain, or 73 

snow and ground vehicles moving on top of sand, grass, or muddy 74 

road. The design of distributed control protocols and their consen- 75 

sus stability analysis are more challenging for the fractional-order 76 

systems, compared to the integer-order ones. This is because some 77 

well-known mathematical tools, such as Leibniz rule, are not well 78 

established for the fractional-order derivatives. As a result, it is 79 

not straightforward to adopt the classical stability analysis proce- 80 

dures from the integer-order systems for the fractional-order dy- 81 

namics. To solve this problem, some interesting distributed control 82 

approaches have been presented for the fractional-order MASs. The 83 

distributed consensus control for a group of linear fractional-order 84 

systems with first-order dynamics is studied in [5] . The finite-time 85 

consensus for linear fractional-order MASs was also investigated 86 

in [17] . 87 

The aforementioned control approaches are appropriate for 88 

the linear fractional-order MASs, however almost all real sys- 89 

tems are intrinsically nonlinear. Therefore, the study of nonlinear 90 

fractional-order MASs is of much importance. In the preceding 91 

years, the researchers have placed more emphasis on designing 92 

distributed controllers for the nonlinear fractional-order MASs, 93 

however there are still few reported results [3,4,9,10,23,39,51] . The 94 

earliest study in this field was investigated in [51] , where a linear 95 

leader–follower distributed protocol was studied for nonlinear 96 

fractional-order MASs. Continuous and discontinuous distributed 97 

leader-following control structures were also considered in 98 

[10] for nonlinear fraction-order MASs. A discontinuous distributed 99 

leader–follower control structure was established for nonlinear 100 

fractional-order MASs based on sliding mode design approach in 101 

[4] . Other different control designs such as impulsive method [23] , 102 

and event-based control structure [39] are also considered for the 103 

nonlinear fractional-order MASs. In [4,10,23,39,51] , the dynamics 104 

of agents have a simple single integrator structure. Besides, the 105 

design of distributed architectures require some global informa- 106 

tion of the Laplacian matrix associated with the graph topology. 107 

Recently, in order to eliminate these shortcomings, the distributed 108 

consensus of nonlinear double integrator fractional-order MASs 109 

using an adaptive method was addressed in [9] . However, in 110 

[4,9,10,23,39,51] , not only the considered follower agents require 111 

to satisfy matching conditions, but they also should communicate 112 

cooperatively. Moreover, we have to note that in [4,9,10,23,39,51] , 113 

the representing system’s functions for follower agent dynamics 114 

are supposed to satisfy the Lipschitz condition. Moreover, up to 115 

now, a consensus control method has not been developed for 116 

fractional-order MASs with output constraints. Hence, despite of 117 

the existing results, the following problems are till now remained 118 

1. How can we design a fully distributed control structure for 119 

a network of fractional-order systems under both cooperative- 120 

competitive interactions? 121 

2. How can we design a fully distributed control architecture for 122 

fractional-order MASs with high-order nonlinear strict-feedback 123 

structure with completely unknown dynamics? 124 

3. How to limit the followers’ outputs to preset bounds and meet 125 

the physical constraints in realistic systems? 126 

These three questions motivate us to develop the theoretical 127 

results. Hence, this paper attempts to design the adaptive output 128 

constraint controller for a class of uncertain MASs described by 129 

fractional-order uncertain strict-feedback dynamics. Another moti- 130 

vation for considering this kind of MASs lies on the industrial sit- 131 

uations. For instance, for synchronization of power systems with 132 

multi-machine power systems and different synchronous genera- 133 

tors, a network of doubly-fed induction generators or synchroniza- 134 

tion of multiple flexible robot manipulators, fractional-order un- 135 

certain strict-feedback dynamics is required. To the best of our 136 

knowledge, no existing work has considered the consensus prob- 137 

lem of networked fractional-order uncertain strict-feedback agents 138 

with followers’ output constraints. The main contributions of this 139 

paper are three-fold 140 

1. This is the first time that an adaptive bipartite consensus con- 141 

trol in a fully distributed manner independent of any global in- 142 

formation of the Laplacian matrix for a class of fractional-order 143 

nonlinear MASs under both cooperative and competitive inter- 144 

actions is introduced. 145 

2. In contrast to all previous works, this paper not only investi- 146 

gates the high-order strict-feedback fractional-order MASs, but 147 

also, it considers a distributed adaptive neural control protocol 148 

to approximate the unknown nonlinearities by employing the 149 

minimal learning parameter (MLP) approach. 150 

3. Compared to the existing results, a distributed adaptive neural 151 

bipartite consensus control scheme is proposed for nonlinear 152 

fractional-order MASs with outputs’ constraints. By employing 153 

BLFs in the distributed controller design, the follower agents’ 154 

outputs constraints are well satisfied within the limits. It is 155 

notable that the consensus control methods for the fractional- 156 

order MASs presented in references such as [4,9,10,23,39,51] are 157 

restricted to the MASs without outputs constraints. 158 

Notations : In this paper, � ( � 

+ ) represents the real number set 159 

(positive real number set), � 

N denotes the real N -vectors set, and 160 

� 

N × N indicates the real N × N matrices set. For a scalar value of 161 

x , | x | indicates the absolute value and for a vector x , || x || denotes 162 

the 2-norm. The operator diag( · ) is considered to show a diagonal 163 

matrix of the arguments and symbol arg( · ) is used to represent 164 

the argument of complex number. Ln ( · ) stands for the natural log- 165 

arithm of its argument and the superscript “T” denotes transpo- 166 

sition of matrix or vector. The sign( · ) is defined as the standard 167 

signum function. 168 

The rest of this paper is organized as follows. The technical 169 

background is presented in Section 2 . In Section 3 , the problem for- 170 

mulation is given. A distributed adaptive bipartite consensus track- 171 

ing control approach with followers’ output constraints is proposed 172 

in Section 4 . The simulation results are carried out in Section 5 to 173 

show the effectiveness of the main results. Finally, the conclusion 174 

is described in Section 6 . 175 
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2. Technical background 176 

2.1. Fractional calculus 177 

In this subsection, we provide some necessary Definitions, 178 

Properties and Lemmas related to the fractional calculus, includ- 179 

ing the Caputo fractional derivative and the Mittag-Leffler func- 180 

tion (M-LF), alongside with a Lyapunov-based stability criterion for 181 

fractional-order systems. 182 

Two operators are mainly associated with fractional calculus, 183 

namely the Riemann –Liouville and the Caputo. The most important 184 

reason for popularity of the Caputo’s fractional derivative is that 185 

its Laplace transform only requires the integer-order derivatives of 186 

the initial conditions. Therefore, the Caputo fractional derivative is 187 

exploited to model the dynamics of the fractional-order agents in 188 

this paper. 189 

For any real number q ∈ (0 1), the q -order Caputo fractional 190 

derivative of f ( t ) is defined as [27] 191 

C 
0 D 

q 
t f (t) = 

1 

�(1 − q ) 

∫ t 

0 

f 
′ 
( τ ) 

( t − τ ) q 
d τ, (1) 

where f 
′ 
(t) is the first integer-order derivative of f ( t ) and �(1 −192 

q ) = 

∫ ∞ 

0 τ−q exp (−τ ) d τ . 193 

The Laplace transform of the q -order Caputo fractional deriva- 194 

tive is represented as [27] 195 

L{ C 0 D 

q 
t f (t) } = s q F (s ) − s q −1 f (0) , (2) 

where q ∈ (0 1) and F ( s ) is the Laplace transform of f ( t ). 196 

Property 1 [27] . For any q ∈ (0 1), the following hold 197 

1. C 
0 

D 

q 
t (c 1 f (t) ± c 2 g(t)) = c 1 

C 
0 

D 

q 
t f (t) ± c 2 

C 
0 

D 

q 
t g(t) , 198 

2. C 
0 

D 

q 
t 

(
f (t) 
g(t) 

