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A B S T R A C T   

Apart from different merits of using conventional gas tungsten arc welding (C-GTAW) process, some demerits 
have been introduced among which shallow penetration is the most important ones. In order to cope with the 
mentioned disadvantage, some procedures have been proposed among which using a paste like coating of 
activating flux during welding process known as activated-GTAW (A-GTAW) is the most extensively used ones. In 
this study effect of the most important process variables (welding current (C), welding speed (S)) and percentage 
of activating fluxes (TiO2 and SiO2) combination (F) on the most important quality characteristics (depth of 
penetration (DOP), weld bead width (WBW), and consequently aspect ratio (ASR)) in welding of AISI316L 
austenite stainless steel parts have been considered. To gather the required data for modeling and optimization 
purposes, box-behnken design (BBD) in design of experiments (DOE) approach has been used. In order to 
establish a relation between process input variables and output characteristics, back propagation neural network 
(BPNN) has been employed results of which have been compared with regression modeling outputs. Particle 
swarm optimization (PSO) algorithm has been used for determination of BPNN architecture (number of hidden 
layers and neurons/nodes in each hidden layer). Dragonfly (DFA) and PSO algorithms have been employed for 
process optimization in such a way that desired AR, minimum WBW, and maximum DOP achieved simulta-
neously. Finally, confirmation experimental tests have been carried out to evaluate the performance of the 
proposed method. Based on the results, the proposed procedure is efficient in modeling and optimization (with 
less than 3% error) of A-GTAW process.   

1. Introduction 

High quality and surface finish are the major factors considered in 
using conventional gas tungsten arc welding (C-GTAW) process for 
fabricating a wide range of alloys including stainless steel, aluminum, 
titanium and magnesium. Apart from different merits introduced for 
GTAW process, shallow penetration could be considered as a demerit 
[1–3]. To tackle the mentioned problem of poor penetration, different 
procedures have been introduced among which using a paste like 
coating of activating fluxes on the weld surface before welding process 
begins, known as activated GTAW (A-GTAW) process is the most 
important ones [4,5]. In A-GTAW process, a layer of activating flux or 
fluxes (including oxides, fluorides, and chlorides) on the weld surface 
before welding process started is coated. During A-GTAW process, depth 
of penetration (DOP) and consequently weld bead width (WBW) are 
increased and decreased consequently, due to melting of activating 
coated flux layer and as a result arc constriction and reversal of 

Marangoni convection phenomena occurred. 
The fluid flow mode of molten metal in weld pool acts as a key factor 

affecting the weld bead geometry (WBG). Surface tension and conse-
quently the fluid flow are affected by the heat of the welding arc. At the 
center of the weld pool in comparison with the outer edges, the value of 
surface tension is smaller. Therefore, a negative surface tension gradient 
((∂σ/∂ T) < 0) is made [5]. Consequently, an outward movement from 
the center of the weld pool is resulted based on which a shallow and 
wide weld pool is made. In A-GTAW process on the top surface of the 
specimen a paste-like activating flux is covered before the welding 
process begins. The presence of oxygen, in A-GTAW process acts as a 
surface active element using which the Marangoni convection is 
reversed, the surface tension gradient direction changed (a positive 
value ((∂σ/∂ T) > 0) acquired), and consequently the molten metal 
movement changed from the boundary towards the center of the weld 
pool (inward movement). This phenomena named as reversal of Mar-
angoni convection which results in an increase in DOP and reduction in 
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WBW (Fig. 1) [18]. 
In C-GTAW process, when the thickness of weldments exceeds 3 mm, 

a gap between the welding specimens is considered filling which 
required using filler metal. Whereas, in A-GTAW process specimens of 
around 8 mm could be fabricated in a single welding pass without 
considering welding gap, edge preparation, and even using filler metal 
[6]. There is a great deal of studies in which different aspects of A- 
GTAW process has been taken into account. 

