HIGHER CODERIVATIONS ON COALGEBRAS AND CHARACTERIZATION

E. TAFAZOLI ${ }^{1}$ AND M. MIRZAVAZIRI ${ }^{2}$

Abstract

In this paper we define higher coderivations on a coalgebra C and then we characterize them in terms of the coderivations on C. Indeed, we show that each higher coderivation is a combination of compositions of coderivations. Finally we prove a one to one correspondence between the set of all higher coderivations on C and all sequences of coderivations on C.

1. Introduction

A coalgebra (C, Δ, ε) over a field κ is a κ-vector space C together with the κ linear maps $\Delta: C \rightarrow C \otimes C$ and $\varepsilon: C \rightarrow \kappa$, such that $\left(I_{C} \otimes \Delta\right) \Delta=\left(\Delta \otimes I_{C}\right) \Delta$, (coassociativity) and $\left(I_{C} \otimes \varepsilon\right) \Delta=\left(\varepsilon \otimes I_{C}\right) \Delta$, (counitary). The maps Δ and ε are called, respectively, coproduct and counit of the coalgebra C. Given an element c of the coalgebra (C, Δ, ε), we know that there exist elements $c_{1, i}$ and $c_{2, i}$ in C such that $\Delta(c)=\sum_{i} c_{1, i} \otimes c_{2, i}$. In Sweedlers notation, this is abbreviated to $\sum c_{(1)} \otimes c_{(2)}$. Here, the subscripts "(1)" and "(2)" indicate the order of the factors in the tensor product. For more about basic definitions in coalgebras notion, you can see [1] and [3].

A κ-linear map $f: C \rightarrow C$ on a κ-coalgebra (C, Δ, ε) is called a coderivation if $\Delta f=\left(I_{C} \otimes f+f \otimes I_{C}\right) \Delta$. One can see examples and a general definition of coalgebras and coderivations in the sense of comodules in $[2,4,6]$. In this paper we define higher coderivations on a coalgebra C and then characterize them in terms of the coderivations on C. Indeed, we show that each higher coderivation is a combination of compositions of coderivations. As a corollary we characterize all higher coderivations which are ordinary. We have some nearly same properties for higher derivations, you

[^0]can see in [5] and [7]. Throughout the paper, all coalgebras are assumed over a field of characteristic zero.

2. The Results

Throughout the paper, C denotes a coalgebra over a field of characteristic zero and I is the identity mapping on C. A coalgebra (C, Δ, ε) over a field κ is a κ-vector space C together with the κ-linear maps $\Delta: C \rightarrow C \otimes C$ and $\varepsilon: C \rightarrow \kappa$, such that $\left(I_{C} \otimes \Delta\right) \Delta=\left(\Delta \otimes I_{C}\right) \Delta$, (coassociativity), and $\left(I_{C} \otimes \varepsilon\right) \Delta=\left(\varepsilon \otimes I_{C}\right) \Delta$, (counitary). The maps Δ and ε are called, respectively, coproduct and counit of the coalgebra C. A κ-linear map $f: C \rightarrow C$ on a κ-coalgebra (C, Δ, ε) is called a coderivation if $\Delta f=\left(I_{C} \otimes f+f \otimes I_{C}\right) \Delta$.

Now we define a new concept, named higher coderivation and then characterize this, but at first we prove some properties, following.

Proposition 2.1. If f is a coderivation on coalgebra (C, Δ, ε), then we have

$$
\begin{equation*}
\Delta f^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(f^{k} \otimes f^{n-k}\right) \Delta \tag{2.1}
\end{equation*}
$$

for each nonnegative integer n.
Proof. We use induction on n. For $n=1$ and $a \in C$ we have

$$
\Delta f(a)=\sum a_{(1)} \otimes f\left(a_{(2)}\right)+f\left(a_{(1)}\right) \otimes a_{(2)}
$$

and its true, since f is a coderivation on C. Now suppose that the equality is true for n, then for $n+1$, in the left side of equality, we have