)
≤

C 
0 

D 
q 
t f (t) g(t) − f (t) C 

0 
D 

q 
t g(t) 

g 2 (t) 
, 199 

where c 1 and c 2 are constants. 200 

In the following, we define the M-LF, which is used in 201 

Section 4 to analyze the stability of the closed-loop system. 202 

Definition 1 [27] . The M-LF is expressed as 203 

E (q,γ ) (z) = 

∞ ∑ 

k =0 

z k 

�(qk + γ ) 
, (3) 

where q ∈ (0 1), γ ∈ � 

+ and z is a complex number. The Laplace 204 

transform of M-LF is given by Podlubny [27] 205 

L 

{ 

t γ −1 E (q,γ ) (−ζ t q ) 
} 

= 

s q −γ

s q + ζ
, � e (s ) > | ζ | 1 q , (4) 

where � e (s ) is the real part of s and ζ ∈ � . 206 

The following Lemma gives an upper bound on the M-LF which 207 

is used to obtain the ultimate bounds for Lyapunov variables. 208 

Lemma 1 [27] . If γ ∈ � , q ∈ � 

+ and φ ∈ � 

+ satisfying q ∈ (0 1), 209 

and πq 
2 < φ < πq, then there exists ϒ ∈ � 

+ , such that the M-LF is 210 

bounded by 211 

| E (q,γ ) (z) | ≤ ϒ

1 + | z| , γ ≤ | arg (z) | ≤ π, | z| ≥ 0 . (5) 

The following Lemmas are used in Section 4 to analyze the sta- 212 

bility of the closed-loop network of fractional-order MASs with model 213 

uncertainties and unknown external disturbances. 214 

Lemma 2 [27] . If x (t) = [ x 1 (t ) , . . . , x n (t )] T ∈ � 

n is a smooth vector 215 

function, q ∈ (0, 1), and t ≥ 0, then, there exists a positive definite ma- 216 

trix P ∈ � 

n × n such that 217 

C 
0 D 

q 
t 

(
x 

T (t) P x (t) 
)

≤ 2 x 

T (t) P C 0 D 

q 
t x (t) . (6) 

Lemma 3 [10] . Let the q-order derivative of a smooth function V (t) : 218 

� 

+ → � satisfy 219 

C 
0 D 

q 
t V (t) + ηV (t) ≤ 
, (7) 

where q ∈ (0 1), η > 0, and ϱ≥ 0 . Then, the following holds 220 

V (t) ≤ V (0) E (q, 1) (−ηt q ) + 


� 

η
, t ≥ 0 , (8) 

where ϖ is the max = { 1 , ϒ} and ϒ is defined in Lemma 1 . 221 

2.2. Graph theory 222 

Commonly, an algebraic graph theory as a mathematical ap- 223 

proach is employed to illustrate the communication network 224 

of a MAS. A signed bipartite graph is considered in order to 225 

show the relationship between different agents. Consider G � 226 

{V, E, A} as a signed bipartite directed graph (diagraph), and V = 227 

{ νi : i = 1 , . . . , N} as the set of followers. E ⊆ { e i j : i = 1 , . . . , N, j = 228 

1 , . . . , N, i 
 = j} is a set of edges in which e i j = (νi , ν j ) ∈ E if and 229 

only if there exists an information exchange from i th follower to j th 230 

follower, and adjacency matrix is described interactions of follow- 231 

ers in signed bipartite diagraph as A = [ a i j ] ∈ � 

N×N , where a ij 
 = 0 232 

if e ji ∈ E . The sign a ij represents the collective behavior type, i.e., 233 

for a competitive relationship between the i th and the j th follower, 234 

a negative value is reported for a ij ; and for cooperative behaviors 235 

this sign is the positive. Moreover, in situations that no directed 236 

paths from the follower j th to the follower i th is designed, a ij is 237 

set to zero. For the i th follower, the set of neighbors is denoted 238 

by N i = { j| a i j 
 = 0 } . L = C − A , is defined as Laplacian matrix and 239 

L ∈ � 

N×N , where the weighted degree matrix of i th follower is de- 240 

noted by C = diag (c i ) and c i = 

∑ 

j∈ N i | a i j | . 241 

We now define another graph Ḡ to associate a network of N 242 

followers with a leader. The adjacency matrix for the leader is 243 

defined B = diag (b i ) ∈ R 

N×N , with b i > 0 (or b i < 0) if only if i th 244 

follower directly receives cooperative (or competitive) information 245 

from the leader, otherwise b i = 0 . A digraph is said to have a span- 246 

ning tree if there exists at least one agent (called root note) that 247 

has a direct path to every other agent. 248 

Definition 2 [43] . Structurally balanced property is defined for a 249 

signed bipartite diagraph G if it includes a bipartition of the sets of 250 

followers V 1 and V 2 , where V = V 1 ∪ V 2 and V 1 ∩ V 2 = ∅ such that 251 

a i j > 0 , ∀ i, j ∈ V m 

(m = 1 , 2) ; a i j < 0 , ∀ i ∈ V m 

, ∀ j ∈ V n , m 
 = n (m, n = 252 

1 , 2) . Otherwise, G is called unstructurally balanced. 253 

Assumption 1. The diagraph Ḡ has a directed spanning tree with 254 

the leader as the root node and G is structurally balanced. 255 

2.3. Uniform ultimate bounded consensus 256 

The uniform ultimate bound consensus in bipartite manner is 257 

established for a leader –follower case if there exists a compact 258 

set 
⊂ � 

n , so that ∀ x i ,1 ( t 0 ) ∈
, there exists T ≥ 0 and ε > 0 such 259 

that [43] 260 

|| x i, 1 (t) − μi x 0 , 1 (t) || ≤ ε, for ∀ t ≥ t 0 + T , (9) 

where x i ,1 ( t ) is the output of i th follower, x 0,1 ( t ) is the leader’s out- 261 

put, μi = 1 if i ∈ V 1 and μi = −1 if i ∈ V 2 . Moreover, if ε = 0 , for 262 

t → ∞ , it is said that asymptotical bipartite consensus is achieved. 263 

2.4. Neural networks 264 

Among many different applications such as approximating un- 265 

known functions, neural networks are considered as a powerful 266 

tool in control system design. The detailed study of NNs can be 267 
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found in [16] . Based on the universal approximation property of 268 

NNs, f ( Q ) is expressed as 269 

f ( Q ) = �∗φ(Q ) + ε(Q ) , ∀ Q ∈ 
Q ⊂ � 

q , (10) 

where �∗ = [ w 

∗
1 
, . . . , w 

∗
ς ] is the ideal constant weight vector, 270 

φ(Q ) = [ φ1 (Q 1 ) . . . , φς ( Q ς )] T is the basis function vector, ς > 1 de- 271 

notes the number of neurons, and ε( Q ) is the minimum approxi- 272 

mation error. Generally, the basis function φi ( Q i ) for i = 1 , 2 , . . . , ς, 273 

can be selected as Gaussian, hyperbolic tangent or sigmoid, etc. In 274 

this paper, due to applying radial basis function neural networks 275 

(RBF NNs), Gaussian basis functions are used. 276 

Assumption 2. The minimum approximation error of NNs and the 277 

ideal constant weight vector over the compact set 
Q are respec- 278 

tively bounded by unknown positive constants ε∗ and w m 

as 279 

| ε(Q ) | ≤ ε ∗, || �∗|| ≤ w m 

, Q ∈ 
Q . (11) 