Corrosion behavior, microstructural and mechanical properties of 
dissimilar welding (AISI316L and P91 steel) have been studied by 
Vidyarthy et al. [1] considering different activating fluxes. Ramkumar 
et al. [2] studied the effect of an activating flux in Ti–6Al–4V alloy 
A-GTAW process on DOP, microstructural and mechanical properties. 
Based on the results, using activating flux enhances the welding process 
via increasing DOP and improving mechanical and microstructural 
properties. Mechanical properties of dissimilar welding of duplex 
stainless steels and ferrite steels have been studied by Zou et al. [3] using 
A-GTAW. Based on the acquired results, using A-GTAW process im-
proves mechanical properties in comparison with C-GTAW process. 
Dissimilar welding of Inconel 800 and Inconel 600 has been studied 
using C-GTAW and A-GTAW process by Kulkarni et al. [4] In this study, 
mechanical properties have been considered. Based on the acquired 
results, an improvement has been reported using A-GTAW process. 
Furthermore, Microstructural and mechanical properties in fabricating 
of P91 weldments using A-GTAW process has been studied [5,6]. Process 
of A-GTAW has been modeled and optimized using response surface 
methodology (RSM) in order to achieve the largest DOP, by Pamnani 
et al. [7] Full DOP has been acquired using A-GTAW process in com-
parison with C-GTAW process [12]. Based on the results, performance of 
GTAW process could be improved by using activating fluxes (A-GTAW 
process) by increasing DOP and decreasing WBW simultaneously. 
Elimination of edge preparation before welding process (for specimens 
with more than 3 mm thickness) and reduction of welding passes 
required for accomplishing fabricating in GTAW welding process has 
been reported by Venkatesan et al. [13] using activating fluxes. 
Distortion reduction and mechanical properties improvement have been 
introduced by Chern et al. [14] as the main assets of A-GTAW process. 
Different fluxes (including oxides, chlorides, and fluorides ones) have 
been used by Tathgir et al. [15] in dissimilar welding process of stainless 
steel and low alloy parts in order to improve DOP. Based on the research 
results, the largest DOP has been reported using oxide fluxes in com-
parison with other fluxes. However, other fluxes had trivial and 

negligible effect on DOP. 
Based on the A-GTAW process literature survey, there are different 

studies in which A-GTAW process have been considered. In these 
studies, the lack of modeling and optimization of the process senses. To 
the best of our knowledge, there is no study in which modeling and 
optimization of A-GTAW process output characteristics (especially DOP, 
WBW and AR) have been considered simultaneously using BBD-based 
design of experiments approach, BPNN-based modeling method, and 
heuristic algorithm-based optimization (DFA and PSO) technique. As 
different activating fluxes have different effects on WBG, mechanical 
and metallurgical properties, therefore, in this study effect of combi-
nation of the two most crucial activating fluxes has been considered as 
the process input variable (apart from welding speed and current) and 
optimized in such a way that DOP increases, WBW decreases and proper 
value for ASR achieved simultaneously. Based on the preliminary 
experimental tests carried out using DOE (screening) approach and 
literature survey studied, as mentioned three process inputs parameters 
(welding current (I), welding speed (S) and percentage of activating 
fluxes combination (F)) have been taken into account and their corre-
sponding intervals and levels have been determined. According to the 
number of process input variables and their predetermined levels, the 
most appropriate design matrix (BBD) has been considered as the way of 
carrying out experiments and gathering data required for modeling and 
optimization purposes. Next, to establish the relations between process 
input variables (I, S and F) and output characteristics (DOP, WBW and 
ASR), back propagation neural network (BPNN) has been used. Next, the 
best BPNN architecture including number of hidden layers and number 
of nodes/neurons in each hidden layer has been determined using PSO 
algorithm. Furthermore, results of regression modeling have been used 
to evaluate the BPNN performance in modeling of the process. Finally, 
multi-response optimization (in order to achieve desired ASR, maximum 
DOP and minimum WBW simultaneously) has been carried out using DF 
and PSO algorithms to determine the values for process input variables. 
BBD approach has also been used to optimize the process. The proposed 
approach has been carried out on AISI316L austenitic stainless steel 
parts. Based on the achieved results, an optimized formula for activating 
fluxes (TiO2 + SiO2) has been proposed in such a way a desired ASR with 
minimum WBW and maximum DOP achieved simultaneously. 