$$
\Delta f^{n+1}(a)=\Delta f^{n}(f(a))=\sum_{k=0}^{n}\binom{n}{k}\left(f^{k} \otimes f^{n-k}\right) \Delta(f(a))
$$

because of f being a coderivation, we have

$$
\begin{aligned}
\Delta f^{n+1}(a) & =\sum_{k=0}^{n}\binom{n}{k}\left(f^{k} \otimes f^{n-k}\right)(I \otimes f+f \otimes I) \Delta(a) \\
& =\sum_{k=0}^{n} \sum\binom{n}{k} f^{k}\left(a_{(1)}\right) \otimes f^{n+1-k}\left(a_{(2)}\right)+f^{k+1}\left(a_{(1)}\right) \otimes f^{n-k}\left(a_{(2)}\right) .
\end{aligned}
$$

On the other side we have

$$
\begin{aligned}
& \sum_{k=0}^{n+1}\binom{n+1}{k}\left(f^{k} \otimes f^{n+1-k}\right) \Delta(a) \\
= & \sum_{k=0}^{n+1} \sum\binom{n+1}{k} f^{k}\left(a_{(1)}\right) \otimes f^{n+1-k}\left(a_{(2)}\right) \\
= & {\left[\sum_{k=0}^{n} \sum\left(\binom{n}{k}+\binom{n}{k-1}\right)\left(f^{k}\left(a_{(1)}\right) \otimes f^{n+1-k}\left(a_{(2)}\right)\right)\right]+f^{n+1}\left(a_{(1)}\right) \otimes a_{(2)} }
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\sum_{k=0}^{n} \sum\binom{n}{k} f^{k}\left(a_{(1)}\right) \otimes f^{n+1-k}\left(a_{(2)}\right)\right.} \\
& \left.+\sum_{k=-1}^{n-1} \sum\binom{n}{k}\left(f^{k+1}\left(a_{(1)}\right) \otimes f^{n+1-(k+1)}\left(a_{(2)}\right)\right)\right]+f^{n+1}\left(a_{(1)}\right) \otimes a_{(2)} \\
= & \sum_{k=0}^{n} \sum\binom{n}{k} f^{k}\left(a_{(1)}\right) \otimes f^{n+1-k}\left(a_{(2)}\right)+\sum_{k=-1}^{n} \sum\binom{n}{k} f^{k+1}\left(a_{(1)}\right) \otimes f^{n-k}\left(a_{(2)}\right),
\end{aligned}
$$

and we have the result.
We name the relation (2.1) general coLiebnitz rule for coderivations.
If we define a sequence $\left\{f_{n}\right\}$ of linear mappings on C by $f_{0}=I$ and $f_{n}=\frac{\lambda^{n}}{n!}$, where I is the identity mapping on C, then general coLeibniz rule ensures us that f_{n} 's satisfy the condition

$$
\begin{equation*}
\Delta f_{n}=\sum_{k=0}^{n}\left(f_{k} \otimes f_{n-k}\right) \Delta \tag{2.2}
\end{equation*}
$$

for each nonnegative integer n. This motivates us to consider the sequences $\left\{f_{n}\right\}$ of linear mappings on a coalgebra C satisfying (2.2). We call such a sequence a higher coderivation.

Definition 2.1. Let C be a coalgebra. We define a sequence $\left\{f_{n}\right\}$ of linear mappings on C a higher coderivation if $\Delta f_{n}(a)=\sum_{k=0}^{n}\left(f_{k} \otimes f_{n-k}\right) \Delta(a)$ for each $a \in C$ and each nonnegative integer n.

Though, if $\lambda: C \rightarrow C$ is a coderivation then $f_{n}=\frac{\lambda^{n}}{n!}$ is a higher coderivation. We name this kind of higher coderivation an ordinary higher coderivation.