Lemma 4 [15] . For any vector ( k , m ) ∈ � 

n , the following inequality 280 

holds 281 

k 

T m ≤ κ p 

p 
|| k || p + 

1 

qκq 
|| m || q , (12) 

where κ > 0, p > 1, q > 1, and (p − 1)(q − 1) = 1 . 282 

Definition 3 [38] . A barrier Lyapunov function (BLF) (i.e., V ( x , t )) 283 

is a continues, scalar, positive definite and C 1,1 function defined for 284 

the dynamical systems ˙ χ = � (χ ) , on an open region W including 285 

the origin, which for k b > 0 as a boundary of region W , has the 286 

following property 287 

V (x, t) → ∞ as x → ±k b , (13) 

and ∀ t ≥ t 0 ensures that V ( x , t ) ∈ L ∞ 

according to ˙ χ = � (χ ) for 288 

χ ( t 0 ) ∈ W . 289 

Similar to [38] , in this paper, a BLF is utilized as 290 

Ln 

k 2 
b 

k 2 
b 

− β2 (t) 
, (14) 

where β( t ) is bounded by k b . 291 

In order to resolve the control problem of followers’ output 292 

constraints, the following Lemma is employed. 293 

Lemma 5 [38] . For existing the arbitrary positive constant k b , the fol- 294 

lowing inequality holds 295 

Ln 

k 2 
b 

k 2 
b 

− β2 (t) 
≤ β2 (t) 

k 2 
b 

− β2 (t) 
, (15) 

if | β( t )| ≤ k b is satisfied for all times. 296 

3. Problem formulation 297 

The dynamics of i th follower labeled from 1 to N is described 298 

by the following fractional-order nonlinear uncertain systems 299 {
C 
0 D 

q 
t x i,k = x i,k +1 + f i,k (x i,k ) + ρi,k (t) , k = 1 , 2 , . . . , n i − 1 , 

C 
0 D 

q 
t x i,n i = u i + f i,n i (x i,n i ) + ρi,n i (t) , y i = x i, 1 , 

(16) 

where C 
0 

D 

q 
t x i,k for k = 1 , . . . , n i denotes the q -order Caputo 300 

fractional derivative of follower’s state, and 0 < q < 1. x i,n i = 301 

[ x i, 1 , x i, 2 , . . . , x i,n i ] 
T ∈ � 

n i is the state vector of i th follower, u i ∈ � is 302 

the control input and y i ∈ � is the output of i th follower agent. 303 

x i,k = [ x i, 1 , x i, 2 , . . . , x i,k ] 
T ∈ � 

k . f i , k ( x i , k ): � 

k → � for k = 1 , . . . , n i is 304 

unknown smooth function and ρi,k (t) : � 

+ → � for k = 1 , . . . , n i 305 

is an unknown bounded external disturbance, i.e., | ρi,k (t) | ≤ ρ∗
i,k 

, 306 

where ρ∗
i,k 

is an unknown constant. 307 

The leader dynamics labeled as 0 is described by 308 ⎧ ⎨ 

⎩ 

C 
0 D 

q 
t x 0 ,k = x 0 ,k +1 + f 0 ,k ( x 0 ,k , t) , k = 1 , 2 , . . . , n i − 1 , 

C 
0 D 

q 
t x 0 ,n i = f 0 ,n i ( x 0 ,n i , t) , 

y 0 = x 0 , 1 , 

(17) 

where C 
0 

D 

q 
t x 0 ,k for k = 1 , . . . , n 0 denotes the q -order Caputo frac- 309 

tional derivative of the leader’s state and 0 < q < 1. x 0 ,n i = 310 

[ x 0 , 1 , x 0 , 2 , . . . , x 0 ,n 0 ] 
T ∈ � 

n 0 is the state vector of the leader, 311 

x 0 ,k = [ x 0 , 1 , x 0 , 2 , . . . , x 0 ,k ] 
T ∈ � 

k and f 0 ,k (x 0 , t) : � 

k × � 

+ → � for 312 

k = 1 , . . . , n 0 is locally Lipschitz in x 0, k and piecewise continues in 313 

t , and it is also a bounded function. 314 

Remark 1. If the q -order Caputo fractional derivative in the dy- 315 

namics (16) and (17) is replaced by the conventional integer-order 316 

derivative and the interactions are also only cooperative, extensive 317 

results have been studied, see for example [47] . However, the con- 318 

trol design for nonlinear fractional-order MASs, especially in strict- 319 

feedback dynamical form, till now is an open problem, which is 320 

one of our motivations in preparing this paper. 321 

The Control objective is declared in this paper as constructing a 322 

fully distributed adaptive neural control architecture for a network 323 

of uncertain nonlinear follower agents (16) considering bounded 324 

dynamic leader (17) such that 325 

1. All the closed-loop network signals are uniform ultimate 326 

bounded. 327 

2. All the local bipartite tracking errors 328 

λi = x i, 1 − μi x 0 , 1 , μi ∈ { 1 , −1 } , for i = 1 , . . . , N, (18) 

are confined to preset bounds. 329 

Assumption 3. There exist positive constants k c , A 1 , and A 2 such 330 

that the leader output and its q -order fractional derivative is con- 331 

tinuous and bounded, such that, | x 0,1 | ≤ A 1 ≤ k c and | C 0 D 

q 
t x 0 , 1 | ≤ A 2 . 332 

Remark 2. The following statements are scrutinized. 333 

• Assumption 1 is a necessary condition to obtain the leader- 334 

following bipartite consensus problem. Assumption 2 is a state- 335 

ment about the boundedness of ideal weight vector and ap- 336 

proximation error for RBF neural network, see for example, 337 

[16] . In Assumption 3, the boundedness of leader output and 338 

its q -order fractional derivative is emphasized. This Assumption 339 

is less restrictive than that considered in [7,40,54] , where the 340 

boundedness of n integer-order derivative of desired signal are 341 

required for employing the backstepping design. 342 

• The fractional-order system (16) can be utilized to represent a 343 

large class of nonlinear dynamical systems such as 344 

1. Robotic systems: a network of two-DOF robotic manipula- 345 

tors, a group of single-link flexible-joint robots, and a net- 346 

work of robots with two revolute joints in the vertical plane, 347 

[55] . 348 

2. Power systems: a multi-machine-infinite bus power system 349 

[25] , a network of doubly-fed induction generators [2] , and 350 

multiple hydro-turbine governing systems, [44] . 351 

3. Mechanical systems: multiple two-inverted pendulums con- 352 

nected by an unknown device, [55] . 353 

4. Chaotic systems: Chuaâs circuit, Gyroscope systems, Duffing 354 

and Holmes systems, [27] . 355 

Remark 3. The proposed output constraint control strategy is gen- 356 

eral enough to cover both cooperative and bipartite consensus of 357 

networked nonlinear fractional-order (or integer-order) systems. 358 

The first motivation for studying the distributed bipartite output 359 

constraint controller is derived from industrial applications such as 360 

bipartite consensus in formation and flocking of multiple mechan- 361 

ical systems or polarization in opinion dynamics. One example is 362 
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the bipartite consensus problem for a network of fractional-order 363 

robots which collect information from both teammates and antag- 364 

onists to achieve agreement with the own team. Another typical 365 

example is the fractional-order model of social networks in which 366 

a pair of agents can be friends or rivals depending on their re- 367 

lationship such as trust/distrust, like/dislike, etc. Moreover, bipar- 368 

tite consensus in a network of fractional-order chaotic systems can 369 

be considered as one common example for the proposed control 370 

approach. 371 

4. Main results 372 

4.1. Control structure 373 

In this subsection, a fully distributed adaptive control structure 374 

using the backstepping methodology and BLF scheme is proposed 375 

for the network of fractional-order systems (16) and (17) under 376 

signed bipartite diagraph. 377 

Hereafter, symbol t in all equations is omitted for simplicity. 378 

To construct the proposed controller, the following coordination 379 

transformations are adopted 380 

βi, 1 = 

∑ 

j∈ N i 
| a i, j | (x i, 1 − sign (a i, j ) x j, 1 ) + b i (x i, 1 − μi x 0 , 1 ) , (19) 