2. Experimental set up and equipment used 

2.1. Determination of influential process input variables and their 
corresponding intervals and levels 

A-GTAW process is affected by different variables among which, 
welding current (I) and welding speed (S) are the most influential ones 
based on the literature review and screening method conducted in this 
study [1–3]. Furthermore, percentage of activating fluxes combination 
(F) has been considered as a process input variable to achieve the merits 
of both in this regard. Similarly, process quality characteristics including 
DOP, WBW, and ASR are the most important responses of A-GTAW 
process have been considered to be optimized simultaneously. Welding 
references have been studied and some preliminary tests (screening 
method) have been carried out in order to determine the possible 
working intervals of each process input variable [8–15]. Table 1, lists the 

Fig. 1. Schematic illustration of reversal of Marangoni convection phenomena.  

Table 1 
A-GTAW process input variables and their corresponding intervals and levels.  

Process 
parameter 

Flux combinations (SiO2– 
TiO2) 

Welding 
current 

Welding 
speed 

Unit % Amps mm/sec 
Symbol F C S 
Interval 25–75 100–120 125–175 
Level 1 25 100 125 
Level 2 50 110 150 
Level 3 75 120 175  

M. Azadi Moghaddam and F. Kolahan                                                                                                                                                                                                    



International Journal of Pressure Vessels and Piping 194 (2021) 104531

3

process input variables and their corresponding intervals and levels 
based on the screening technique findings. Other input variables with 
trivial effects have been considered at an optimum fixed level. 

To conduct the experimental tests, a DIGITIG 250 AC/DC welding 
machine has been used (Fig. 1). Furthermore, in this study, Argon (with 
99.7% purity) acted as the shielding inert gas. 

Experimental tests have been conducted on AISI316L stainless steel 
specimens with dimension of 100 mm × 50 mm × 5 mm. In this study a 
combination of Nano oxide fluxes (TiO2, SiO2) (+99%, 20–30 nm, 
amorphous) has been used as activating flux to enhance the welding 
process. To assure the particle size of activating fluxes, FESEM test has 
been employed (Fig. 2). In order to prepare a paste-like activating flux 
coating, prior to welding process begins, 20 g of flux has been mixed for 
approximately 20 min with 20 ml of a carrier solvent (methanol) using 
mechanical and magnetic mixers (Fig. 3) [1,2]. Then, the paste like flux 
was coated on the specimen with a brush and dried before the welding 
process begins (Fig. 4). When the carrier solvent evaporated, the flux 
layer remained attached to the surface of the specimen and the welding 
process could be started. 

2.2. Box-behnken design (BBD) 

For conducting the experiments required for modeling/optimization 
purposes a proper matrix of experiments must be determined. Therefore, 
determination of an appropriate experimental matrix is the next step 
after selecting the influential process input variables and their corre-
sponding intervals and levels. Generally, to facilitate the identification 
of the influence of individual process input variables, establish the re-
lationships between process input variables and output responses, and 
finally determine the optimal levels of input variables in order to get the 
desired responses (in this study, minimum WBW, maximum DOP, and 
desired AR), design of experiments (DOE) approach is employed. 

In DOE, there are different approaches among which response sur-
face methodology (RSM) due to its merits is the most extensively used 
ones. There are different RSM designs, including the central composite 
design (CCD) and its variations (spherical CCD, rotatable CCD, small 
composite design, etc.), box–behnken design (BBD) and hybrid family of 
designs (Fig. 5) [20]. In this study, based on the number of input vari-
ables and their corresponding levels a BBD’s L17 matrix has been opted 
(Table 2). 

2.3. Conducting the experiments and measuring the corresponding results 

To increase the accuracy of the experimental results, a random order 
in conducting experiments must have been considered. After welding, 

three types of process characteristics (DOP, WBW, and ASR) have been 
taken from each welding sample (Table 2). 

For measuring DOP, WBW, and consequently computing ASR, on 
each sample transverse cross section has been made. Next, to clearly 
illustrate DOP and WBW, the cut faces were smoothly polished and 
etched and an optical microscope has been used (Fig. 6). To determine 
samples’ DOP and WBW, images have been consequently processed by 
MIP (microstructural image processing). Results of the measuring pro-
cess has been illustrated in Fig. 7. 

Fig. 2. FESEM test equipment used and results of Nano activating flux 
(SiO2) scaling. 

Fig. 3. Magnetic and electronic balance used.  

Fig. 4. Schematic illustration of preparation of activating paste-like flux and A- 
GTAW process. 