Proposition 2.2. Let $\left\{f_{n}\right\}$ be a higher coderivation on a coalgebra C with $f_{0}=I$. Then there is a sequence $\left\{\lambda_{n}\right\}$ of coderivations on C such that

$$
(n+1) f_{n+1}=\sum_{k=0}^{n} f_{n-k} \lambda_{k+1},
$$

for each nonnegative integer n.
Proof. We use induction on n. Because of $\left\{f_{n}\right\}$ being a higher coderivation, for $n=0$ we have

$$
\begin{aligned}
\Delta f_{1}(a) & =\left[\left(f_{0} \otimes f_{1}\right)+\left(f_{1} \otimes f_{0}\right)\right] \Delta(a) \\
& =\sum f_{0}\left(a_{(1)}\right) \otimes f_{1}\left(a_{(2)}\right)+f_{1}\left(a_{(1)}\right) \otimes f_{0}\left(a_{(2)}\right) \\
& =\sum a_{(1)} \otimes f_{1}\left(a_{(2)}\right)+f_{1}\left(a_{(1)}\right) \otimes a_{(2)} .
\end{aligned}
$$

Thus, if $\lambda_{0}=I$ and $\lambda_{1}=f_{1}$, then λ_{1} is a coderivation on \mathcal{A} and

$$
\Delta\left(f_{0} \lambda_{1}\right)(a)=\Delta\left(\lambda_{1}(a)\right)=\sum \lambda_{0}\left(a_{(1)}\right) \otimes \lambda_{1}\left(a_{(2)}\right)+\lambda_{1}\left(a_{(1)}\right) \otimes \lambda_{0}\left(a_{(2)}\right) .
$$

Now suppose that λ_{k} it is defined and is a coderivation for $k \leq n$. Putting $\lambda_{n+1}=$ $(n+1) f_{n+1}-\sum_{k=0}^{n-1} f_{n-k} \lambda_{k+1}$, we show that the well-defined mapping λ_{n+1} is a coderivation on C. For $a \in C$, since $\left\{f_{n}\right\}$ is a higher coderivation and $\lambda_{1}, \ldots, \lambda_{n}$ are coderivations, we have

$$
\begin{aligned}
\Delta \lambda_{n+1}(a) & =(n+1) \Delta f_{n+1}(a)-\sum_{k=0}^{n-1} \Delta\left(f_{n-k} \lambda_{k+1}\right)(a) \\
= & (n+1) \Delta f_{n+1}(a) \\
& -\sum_{k=0}^{n-1} \sum_{l=0}^{n-k} \sum\left(f_{l} \otimes f_{n-k-l}\right)\left(a_{(1)} \otimes \lambda_{k+1}\left(a_{(2)}\right)+\lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)}\right) \\
= & (n+1) \sum_{k=0}^{n+1}\left(f_{k} \otimes f_{n+1-k}\right) \Delta(a) \\
& -\sum_{k=0}^{n-1} \sum_{l=0}^{n-k} \sum\left(f_{l} \otimes f_{n-k-l}\right)\left(a_{(1)} \otimes \lambda_{k+1}\left(a_{(2)}\right)+\lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)}\right) \\
= & (n+1) \sum_{k=0}^{n+1} \sum f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right) \\
& -\sum_{k=0}^{n-1} \sum_{l=0}^{n-k} \sum\left(f_{l} \otimes f_{n-k-l}\right)\left(a_{(1)} \otimes \lambda_{k+1}\left(a_{(2)}\right)+\lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)}\right) \\
= & (n+1) \sum_{k=0}^{n+1} \sum f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right) \\
& -\sum_{k=0}^{n-1} \sum_{l=0}^{n-k} \sum f_{l}\left(a_{(1)}\right) \otimes f_{n-k-l}\left(\lambda_{k+1}\left(a_{(2)}\right)\right)+f_{l}\left(\lambda_{k+1}\left(a_{(1)}\right)\right) \otimes f_{n-k-l}\left(a_{(2)}\right) .
\end{aligned}
$$