381 

βi,k = x i,k − τi,k −1 , k = 2 , . . . , n i , (20) 

where β i ,1 is the distributed bipartite tracking error, β i , k is the er- 382 

ror surface, and τi,k −1 is the virtual control law. 383 

Remark 4. Distributed bipartite graph-based error surface (19) is 384 

used for the backstepping bipartite consensus tracking control de- 385 

sign such that the followers’ outputs ( x i ,1 ) ultimately synchronize 386 

to the leader output ( x 0,1 ) in modulus but different in sign for an- 387 

tagonistic agents. Moreover, the effects of graph signals for i th fol- 388 

lower agent (i.e., a i, j sign (a i, j ) 
C 
0 D 

q 
t x j, 1 and | b i | C 0 D 

q 
t x 0 , 1 ) are compen- 389 

sated in first virtual control law. 390 

Step one: From (16), (19) and (20) , one follows that 391 

C 
0 D 

q 
t βi, 1 = (c i + b i ) 

(
βi, 2 + τi, 1 + F i, 1 ( Q i, 1 ) + ρ̄i, 1 (t) 

)
, (21) 

where F i, 1 ( Q i, 1 ) = f i, 1 (x i, 1 ) −
∑ 

j∈ N i | a i, j | sign (a i, j ) 

c i + b i 
(
x j, 2 + f j, 1 (x j, 1 )) −392 

b i μi 
c i + b i 

C 
0 D 

q 
t x 0 , 1 

)
, ρ̄i, 1 = ρi, 1 −

(∑ 

j∈ N i | a i, j | sign (a i, j ) 

c i + b i 
)
ρ j, 1 and Q i, 1 = 393 

[ x 0 , 1 , x i, 1 , x j, 1 , x j, 2 ] 
T , j ∈ N i . 394 

According to the universal approximation property of RBF NNs, 395 

(21) is rewritten as 396 

C 
0 D 

q 
t βi, 1 = (c i + b i ) 

(
βi, 2 + τi, 1 + �∗T 

i, 1 φi, 1 ( Q i, 1 ) + ε i, 1 + ρ̄i, 1 

)
. (22) 

Now we design the virtual controllers and the adaptive laws as 397 

398 

τi, 1 = 

1 

c i + b i 

(
− αi, 1 βi, 1 −

χi βi, 1 

k 2 
b 

− β2 
i, 1 

)
− 1 

2 ω i, 1 

βi, 1 

k 2 
b 

− β2 
i, 1 

ˆ πi, 1 , (23) 

399 

C 
0 D 

q 
t ˆ πi, 1 = 

γi, 1 

2 ω i, 1 

(b i + c i ) 
β2 

i, 1 (
k 2 

i,b 
− β2 

i, 1 

)
2 

− γi, 1 σi, 1 ̂  πi, 1 , (24) 

where ˆ πi, 1 is the estimate of π ∗
i, 1 

= ς i, 1 || �∗
i, 1 

|| 2 , ς i, 1 ≥400 

φT 
i, 1 ( Q i, 1 ) φi, 1 ( Q i, 1 ) , ω i ,1 is a positive constant, αi ,1 and χ i are 401 

positive control gains, and γ i ,1 and σ i ,1 are positive adaption gain 402 

and sigma modification factor, respectively. 403 

Remark 5. In comparison to [6,31,34,42,43,47,53] , in order to elim- 404 

inate the over-parameterization drawback in conventional neu- 405 

ral approximators, by employing the MLP approach in proposed 406 

method, the scalar fractional-order adaptive laws for each follower 407 

are only updated, and there is no need to determine the centers of 408 

receptive fields and widths of basis functions. Besides, in contrast 409 

with [3,4,9,10,23,39,51] , due to using the MLP scheme, in (23) and 410 

(24) only relative output information is required to design the 411 

distributed control protocol. Therefore, communications between 412 

neighborhoods are significantly reduced, and the extended bipar- 413 

tite consensus approach can be easily implemented for a network 414 

with large number of followers. 415 

Choose the BLF candidate as 416 

V i, 1 = 

1 

2 

Ln 

k 2 
b 

k 2 
b 

− β2 
i, 1 

+ 

1 

2 γi, 1 

˜ π2 
i, 1 , (25) 

where ˜ πi, 1 = π ∗
i, 1 

− ˆ πi, 1 and k b is the preset bound of | β i ,1 | for 417 

∀ t ≥ 0. 418 

Remark 6. The Lyapunov method is a basic approach for investi- 419 

gating the stability of closed-loop nonlinear MASs. For the analysis 420 

of distributed adaptive fuzzy or neural control designs of integer- 421 

order MASs, the Lyapunov quadratic functions have been fre- 422 

quently utilized. According to Zouari et al. [55,56] , using this con- 423 

ventional class of Lyapunov functions to design controllers and an- 424 

alyze the stability of fractional-order nonlinear MASs is very com- 425 

plicated because of the unlimited series are produced by Lyapunov 426 

quadratic functions with fractional-order derivative. Recently, to 427 

deal with this problem, the Lyapunov fractional-order stability has 428 

been developed based on the fact that in stable fractional-order 429 

systems, the generalized energy does not decrease exponentially 430 

[56] . In this paper, the bipartite consensus stability analysis for 431 

nonlinear fractional-order MASs will be resolved by applying the 432 

Lyapunov fractional-order stability theorem and related lemmas. 433 

Using Lemma 2 and Property 1 , the following is obtained 434 

C 
0 D 

q 
t V i, 1 ≤

βi, 1 

k 2 
b 

− β2 
i, 1 

C 
0 D 

q 
t βi, 1 −

1 

γi, 1 

˜ πi, 1 
C 
0 D 

q 
t ˆ πi, 1 , (26) 

then along with (22) , one has 435 

C 
0 D 

q 
t V i, 1 ≤

βi, 1 

k 2 
b 

− β2 
i, 1 

(
(c i + b i ) 

(
βi, 2 + τi, 1 + �∗T 

i, 1 φi, 1 ( Q i, 1 ) 

+ ε i, 1 + ρ̄i, 1 

))
− 1 

γi, 1 

˜ πi, 1 
C 
0 D 

q 
t ˆ πi, 1 . (27) 

Via Lemma 4 , one obtains 436 

βi, 1 

k 2 
b 

− β2 
i, 1 

�∗T 
i, 1 φi, 1 ( Q i, 1 ) ≤

1 

2 ω i, 1 

β2 
i, 1 (

k 2 
b 

− β2 
i, 1 

)
2 
π ∗

i, 1 + 

1 

2 

ω i, 1 , (28) 

where ω i ,1 is defined under (24) . 437 

Substituting (23), (24) , and (28) into (27) , results in 438 

C 
0 D 

q 
t V i, 1 ≤

βi, 1 

k 2 
b 

− β2 
i, 1 

(
− αi, 1 βi, 1 −

χi βi, 1 

k 2 
b 

− β2 
i, 1 

+ (c i + b i ) (
βi, 2 + ε i, 1 + ρ̄i, 1 + 

1 

2 

ω i, 1 

))
+ σi, 1 ̃  πi, 1 ̂  πi, 1 . (29) 