Fig. 5. Schematic illustration of full factorial; central composite and box- 
behnken designs. 
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3. A-GTAW process modeling 

There are several techniques (regression modeling, artificial neural 
networks, adaptive network fuzzy inference system, and etc.) capable of 
relating a set of input-output variables among which regression 
modeling and artificial neural networks (ANNs) especially those coupled 
with a back propagation algorithm named back propagation neural 
network (BPNN) are being extensively used ones. In this study modeling 
of the process has been carried out using regression analysis and BPNN. 

3.1. A-GTAW process modeling based on regression analysis 

To relate the process input variables to the output responses, 
regression equations (Equations (1)–(3)) proposed for DOP, WBW, and 
ASP base on regression modeling and analysis of variance (ANOVA). 
Tables 3 and 4, represent results of ANOVA for DOP and WBW 
respectively.  

DOP = − 21.9 + 0.1187 × F + 0.425 × C - 0.001189 × (F × F) - 0.000189 ×
(F × S) + 0.000435 × (F × C) + 0.000251 × (S × S)- 0.000879 × (S × C) - 
0.001251 × (C × C)                                                                        (1)  

WBW = − 97.8–0.1743 × F + 0.4264 × S + 1.338 × C + 0.000561 × (F × S) 
+ 0.000761 × (F × C) - 0.001564 × (S × S)+ 0.000381 × (S × C) - 0.00630 
× (C × C)                                                                                      (2)  

ASR = e− 6.60 × F− 0.2853 × S 2.005 × C − 0.392                                     (3) 

The effect of two main process variables (welding speed and acti-
vating flux combination) on the process performance measures (DOP 
and WBW) has been studied via 3D response surfaces by keeping the rest 
of the process variable at the constant level. The graphs given in Fig. 8, 
show the predicted output performance measures depending on the 

welding speed and activating flux combination. They demonstrate the 
interaction effect of welding speed and activating flux combination on 
the measured responses. 

3.2. A-GTAW process modeling based on artificial neural networks 

Artificial neural networks (ANNs) act as highly complex, nonlinear, 
parallel processing systems capable of making a relation between a set of 
input and output parameters. ANNs are embrace of a set of layers (input, 
hidden and output) in which connecting processing units (neurons/ 
nodes) are organized. An example of a perceptron is shown in Fig. 9 (a), 
where each input variable (defined as xi) is related with a weight (wi) 
which indicates a portion of the input variable to the neuron for pro-
cessing. Furthermore, the bias and output signal (parameter) are illus-
trated by b and y respectively. In this regard, a linear combination of 

perceptron’s inputs applied, obtaining the signal v =
∑N

i=1
xi× wi + b. 

furthermore, a transfer function (f) to the signal (v) applied, obtaining 
the output signal (y). To give the perceptron a nonlinear behavior, sig-
moid functions are commonly used as the transfer function [17,18]. 

Different structures for ANN have been proposed among which 
multi-layer perceptron (MLP) has been extensively used due to its 
capability to solve non-linear separable/continuous problems. MLP to-
pology embraces an input layer (including process input variables), 
hidden layer/s (one or more), and an output layer (including process 
output characteristics) (Fig. 9 (b)). In the training stage of the ANN 
procedure a supervised way is employed in order to adjust the weights 
and biases by providing a set of input and output data pairs allowing the 
MLP to learn the relationships between input-output parameters (in this 
study, process input variables and output responses). In back propaga-
tion neural network (BPNN) in order to modify the biases and weights of 

Table 2 
Experimental conditions based on BBD and their corresponding measured outputs.  

No. Welding speed (mm/sec) Welding current (I) Flux combination (SiO2 -TiO2) Depth of penetration (mm) Weld bead width (mm) Aspect ratio (ASR) 

1 50 175 100 3.96 6.21 1.57 
2 50 150 110 4.65 7.66 1.65 
3 50 150 110 5.10 7.58 1.48 
4 50 125 120 6.16 6.12 0.99 
5 50 125 100 4.84 5.07 1.05 
6 75 125 110 5.65 5.74 1.02 
7 50 150 110 4.79 8.26 1.72 
8 75 150 120 4.95 7.62 1.54 
9 50 175 120 4.42 7.64 1.73 
10 50 150 110 4.83 7.91 1.64 
11 25 125 110 4.58 6.75 1.47 
12 75 175 110 3.64 7.82 2.15 
13 25 175 110 3.04 7.44 2.44 
14 75 150 100 4.03 6.61 1.64 
15 50 150 110 4.68 7.96 1.70 
16 25 150 120 3.63 7.57 2.08 
17 25 150 100 3.15 7.33 2.32  