Now, by properties of tensor product, we have

$$
\begin{aligned}
\Delta \lambda_{n+1}(a)= & \sum_{k=0}^{n+1} \sum(k+n+1-k)\left(f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right)\right) \\
& -\sum_{k=0}^{n-1} \sum_{l=0}^{n-k} \sum\left(f_{l} \otimes f_{n-k-l}\right)\left(a_{(1)} \otimes \lambda_{k+1}\left(a_{(2)}\right)+\lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)}\right) \\
= & \sum_{k=0}^{n+1} \sum^{n} f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right)+f_{k}\left(a_{(1)}\right) \otimes(n+1-k) f_{n+1-k}\left(a_{(2)}\right) \\
& -\sum_{k=0}^{n-1} \sum_{l=0}^{n-k} \sum\left(f_{l} \otimes f_{n-k-l}\right)\left(a_{(1)} \otimes \lambda_{k+1}\left(a_{(2)}\right)+\lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)}\right) .
\end{aligned}
$$

Writing

$$
K=\sum_{k=0}^{n+1} \sum k f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right)-\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k} \sum f_{\ell} \lambda_{k+1}\left(a_{(1)}\right) \otimes f_{n-k-\ell}\left(a_{(2)}\right),
$$

$$
\begin{aligned}
L= & \sum_{k=0}^{n+1} \sum f_{k}\left(a_{(1)}\right) \otimes(n+1-k) f_{n+1-k}\left(a_{(2)}\right) \\
& -\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k} \sum f_{\ell}\left(a_{(1)}\right) \otimes f_{n-k-\ell} \lambda_{k+1}\left(a_{(2)}\right),
\end{aligned}
$$

we have $\Delta \lambda_{n+1}(a)=K+L$. Let us compute K and L. In the summation $\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-k}$, we have $0 \leq k+\ell \leq n$ and $k \neq n$. Thus, if we put $r=k+\ell$ then we can write it as the form $\sum_{r=0}^{n} \sum_{k+\ell=r, k \neq n}$. Putting $\ell=r-k$ we indeed have

$$
\begin{aligned}
K= & \sum_{k=0}^{n+1} \sum k f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right) \\
& -\sum_{r=0}^{n} \sum_{0 \leq k \leq r, k \neq n} \sum f_{r-k} \lambda_{k+1}\left(a_{(1)}\right) \otimes f_{n-r}\left(a_{(2)}\right) \\
= & \sum_{k=0}^{n+1} \sum k f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right) \\
& -\sum\left(\sum_{r=0}^{n-1} \sum_{k=0}^{r} f_{r-k} \lambda_{k+1}\left(a_{(1)}\right) \otimes f_{n-r}\left(a_{(2)}\right)-\sum_{k=0}^{n-1} f_{n-k} \lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)} .\right.
\end{aligned}
$$

Putting $r+1$ instead of k in the first summation we have

$$
\begin{aligned}
& K+\sum_{k=0}^{n-1} \sum f_{n-k} \lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)} \\
= & \sum_{r=0}^{n} \sum(r+1) f_{r+1}\left(a_{(1)}\right) \otimes f_{n-r}\left(a_{(2)}\right)-\sum_{r=0}^{n-1} \sum_{k=0}^{r} \sum f_{r-k} \lambda_{k+1}\left(a_{(1)}\right) \otimes f_{n-r}\left(a_{(2)}\right) \\
= & \sum\left(\sum_{r=0}^{n-1}\left[(r+1) f_{r+1}\left(a_{(1)}\right)-\sum_{k=0}^{r} f_{r-k} \lambda_{k+1}\left(a_{(1)}\right)\right] \otimes f_{n-r}\left(a_{(2)}\right)\right. \\
& \left.+(n+1) f_{n+1}\left(a_{(1)}\right) \otimes a_{(2)}\right) .
\end{aligned}
$$

By our assumption

$$
(r+1) f_{r+1}(a)=\sum_{k=0}^{r}\left(f_{r-k} \lambda_{k+1}\right)(a)
$$

for $r=0, \ldots, n-1$. We can therefore deduce that

$$
K=\sum\left[(n+1) f_{n+1}\left(a_{(1)}\right)-\sum_{k=0}^{n-1} f_{n-k} \lambda_{k+1}\left(a_{(1)}\right)\right] \otimes a_{(2)}=\sum \lambda_{n+1}\left(a_{(1)}\right) \otimes a_{(2)} .
$$