Via Lemma 4 , one can obtain 439 

βi, 1 

k 2 
b 

− β2 
i, 1 

(
βi, 2 + ε i, 1 + ρ̄i, 1 

)
≤3 

2 

β2 
i, 1 (

k 2 
b 

− β2 
i, 1 

)
2 

+ 

1 

2 
β2 

i, 2 + 

1 

2 
ε ∗2 

i, 1 + 

1 

2 
ρ̄∗2 

i, 1 , 

(30) 

where | ̄ρi, 1 | ≤ ρ̄∗
i, 1 

and | ε i, 1 | ≤ ε ∗
i, 1 

. 440 

Combining (30) with (29) gives 441 

C 
0 D 

q 
t V i, 1 ≤ − αi, 1 

β2 
i, 1 

k 2 
b 

− β2 
i, 1 

−
(
χi −

3 

2 

) β2 
i, 1 (

k 2 
b 

− β2 
i, 1 

)
2 

+ 

1 

2 

(c i + b i ) β
2 
i, 2 + 

1 

2 

(c i + b i ) ε 
∗2 
i, 1 + 

1 

2 

(c i + b i ) ̄ρ
∗2 
i, 1 

+ 

1 

2 

(c i + b i ) ω i, 1 + σi, 1 ̃  πi, 1 ̂  πi, 1 . (31) 
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Inductive Step: From (16) and (20) , we have 442 

C 
0 D 

q 
t βi,k = βi,k +1 + τi,k + F i,k ( Q i,k ) + ρi,k , (32) 

where F i,k ( Q i,k ) = f i,k ( x i,k ) − C 
0 D 

q 
t τi,k −1 . 443 

According to the universal approximation capability of RBF NNs, 4 4 4 

(32) becomes 445 

C 
0 D 

q 
t βi,k = βi,k +1 + τi,k + �∗T 

i,k φi,k ( Q i,k ) + ε i,k + ρi,k . (33) 

Now the virtual control and the adaptive law are designed as 446 

τi,k = −αi,k βi,k −
1 

2 ω i,k 

βi,k ̂  πi,k , (34) 

447 
C 
0 D 

q 
t ˆ πi,k = 

γi,k 

2 ω i,k 

β2 
i,k − γi,k σi,k ̂  πi,k , (35) 

where ˆ πi,k is the estimate of π ∗
i,k 

= ς i,k || �∗
i,k 

|| 2 , ς i,k ≥448 

φT 
i, 1 ( Q i,k ) φi,k ( Q i,k ) , ω i , k is a positive constant, αi , k is positive 449 

control gain, and γ i , k and σ i , k are positive adaption gain and 450 

sigma modification factor, respectively. 451 

Define a Lyapunov function candidate as 452 

V i,k = 

1 

2 

β2 
i,k + 

1 

2 γi,k 

˜ π2 
i,k , (36) 

where ˜ πi,k = π ∗
i,k 

− ˆ πi,k . 453 

Considering (33) and (36) , it follows that 454 

C 
0 D 

q 
t V i,k ≤ βi,k 

(
βi,k +1 + τi,k + �∗T 

i,k φi,k ( Q i,k ) + ε i,k + ρi,k 

)
− 1 

γi,k 

˜ πi,k 
C 
0 D 

q 
t ˆ πi,k . (37) 

Similar to first step, one has 455 

βi,k �
∗T 
i,k φi,k ( Q i,k ) ≤

1 

2 ω i,k 

β2 
i,k π

∗
i,k + 

1 

2 

ω i,k , (38) 

where ω i , k is defined under (35) . 456 

Substituting (34), (35) , and (38) into (37) yields 457 

C 
0 D 

q 
t V i,k ≤ βi,k 

(
− αi,k βi,k + βi,k +1 + ε i,k + ρi,k 

)
+ 

1 

2 ω i,k 

+ σi,k ̃  πi,k ̂  πi,k . 

(39) 

Moreover, the following inequality holds 458 

βi,k 

(
βi,k +1 + ε i,k + ρi,k 

)
≤ 3 

2 

β2 
i,k + 

1 

2 

β2 
i,k +1 + 

1 

2 

ε ∗2 
i,k + 

1 

2 

ρ∗2 
i,k , (40) 

where | ρi,k | ≤ ρ∗
i,k 

and | ε i,k | ≤ ε ∗
i,k 

. 459 

Substituting (40) in (39) , we have 460 

C 
0 D 

q 
t V i,k ≤ −

(
αi,k −

3 

2 

)
β2 

i,k + 

1 

2 
β2 

i,k +1 + 

1 

2 ω i,k 

+ 

1 

2 
ε ∗2 

i,k + 

1 

2 
ρ∗2 

i,k + σi,k ̃  πi,k ̂  πi,k . 

(41) 

Final step: According to (20) , one has 461 

C 
0 D 

q 
t βi,n i = u i + F i,n i ( Q i,n i 

) + ρi,n i , (42) 

where F i,n i ( Q i,n i 
) = f i,n i ( x i,n i ) − C 

0 
D 

q 
t τi,n i −1 . Using RBF NNs to ap- 462 

proximate unknown nonlinearities, (42) we have 463 

C 
0 D 

q 
t βi,n i = u i + �∗T 

i,n i 
φi,n i 

( Q i,n i 
) + ε i,n i + ρi,n i . (43) 

Now the actual control and adaptive laws are designed as fol- 464 

lows 465 

u i = −αi,n i βi,n i −
1 

2 ω i,n i 

βi,n i ˆ πi,n i , (44) 

466 

C 
0 D 

q 
t ˆ πi,n i = 

γi,n i 

2 ω i,n i 

β2 
i,n i 

− γi,n i σi,n i ˆ πi,n i , (45) 

where ˆ πi,n i 
is the estimate of π ∗

i,n i 
= ς i,n i 

|| �∗
i,n i 

|| 2 , ς i,n i 
≥467 

φT 
i,n i 

( Q i,n i 
) φi,n i 

( Q i,n i 
) , ω i,n i 

is a positive constant, αi,n i 
is a positive 468 

control gain, and γi,n i 
and σi,n i 

are positive adaption gain and 469 

sigma modification factor, respectively. 470 

The Lyapunov function candidate is considered as 471 

V i,n i = 

1 

2 

β2 
i,n i 

+ 

1 

2 γi,n i 

˜ π2 
i,n i 

, (46) 

where ˜ πi,n i 
= π ∗

i,n i 
− ˆ πi,n i 

. 472 

Via Lemma 2 and (43) , one can obtain 473 

C 
0 D 

q 
t V i,n i ≤ βi,n i 

(
u i + �∗T 

i,n i 
φi,n i 

( Q i,n i 
) + ε i,n i + ρi,n i 

)
− 1 

γi,n i 

˜ πi,n i 
C 
0 D 

q 
t ˆ πi,n i . 

(47) 

Similar to previous steps, one has 474 

βi,n i �
∗T 
i,n i 

φi,n i 
( Q i,n i 

) ≤ 1 

2 ω i,n i 

β2 
i,n i 

π ∗
i,n i 

+ 

1 

2 

ω i,n i , (48) 

where ω i,n i 
is defined under (45) . 475 

Considering (44), (45), (48) , and (47) , we have 476 

C 
0 D 

q 
t V i,n i ≤ βi,n i 

(
− αi,n i βi,n i + ε i,n i + ρi,n i 

)
+ 

1 

2 

ω i,n i + σi,n i ˜ πi,n i ˆ πi,n i . 

(49) 

Via Lemma 4 , one has 477 

βi,n i 

(
ε i,n i + ρi,n i 

)
≤ β2 

i,n i 
+ 

1 

2 

ε ∗2 
i,n i 

+ 

1 

2 

ρ∗2 
i,n i 

, (50) 

where | ρi,n i 
| ≤ ρ∗

i,n i 
and | ε i,n i | ≤ ε ∗

i,n i 
. 478 

Note to (50), (49) can be rewritten as 479 

C 
0 D 

q 
t V i,n i ≤ −

(
αi,n i − 1 

)
β2 

i,n i 
+ 

1 

2 
ε ∗2 

i,n i 
+ 

1 

2 
ρ∗2 

i,n i 
+ 

1 

2 ω i,n i 

+ σi,n i ̃  πi,n i ̂  πi,n i . 

(51) 

4.2. Bipartite consensus analysis 480 

To consider the bipartite consensus tracking analysis of the 481 

overall closed-loop network system, select the following Lyapunov 482 

candidate function 483 

V = 

N ∑ 

i =1 

n i ∑ 

k =1 

V i,k . (52) 

Theorem 1. Consider the closed-loop network system including the 484 

fractional-order agents (16) , (17) and the fully distributed adap- 485 

tive neural bipartite consensus control laws (23) , (34) , (44) with 486 

the neural laws (24) , (35) , (45) under Assumptions 1 –3. If 487 

αi, 1 > 0 , αi, 2 > 

3 
2 − 1 

2 (c i + b i ) , αi, 3 > 2 , . . . , αi,n i −1 > 2 , αi,n i 
> 

3 
2 , and 488 

σi, 1 γi, 1 > 0 , . . . , σi,n i 
γi,n i 

> 0 , then all signals of the closed-loop net- 489 

work system are uniformly ultimate bounded, while the followers’ out- 490 

puts constraints | y i | ≤ k c , ∀ t ≥ 0 are not violated. 491 

Proof. Considering (31), (41) , and (51) , one can obtain 492 

C 
0 D 

q 
t V ≤

N ∑ 

i =1 

{ 

− αi, 1 

β2 
i, 1 

k 2 
b 

− β2 
i, 1 

−
(
αi, 2 −

3 

2 

− 1 

2 

(c i + b i ) 
)
β2 

i, 2 

−
n i −1 ∑ 

m =3 

(
αi,m 

− 2 

)
β2 

i,m 

−
(
αi,n i −

3 

2 

)
β2 

i,n i 

−
n i ∑ 

m =1 

σi,m ̃

 π2 
i,m 

+ 

1 

2 

(c i + b i ) ε 
∗2 
i, 1 

+ 

1 

2 

(c i + b i ) ̄ρ
∗2 
i, 1 + 

1 

2 

(c i + b i ) ω i, 1 + 

1 

2 

n i ∑ 

m =2 

ε ∗2 
i,m 

+ 

n i ∑ 

m =2 

1 

2 

ω i,m 

+ 

1 

2 

n i ∑ 

m =2 

ρ∗2 
i,m 

+ 

n i ∑ 

m =1 

σi,m 

π ∗2 
i,m 

} 

. (53) 
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Then according to Lemma 5 , (53) can be rewritten as follows 493 

C 
0 D 

q 
t V ≤

N ∑ 

i =1 

{ 

− αi, 1 Ln 

k 2 
b 

k 2 
i,b 

− β2 
i, 1 

−
(
αi, 2 −

3 

2 

− 1 

2 

(c i + b i ) 
)
β2 

i, 2 

−
n i −1 ∑ 

m =3 

(
αi,m 

− 2 

)
β2 

i,m 

−
(
αi,n i −

3 

2 

)
β2 

i,n i 

−
n i ∑ 

m =1 

σi,m ̃

 π2 
i,m 

+ 

1 

2 

(c i + b i ) ε 
∗2 
i, 1 

+ 

1 

2 

(c i + b i ) ̄ρ
∗2 
i, 1 + 

1 

2 

(c i + b i ) ω i, 1 + 

1 

2 

n i ∑ 

m =2 

ε ∗2 
i,m 

+ 

n i ∑ 

m =2 

1 

2 

ω i,m 

+ 

1 

2 

n i ∑ 

m =2 

ρ∗2 
i,m 

+ 

n i ∑ 

m =1 

σi,m 

π ∗2 
i,m 

} 

. (54) 

Now by defining 494 

η = min 

i =1 , ... ,N 

{
2 αi, 1 , 2 

(
αi, 2 −

3 

2 

− 1 

2 

(c i + b i ) 
)
, 2 

(
αi, 3 − 2 

)
, . . . , 

2 

(
αi,n i −1 − 2 

)
, 2 

(
αi,n i −

3 

2 

)
, σi, 1 γi, 1 , σi, 2 γi, 2 , . . . , 

σi,n i −1 γi,n i −1 , σi,n i γi,n i 

}
, (55) 

495 


 = 

N ∑ 

i =1 

{
1 

2 

(c i + b i ) ε 
∗2 
i, 1 + 

1 

2 

(c i + b i ) ̄ρ
∗2 
i, 1 + 

1 

2 

(c i + b i ) ω i, 1 

+ 

1 

2 

n i ∑ 

m =2 

ε ∗2 
i,m 

+ 

n i ∑ 

m =2 

1 

2 

ω i,m 

+ 

1 

2 

n i ∑ 

m =2 

ρ∗2 
i,m 

+ 

n i ∑ 

m =1 

σi,m 

π ∗2 
i,m 

}
, (56) 

(54) becomes 496 

C 
0 D 

q 
t V ≤ −ηV + 
. (57) 

From Lemma 3 , we have 497 

V ≤ V (0) E (q, 1) (−ηt q ) + 


� 

η
. (58) 

Based on Lemma 1 , it is easy to obtain that V (t) ≤ 
� 

η , 498 

for t → ∞ . So, V ( t ) is bounded. Therefore, it is ensured that 499 

βi, 1 , . . . , βi,n i 
and ˜ πi, 1 , . . . , ˜ πi,n i 

are bounded. According to Assump- 500 

tion 2 and the definition π ∗
i,k 

= ς i,k || �∗
i,k 

|| 2 for k = 1 , . . . , n i , the 501 

boundedness of π ∗
i, 1 

, . . . , π ∗
i,n i 

is obvious. Due to ˆ πi,k = π ∗
i,k 

+ ˜ πi,k , 502 

it implies that ˆ πi, 1 , . . . , ˆ πi,n i 
are also bounded. Therefore, the q - 503 

order fractional derivative of adaptive laws C 
0 

D 

q 
t ˆ πi, 1 , . . . , 

C 
0 

D 

q 
t ˆ πi,n i 

are 504 

bounded according to (24), (35) and (45) . On the other hand, the 505 

following inequalities hold 506 

N ∑ 

i =1 

k 2 
b 

k 2 
b 

− β2 
i, 1 

≤ exp 

(
2 V (0) E (q, 1) (−ηt q ) + 2 


� 

η

)
, 

| βi, 1 | ≤k b 

√ 

1 − exp 

(
−2 V (0) E (q, 1) (−ηt q ) − 2 


� 

η

)
, (59) 

for i = 1 , 2 , . , N. Then, from (59) and based on Lemma 1 , one has 507 

| βi, 1 | ≤ k b 

√ 

1 − exp 

(
−2 


� 

η

)
, (60) 

as t → ∞ , hence, distributed bipartite tracking errors are restricted 508 

to preset bounds for all times, i.e., | β i ,1 | ≤ k b , ∀ t ≥ 0. It is clear that 509 

|| β1 || ≤
√ 

N k b , where β1 = [ β1 , 1 , . . . , βN, 1 ] 
T . Then, from (19) , it is 510 

obtained that | λi | ≤ || λ|| ≤
√ 

N k b 
σ̄ (L + B ) , where λ = [ λ1 , . . . , λN ] 

T . From 511 

λi = x i, 1 − μi x 0 , 1 and | x 0,1 | ≤ A 1 , it shown that | x i, 1 | ≤ | λi | + | x 0 , 1 | ≤512 

√ 

N k b 
σ̄ (L + B ) + A 1 . Define k c = 

√ 

N k b 
σ̄ (L + B ) + A 1 , and then | x i ,1 | ≤ k c . Therefore, 513 

the followers’ outputs are not violated. From (58) , it is verified that 514 

β i , k is bounded for i = 1 , . , N, k = 2 , . , n i as follows 515 

| βi,k | ≤
√ 

2 V (0) E (q, 1) (−ηt q ) + 2 


� 

η
. (61) 