By a similar argument we have

$$
L=\sum a_{(1)} \otimes\left[(n+1) f_{n+1}\left(a_{(2)}\right)-\sum_{k=0}^{n-1} f_{n-k} \lambda_{k+1}\left(a_{(2)}\right)\right]=\sum a_{(1)} \otimes \lambda_{n+1}\left(a_{(2)}\right) .
$$

Thus,

$$
\Delta \lambda_{n+1}(a)=K+L=\left(I \otimes \lambda_{n+1}+\lambda_{n+1} \otimes I\right) \Delta(a)
$$

whence λ_{n+1} is a coderivation on C.
To illustrate the recursive relation mentioned in Proposition 2.2, let us compute some terms of $\left\{d_{n}\right\}$.

Example 2.1. Using Proposition 2.2, the first five terms of $\left\{f_{n}\right\}$ are

$$
\begin{aligned}
f_{0} & =I, \\
f_{1}(a) & =f_{0}\left(\lambda_{1}(a)\right)=\lambda_{1}(a) \rightarrow f_{1}=\lambda_{1}, \\
2 f_{2}(a) & =f_{1}\left(\lambda_{1}(a)\right)+f_{0}\left(\lambda_{2}(a)\right)=\lambda_{1}^{2}(a)+\lambda_{2}(a) \rightarrow 2 f_{2}=\lambda_{1}^{2}+\lambda_{2}, \\
f_{2} & =\frac{1}{2} \lambda_{1}^{2}+\frac{1}{2} \lambda_{2}, \\
3 f_{3} & =f_{2} \lambda_{1}+f_{1} \lambda_{2}+f_{0} \lambda_{3}=\left(\frac{1}{2} \lambda_{1}^{2}+\frac{1}{2} \lambda_{2}\right) \lambda_{1}+\lambda_{1} \lambda_{2}+\lambda_{3}, \\
f_{3} & =\frac{1}{6} \lambda_{1}^{3}+\frac{1}{6} \lambda_{2} \lambda_{1}+\frac{1}{3} \lambda_{1} \lambda_{2}+\frac{1}{3} \lambda_{3}, \\
4 f_{4} & =f_{3} \lambda_{1}+f_{2} \lambda_{2}+f_{1} \lambda_{3}+f_{0} \lambda_{4} \\
& =\left(\frac{1}{6} \lambda_{1}^{3}+\frac{1}{6} \lambda_{2} \lambda_{1}+\frac{1}{3} \lambda_{1} \lambda_{2}+\frac{1}{3} \lambda_{3}\right) \lambda_{1}+\left(\frac{1}{2} \lambda_{1}^{2}+\frac{1}{2} \lambda_{2}\right) \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{4}, \\
f_{4} & =\frac{1}{24} \lambda_{1}^{4}+\frac{1}{24} \lambda_{2} \lambda_{1}^{2}+\frac{1}{12} \lambda_{1} \lambda_{2} \lambda_{1}+\frac{1}{12} \lambda_{3} \lambda_{1}+\frac{1}{8} \lambda_{1}^{2} \lambda_{2}+\frac{1}{8} \lambda_{2}^{2}+\frac{1}{4} \lambda_{1} \lambda_{3}+\frac{1}{4} \lambda_{4} .
\end{aligned}
$$

Theorem 2.1. Let $\left\{f_{n}\right\}$ be a higher coderivation on a coalgebra C with $f_{0}=I$. Then there is a sequence $\left\{\lambda_{n}\right\}$ of coderivations on C such that

$$
(n+1) f_{n+1}=\sum_{i=2}^{n+1}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{i}+\cdots+r_{j}}\right) \lambda_{r_{i}} \cdots \lambda_{r_{1}}\right)
$$

where the inner summation is taken over all positive integers r_{j}, with $\sum_{j=1}^{i} r_{j}=n$.
Proof. We show that if f_{n} is of the above form then it satisfies the recursive relation of Proposition 2.2. Since the solution of the recursive relation is unique, this proves the theorem. Simplifying the notation we put $a_{r_{i}, \ldots, r_{1}}=\prod_{j=1}^{i} \frac{1}{r_{i}+\cdots+r_{j}}$. Note that if $r_{1}+\cdots+r_{i}=n+1$ then $(n+1) a_{r_{i}, \ldots, r_{1}}=a_{r_{i}, \ldots, r_{2}}$. Moreover, $a_{n+1}=\frac{1}{n+1}$. Now we have

$$
\begin{aligned}
(n+1) f_{n+1} & =\sum_{i=2}^{n+1}\left(\sum_{\sum_{j=1}^{i} r_{j}=n+1} a_{r_{i}, \ldots, r_{1}}(n+1) \lambda_{r_{i}} \cdots \lambda_{r_{1}}\right)+\lambda_{n+1} \\
& =\sum_{i=2}^{n+1}\left(\sum_{r_{1}=1}^{n+2-i} \sum_{\sum_{j=2}^{i} r_{j}=n+1-r_{1}} a_{r_{i}, \ldots, r_{2}} \lambda_{r_{i}} \cdots \lambda_{r_{2}}\right) \lambda_{r_{1}}+\lambda_{n+1} \\
& =\sum_{r_{1}=1}^{n} \sum_{i=2}^{n-\left(r_{1}-1\right)}\left(\sum_{\sum_{j=2}^{i} r_{j}=n-\left(r_{1}-1\right)} a_{r_{i}, \ldots, r_{2}} \lambda_{r_{i}} \cdots \lambda_{r_{2}}\right) \lambda_{r_{1}}+\lambda_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{r_{1}=1}^{n} f_{n-\left(r_{1}-1\right)} \lambda_{r_{1}}+\lambda_{n+1} \\
& =\sum_{k=0}^{n} f_{n-k} \lambda_{k+1} .
\end{aligned}
$$

Example 2.2. We evaluate the coefficients $a_{r_{i}, \ldots, r_{1}}$ for the case $n=4$.
For $n=4$ we can write

$$
4=1+3=3+1=2+2=1+1+2=1+2+1=2+1+1=1+1+1+1 .
$$

By the definition of $a_{r_{i}, \ldots, r_{1}}$ we have

$$
\begin{aligned}
a_{4} & =\frac{1}{4}, \\
a_{1,3} & =\frac{1}{1+3} \cdot \frac{1}{3}=\frac{1}{12}, \\
a_{3,1} & =\frac{1}{3+1} \cdot \frac{1}{1}=\frac{1}{4}, \\
a_{2,2} & =\frac{1}{2+2} \cdot \frac{1}{2}=\frac{1}{8}, \\
a_{1,1,2} & =\frac{1}{1+1+2} \cdot \frac{1}{1+2} \cdot \frac{1}{2}=\frac{1}{24}, \\
a_{1,2,1} & =\frac{1}{1+2+1} \cdot \frac{1}{2+1} \cdot \frac{1}{1}=\frac{1}{12}, \\
a_{2,1,1} & =\frac{1}{2+1+1} \cdot \frac{1}{1+1} \cdot \frac{1}{1}=\frac{1}{8}, \\
a_{1,1,1,1} & =\frac{1}{1+1+1+1} \cdot \frac{1}{1+1+1} \cdot \frac{1}{1+1} \cdot \frac{1}{1}=\frac{1}{24} .
\end{aligned}
$$

We can therefore deduce that
$f_{4}=\frac{1}{4} \lambda_{4}+\frac{1}{12} \lambda_{3} \lambda_{1}+\frac{1}{4} \lambda_{1} \lambda_{3}+\frac{1}{8} \lambda_{2} \lambda_{2}+\frac{1}{24} \lambda_{2} \lambda_{1} \lambda_{1}+\frac{1}{12} \lambda_{1} \lambda_{2} \lambda_{1}+\frac{1}{8} \lambda_{1} \lambda_{1} \lambda_{2}+\frac{1}{24} \lambda_{1} \lambda_{1} \lambda_{1} \lambda_{1}$.
Theorem 2.2. Let C be a coalgebra, F be the set of all higher coderivations
$\left\{f_{n}\right\}_{n=0,1, \ldots}$ on C with $f_{0}=I$ and Λ be the set of all sequences $\left\{\lambda_{n}\right\}_{n=0,1, \ldots}$ of coderivations on C with $\lambda_{0}=0$. Then there is a one to one correspondence between F and Λ.