According to the virtual and actual control laws in (23), (34) , and 516 

(44) , one infers that τi, 1 , . . . , τi,n i 
and u i are all bounded. Then, 517 

based on (20) , x i , k for i = 1 , . , N, k = 2 , . , n i is also bounded. On the 518 

other hand, because f i,k ( x i.k ) is a real smooth function and ρ i , k is a 519 

real bounded external disturbance, from (16) , it is clear that C 0 D 

αl 
t x l 520 

is bounded. In summary, all signals in the closed-loop network sys- 521 

tem is bounded. This completes the proof. � 522 

Remark 7. The control approaches in [18–20,37,41,55,56] are only 523 

valuable for nonlinear fractional-order systems without commu- 524 

nication graph. However, in this work we consider the problem 525 

of bipartite consensus tracking for multiple nonlinear fractional- 526 

order systems with followers’ output constraints. Hence, compared 527 

to these mentioned studies, in the proposed control approach, 528 

it is necessary to consider communication between the agents, 529 

coupling dynamics from neighborhoods and so forth. Moreover, 530 

in some existing fractional-order results [36] , unknown fractional 531 

derivatives of virtual controls are appeared in control laws, due to 532 

fact that the Leibniz rule is not satisfied for the fractional deriva- 533 

tives. Hence, in this work by defining composite uncertainties (i.e., 534 

F i,k ( x i,k ) ) and employing MLP approach in RBF NNs, this problem 535 

is effectively resolved. 536 

Remark 8. In MASs, to reduce the undesirable effects of exter- 537 

nal disturbances and neural approximation errors on the consen- 538 

sus stability of closed-loop networked system and furthermore, in 539 

order to improve the consensus control performance, the tuning of 540 

design parameters should be appropriately done. An effective se- 541 

lection of the design parameters is only a sufficient condition to 542 

guarantee the consensus stability of the networked system. From 543 

(58) , we see that large values of αi , k , γ i , k and small value of σ i , k 544 

provide faster convergence and also smaller ultimate bounds. How- 545 

ever, in this situation, the control cost becomes too large and the 546 

transient state behavior may be oscillating. 547 

For the bipartite consensus problem of multiple uncertain 548 

fractional-order systems without any output constraints, the fol- 549 

lowing Corollary is derived by eliminating the BLF from Theorem 1 . 550 

Corollary 1. Consider the networked fractional-order systems 551 

(16) and (17) controlled by 552 

τi,k = −αi,k βi,k −
1 

2 πi,k 

βi,k ̂  πi,k , (62) 

553 

C 
0 D 

q 
t ˆ πi,k = 

γi,k 

2 ω i,k 

β2 
i,k − γi,k σi,k ̂  πi,k , (63) 

for i = 1 , . . . , N and k = 1 , . , n i , where τi,n i 
= u i . Under Assumptions 554 

1 –3, it can be proved that the distributed bipartite tracking errors are 555 

converged to an adjustable neighborhood of the origin. 556 

Proof. To prove the boundedness of closed-loop signals, one fol- 557 

lows the proof procedure of Theorem 1 considering the Lyapunov 558 

candidate function as V = 

∑ N 
i =1 

∑ n i 
k =1 

(
1 
2 β

2 
i,k 

+ 

1 
2 γi,k 

˜ π2 
i,k 

)
. � 559 

5. Simulation results 560 

In this section, to demonstrate the applicability and effective- 561 

ness of the introduced control approach, the simulation results 562 

for three examples are derived. Based on [36] , for numerical solu- 563 

tion of nonlinear fractional-order differential equations, Grunwald 564 
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Fig. 1. Communication graph of first example. 

Fig. 2. Bipartite consensus performance, example one. 

Letnikov definition is utilized with sample time 1 ( ms ) in MAT- 565 

LAB© software. 566 

Example one (Numerical simulation) . The nonlinear dynamics of 567 

a fractional-order follower are described as 568 ⎧ ⎨ 

⎩ 

C 
0 D 

0 . 9 
t x i, 1 = x i, 2 + f i, 1 ( x i, 1 ) + ρi, 1 , 

C 
0 D 

0 . 9 
t x i, 2 = u i + f i, 2 ( x i, 2 ) + ρi, 2 , 

y i = x i, 1 , 

(64) 

where the followers’ outputs are restricted to | x i, 1 | ≤ k c = 1 . 2 , ∀ t 569 

≥ 0 . 570 

The nonlinear functions in (64) are selected as f 1 , 1 ( x 1 , 1 ) = 571 

0 . 1 x 1 , 1 , f 1 , 2 ( x 1 , 2 ) = x 1 , 1 x 1 , 2 + exp (−x 1 , 1 x 1 , 2 ) , f 2 , 1 ( x 2 , 1 ) = −0 . 1 x 2 , 1 , 572 

f 2 , 2 ( x 2 , 2 ) = x 2 , 2 , f 3 , 1 ( x 3 , 1 ) = x 3 , 1 , f 3 , 2 ( x 3 , 2 ) = x 2 
3 , 2 

, f 4 , 1 ( x 4 , 1 ) = x 4 , 1 573 

cos 2 (x 4 , 1 ) , f 4 , 2 ( x 4 , 2 ) = x 4 , 2 , ρ1 , 1 (t) = . . . = ρ4 , 2 (t) = 0 . 1 sin (t) . 574 

The initial states of the agents and controller are x 1 (0) = 575 

[0 . 02 , 0 . 03] T , x 2 (0) = [ −0 . 02 , 0] T , x 3 (0) = [0 , 0 . 05] T , x 4 (0) = [0 . 01 , 576 

0] T and ˆ πi,k (0) = 0 for all the follower agents. Control parame- 577 

ters are also selected as αi, 1 = 15 , αi, 2 = 7 , γi,k = 1 , σi,k = 0 . 1 and 578 

ω i,k = 0 . 1 for i = 1 , . . . , 4 and k = 1 , 2 . 579 

For the simulation study, the connected signed bipartite dia- 580 

graph consisting of four follower agents and one leader as depicted 581 

in Fig. 1 is proposed. The graph is structurally balanced, containing 582 

a directed spanning tree with leader as a root and only the first 583 

follower has directly access to the information of leader. In Fig. 1 , 584 

the blue and red edges display the cooperative and competitive in- 585 

teractions among the followers, respectively. Figs. 2 –7 are depicted 586 

to show the followers’ output constraint performance for the bipar- 587 

tite consensus of a networked fractional-order nonlinear systems. 588 

From Fig. 2 , it is obvious that the bipartite consensus tracking 589 

performance of distributed control protocol between the followers 590 

and leader is well obtained within two sub-networks V 1 = { 1 , 2 } 591 

and V 2 = { 3 , 4 } , where x i, 1 → x 0 , 1 , ∀ i ∈ V 1 and x i, 1 → −x 0 , 1 , ∀ i ∈ V 2 . 592 

Moreover, it can be seen that the followers’ outputs stays within 593 

the preset bounds when the proposed control protocol is applied. 594 

In Fig. 3 , the distributed bipartite tracking errors are shown, from 595 

which, it can be obtained that β i ,1 < k b and βi, 1 > −k b , ∀ t ≥ 0 . Sim- 596 

ilar to Fig. 3, Fig. 4 is depicted to demonstrate that the local bipar- 597 

tite tracking errors are limited to a fairly small neighborhood of the 598 

origin. From Figs. 2 –4 , it can be deduced that the states constraints 599 

Fig. 3. Distributed bipartite tracking errors, example one. 

Fig. 4. Local bipartite tracking errors, example one. 

Fig. 5. States, example one. 

Fig. 6. Control inputs, example one. 

are not overstepped. The trajectories of states x i ,2 for i = 1 , . , N are 600 

described in Fig. 5 . From Fig. 6 , it is clear that the control inputs 601 

are also bounded. The trajectories of adaptive parameters are de- 602 

picted in Fig. 7 , and it is obvious that the approximated parameters 603 

are all bounded. According to the simulation results, it is confirmed 604 

that the bipartite consensus tracking performance is achieved, the 605 

followers’ outputs constraints are not violated, and all the closed- 606 

loop network signals are also bounded. 607 
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Fig. 7. Nueral network parameters, example one. 
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Fig. 8. Communication graph of second example. 