Proof. Let $\left\{\lambda_{n}\right\} \in \Lambda$. Define $f_{n}: C \rightarrow C$ by $f_{0}=I$ and

$$
f_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{i}+\cdots+r_{j}}\right) \lambda_{r_{i}} \cdots \lambda_{r_{1}}\right) .
$$

We show that $\left\{f_{n}\right\} \in F$. By Theorem 2.1, $\left\{f_{n}\right\}$ satisfies the recursive relation

$$
(n+1) f_{n+1}=\sum_{k=0}^{n} f_{n-k} \lambda_{k+1} .
$$

To show that $\left\{f_{n}\right\}$ is a higher coderivation, we use induction on n. For $n=0$ we have

$$
\Delta f_{0}(a)=\Delta(a)=\sum a_{(1)} \otimes a_{(2)}=\sum f_{0}\left(a_{(1)}\right) \otimes f_{0}\left(a_{(2)}\right)=\sum\left(f_{0}(a)\right)_{(1)} \otimes\left(f_{0}(a)\right)_{(2)}
$$

Let us assume that $\Delta f_{k}(a)=\sum_{i=0}^{k}\left(f_{i} \otimes f_{k-i}\right) \Delta(a)$ for $k \leq n$. Thus, we have

$$
\begin{aligned}
(n+1) \Delta f_{n+1}(a)= & \sum_{k=0}^{n} \Delta f_{n-k} \lambda_{k+1}(a) \\
= & \sum_{k=0}^{n} \sum_{i=0}^{n-k}\left(f_{i} \otimes f_{n-k-i}\right) \Delta \lambda_{k+1}(a) \\
= & \sum_{k=0}^{n} \sum_{i=0}^{n-k}\left(f_{i} \otimes f_{n-k-i}\right)\left(I \otimes \lambda_{k+1}+\lambda_{k+1} \otimes I\right) \Delta(a) \\
= & \sum_{k=0}^{n} \sum_{i=0}^{n-k} \sum\left(f_{i} \otimes f_{n-k-i}\right)\left(\sum a_{(1)} \otimes \lambda_{k+1}\left(a_{(2)}\right) \otimes \lambda_{k+1}\left(a_{(1)}\right) \otimes a_{(2)}\right) \\
= & \sum_{k=0}^{n} \sum_{i=0}^{n-k} \sum_{i} f_{i}\left(a_{(1)}\right) \otimes f_{n-k-i}\left(\lambda_{k+1}\left(a_{(2)}\right)\right) \\
& +f_{i}\left(\lambda_{k+1}\left(a_{(1)}\right) \otimes f_{n-k-i}\left(a_{(2)}\right) .\right.
\end{aligned}
$$

Using our assumption, we can write

$$
\begin{aligned}
(n+1) \Delta f_{n+1}(a)= & \sum_{i=0}^{n} \sum_{i}\left(a_{(1)}\right) \otimes(n-i+1) f_{n-i+1}\left(a_{(2)}\right) \\
& +\sum_{i=0}^{n} \sum(n-i+1)\left(f_{n-i+1}\left(a_{(1)}\right) \otimes f_{i}\left(a_{(2)}\right)\right) \\
= & \sum_{i=0}^{n} \sum(n+1-i) f_{i}\left(a_{(1)}\right) \otimes f_{n+1-i}\left(a_{(2)}\right) \\
& +\sum_{i=1}^{n+1} \sum i\left(f_{i}\left(a_{(1)}\right) \otimes f_{n+1-i}\left(a_{(2)}\right)\right. \\
= & (n+1) \sum_{k=0}^{n+1} \sum f_{k}\left(a_{(1)}\right) \otimes f_{n+1-k}\left(a_{(2)}\right) \\
= & (n+1) \sum_{k=0}^{n+1}\left(f_{k} \otimes f_{n+1-k}\right) \Delta(a)
\end{aligned}
$$

Thus, $\left\{f_{n}\right\} \in F$.
Conversely, suppose that $\left\{f_{n}\right\} \in F$. Define $\lambda_{n}: C \rightarrow C$ by $\lambda_{0}=0$ and

$$
\lambda_{n}=n f_{n}-\sum_{k=0}^{n-2} f_{n-1-k} \lambda_{k+1}
$$

Then Proposition 2.2 ensures us that $\left\{\lambda_{n}\right\} \in \Lambda$. Now define $\varphi: \Lambda \rightarrow F$ by $\varphi\left(\left\{\lambda_{n}\right\}\right)=$ $\left\{f_{n}\right\}$, where

$$
f_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{i}+\cdots+r_{j}}\right) \lambda_{r_{i}} \cdots \lambda_{r_{1}}\right) .
$$

Now φ is clearly a one to one correspondence.

Recall that a higher coderivation $\left\{f_{n}\right\}$ is called ordinary if there is a coderivation λ such that $f_{n}=\frac{\lambda^{n}}{n!}$ for all n.

Corollary 2.1. A higher coderivation $\left\{f_{n}\right\}=\varphi\left(\left\{\lambda_{n}\right\}\right)$ on a coalgebra C is ordinary if and only if $\lambda_{n}=0$ for $n \geq 2$. In this case $f_{n}=\frac{f_{1}^{n}}{n!}$.

3. Conclusion

In this paper proving an equality for a coderivation on a coalgebra C, named general coLiebnitz rule for coderivations, we defined higher coderivations on a coalgebra C and then we characterized them in terms of the coderivations on C. Indeed, we showed that each higher coderivation is a combination of compositions of coderivations. Finally we proved there is a one to one correspondence between the set of all higher coderivations on C and all sequences of coderivations on C. As a corollary we characterize all higher coderivations which are ordinary.

References

[1] G. Bohm, Hopf algebroids, in: M. Hazewinkel, Handbook of Algebra, Elsevier, 2009, 173-235. https://doi.org/10.1016/S1570-7954(08)00205-2
[2] T. Brzezinski and R. Wisbauer, Corings and Comodules, Cambridge University Press, London, 2003. https://doi.org/10.1017/CB09780511546495.005
[3] M. Hazewinkel and N. Gubareni, Algebras, Rings and Modules, CRC Press, Boca Raton, 2004. https://doi.org/10.1201/b22015
[4] B. Jacobs, Introduction to Coalgebra, Cambridge University Press, London, 2016. https://doi. org/10.1017/CB09781316823187
[5] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. Algebra 38 (2010), 981-987. https://doi.org/10.1080/00927870902828751
[6] M. Mirzavaziri and E. Tafazoli, Coderivations and *-coderivations on matrix coalgebra, International Journal of Open Problems in Computer Science and Mathematics 5(4) (2012). https://doi.org/10.12816/0006150
[7] E. Tafazoli and M. Mirzavaziri, Inner higher derivations on algebras, Kragujevac J. Math. (2) (2019), 267-273.
${ }^{1}$ Department of Mathematics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
Email address: tafazoli.elham@gmail.com
${ }^{2}$ Department of Pure Mathematics,
Ferdowsi University of Mashhad,
P.O. Box 1159, Mashhad 91775, Iran.

Centre of Excellence in Analysis on Algebraic Structures (CEAAS),
Ferdowsi University of Mashhad, Iran.
Email address: mirzavaziri@um.ac.ir
Email address: mirzavaziri@gmail.com

[^0]: Key words and phrases. Coalgebra, coderivation, higher coderivation.
 2020 Mathematics Subject Classification. Primary: 16W25. Secondary: 47L57, 47B47, 13N15.
 DOI
 Received: February 28, 2021.
 Accepted: October 21, 2021.