Example two (Performance comparison). In order to illustrate the 608 

applicability and advantages of the proposed control strategy in 609 

Theorem 1 , the performance of investigated control architecture in 610 

Theorem 1 is compared to the algorithm in Corollary 1 for mul- 611 

tiple fractional-order systems described by (65) under the graph 612 

topology displayed in Fig. 8 . 613 

All follower agents are described by a fractional-order differ- 614 

ential equations in strict-feedback form, and their dynamics for 615 

i = 1 , . . . , 4 are written as 616 { C 
0 D 

0 . 75 
t x i, 1 = x i, 2 + f i, 1 ( x i, 1 ) + ρi, 1 , 

C 
0 D 

0 . 75 
t x i, 2 = u i + f i, 2 ( x i, 2 ) + ρi, 2 , 

y i = x i, 1 , 
(65) 

in which the nonlinear functions are selected as f 1 , 1 ( x 1 , 1 ) = 617 

0 . 1 x 1 , 1 cos 2 (x 1 , 1 ) , f 1 , 2 ( x 1 , 2 ) = sin (x 1 , 1 ) x 1 , 2 , f 2 , 1 ( x 2 , 1 ) = 618 

−0 . 1 x 2 2 , 1 , f 2 , 2 ( x 2 , 2 ) = exp (x 2 , 2 ) , f 3 , 1 ( x 3 , 1 ) = 

1 

x 2 
3 , 1 

+1 
, f 3 , 2 ( x 3 , 2 ) = 619 

x 3 , 1 x 3 , 2 , f 4 , 1 ( x 4 , 1 ) = x 4 , 1 tanh 

2 (x 4 , 1 ) , f 4 , 2 ( x 4 , 2 ) = 0 . 1 x 4 , 1 , and 620 

ρ1 , 1 = . . . = ρ4 , 2 = 0 . 621 

The initial states of the agents and controller are chosen as be- 622 

fore. The design parameters are selected as αi, 1 = 15 , αi, 2 = 7 for 623 

i = 1 , 2 , 3 , α4 , 1 = 20 , α4 , 2 = 20 and γi,k = 1 , σi,k = 0 . 7 , ω i,k = 1 for 624 

i = 1 , . . . , 4 and k = 1 , 2 . Two cases are of interest 625 

Case 1. The proposed control method in Theorem 1 is used for 626 

the multiple fractional-order systems described in (65) , 627 

where the followers’ outputs are restricted to | x i, 1 | ≤ k c = 628 

1 . 1 , ∀ t ≥ 0 . 629 

Case 2. The proposed control method in Corollary 1 , which is the 630 

general distributed backstepping design without employing 631 

the barrier Lyapunov function scheme is used for the mul- 632 

tiple fractional-order systems described in (65) . 633 

Figs. 9 and 10 display the corresponding curves of the dis- 634 

tributed and local bipartite consensus errors, respectively. Ac- 635 

cording to Figs. 9 and 10 , it is deduced that a better bipartite 636 

consensus tracking performance is obtained for case 1 due to 637 

employing BLF approach. From Figs. 9 a and 10 a, it is clear that 638 

the distributed bipartite consensus errors satisfy the constraint 639 

| β i ,1 | < 0.1 for i = 1 , . , 4 and the advantage of utilizing the BLF 640 

strategy is well perceived. However, in case 2, the distributed 641 

consensus bipartite errors for third and fourth agents violate the 642 

preset error constraints. In Figs. 10 a and b, the local bipartite 643 

tracking errors are given under case 1 and 2, respectively. It can 644 

be deduced that in both cases, the bipartite consensus tracking 645 

objective is obtained, and the local bipartite tracking errors stay 646 

strictly within the different constrained bounds. However, in case 647 

1, more accuracy for bipartite consensus performance is achieved 648 

because of employing BLF strategy. 649 

Example three (Practical example) . To show the effectiveness of 650 

the proposed method in practical situations, bipartite consensus 651 

problem for a network of homogeneous chaotic Chua –Hartleys sys- 652 

tems is considered. The fractional-order dynamics of the Chua – 653 

Hartleys systems for i = 1 , . . . , 4 are described as [27] 654 ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

C 
0 D 

0 . 98 
t x i, 1 = x i, 2 + f i, 1 ( x i, 1 ) + ρi, 1 , 

C 
0 D 

0 . 98 
t x i, 1 = x i, 3 + f i, 2 ( x i, 2 ) + ρi, 2 , 

C 
0 D 

0 . 98 
t x i, 2 = u i + f i, 3 ( x i, 3 ) + ρi, 3 , 

y i = x i, 1 , 

(66) 

where f i, 1 ( x i, 1 ) = 

10 
7 (x i, 1 − x 3 

i, 1 
) , f i, 2 ( x i, 2 ) = 10 x i, 1 − x i, 2 , f i, 3 ( x i, 3 ) = 655 

− 100 
7 x i, 2 , ρi, 1 = 0 , ρi, 2 = 0 and ρi, 3 = sin (0 . 5 t) . In this example, the 656 

communication graph is considered the same as in example one, 657 

i.e., Fig. 1 . The design parameters are chosen as αi, 1 = 15 , αi, 2 = 658 

7 , γi,k = 1 , σi,k = 0 . 1 and ω i,k = 0 . 1 for i = 1 , . . . , 4 and k = 1 , 2 , 3 . 659 

The simulation is derived and the results are shown in Figs. 11 – 660 

14 . Fig. 11, Fig. 12 and Fig. 13 show the state variables x i ,1 , x i ,2 and 661 

x i ,3 for k = 1 , . . . 4 , respectively. Fig. 14 shows the distributed bipar- 662 

tite tracking errors. From Figs. 11 –14 it is obvious that the signals 663 

are all bounded. 664 

(a) Case 1. (b) Case 2.
Fig. 9. Distributed bipartite tracking errors, example two. 
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(a) Case 1. (b) Case 2.
Fig. 10. Local bipartite tracking errors, example two. 

Fig. 11. Bipartite consensus performance, example three. 

Fig. 12. Second states, example three. 

Fig. 13. Third states, example three. 

Remark 9. It would be more practical to consider unknown con- 665 

trol direction problem [28,29,35] for a network of fractional-order 666 

systems. Such a design is important and challenging because the 667 

Nussbaum function design for multiple fractional-order systems, 668 

requires designing infinite dimensional Nussbaum functions. It will 669 

be considered as one of our future works. 670 

Fig. 14. Distributed bipartite tracking errors, example three. 

6. Conclusion 671 

This work has considered the distributed adaptive bipartite con- 672 

sensus problem for multiple uncertain nonlinear fractional-order 673 

systems in strict-feedback form with both unknown function and 674 

the output constraints. The problem of followers output constraint 675 

is resolved using the barrier Lyapunov function method. Multi- 676 

ple fractional-order strict-feedback dynamics have been studied by 677 

employing backstepping approach and neural networks where less 678 

learning parameters have been adjusted online in controller design. 679 

In this paper, the problem of less learning parameters for multi- 680 

ple fractional-order systems with both nonlinear uncertainties and 681 

output/state constraints have been investigated for the first time. 682 

By employing barrier Lyapunov function scheme and some appro- 683 

priate Lemmas, proof of the proposed control strategy is derived 684 

such that the followers’ outputs constraints have been ensured. 685 

Moreover, all the closed-loop network signals are SGUUB. Addi- 686 

tionally, the distributed (or local) bipartite tracking errors are con- 687 

verged to a small neighborhood of zero. Finally, three simulation 688 

examples are given to verify the effectiveness of proposed method 689 

in theory and practice. 690 
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