Fig. 6. Optical microscope and electro polish machine used.  
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the MLP, an algorithm (back propagation) in which error of each MLP’s 
input-output pair is calculated and then propagated from the output 
(process response) layer to the input (process variable) layer is used 
[15]. The details in this regard are well documented in Refs. [16,19]. 

Commonly, the architecture of ANN models is determined using trial 
and error procedure. Whereas, in this study, PSO algorithm has been 
used to determine the proper BPNN’s architecture. The number of hid-
den layers was diverse from 1 to 3; hence a 3 (number of process input 
variables)–n1–n2–n3–3 (number of process output responses) structure 

was constructed; where n1, n2, and n3 are the number of nodes/neurons 
for the 1st - 3rd hidden layers respectively. The objective of the training 
stage is finding an appropriate architecture and weights that leads to 
minimum error between the real and predicted values. 

Fig. 10, shows the variation of mean squared error (MSE) during the 
training stage of the BPNN model. The performance of the proposed 
BPNN model has been illustrated in Fig. 11. 

Obtaining the best set of A-GTAW process variables to 

Fig. 7. Cross-sectional profile of weldments.  

Table 3 
Results of ANOVA for DOP.  

Source Sum of 
Squares 

DF Mean 
Square 

F- 
value 

p-value  

Model 9.80 5 1.96 71.35 <0.0001 significant 
A-F 1.43 1 1.43 51.97 <0.0001  
B–S 4.40 1 4.40 159.97 <0.0001  
C–C 1.47 1 1.47 53.52 <0.0001  
BC 0.1849 1 0.1849 6.73 0.0250  
A2 2.32 1 2.32 84.53 <0.0001  
Residual 0.3022 11 0.0275    
Lack of 

Fit 
0.1748 7 0.0250 0.7842 0.6355 not 

significant 
Pure 

Error 
0.1274 4 0.0318    

Cor Total 10.10 16      

Table 4 
Results of ANOVA for WBW.  

Source Sum of 
Squares 

DF Mean 
Square 

F- 
value 

p-value  

Model 12.15 6 2.02 30.09 <0.0001 significant 
A-F 0.2112 1 0.2112 3.14 0.1068  
B–S 3.69 1 3.69 54.78 <0.0001  
C–C 1.74 1 1.74 25.85 0.0005  
AB 0.4830 1 0.4830 7.18 0.0231  
B2 4.03 1 4.03 59.93 <0.0001  
C2 1.69 1 1.69 25.08 0.0005  
Residual 0.6729 10 0.0673    
Lack of 

Fit 
0.3829 6 0.0638 0.8806 0.5774 not 

significant 
Pure 

Error 
0.2899 4 0.0725    

Cor Total 12.82 16      
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simultaneously maximize DOP, minimize WBW and attain desired ASR, 
is the main objective of this study. Consequently, process output mea-
sures could be considered together to build a multiple process response 
in the optimization procedure. Thus, the optimal design can be formu-
lated as a multi-response optimization problem illustrated as Equation 
(4). 

In this study simultaneously achieving high DOP, low WBW, and 
desired ASR required for multi-criteria optimization. Therefore, process 
multi-responses are changed into a single measure using Equation (5), 
where w1 and w2 are weighting coefficients to show the importance of 

DOP and WBW respectively.  

Maximum DOP = DOP (F, I, S), Minimum WBW = − WBW (F, I, S), Desired 
ASR = [1–1.4]                                                                                (4)  

Minimize F (F, I, S) = (W1 × DOP) - (W2 × WBW), (1.0 < AR < 1.4)  

0 < F < 100, 90 < I < 130, 110 < S < 190                                        (5) 

Based on the literature survey which has been confirmed via exper-
imental tests, the weld bead geometry (including DOP, WBW and ASR) 
has a noticeable influence on solidification cracking and in order to 
avoid solidification cracks in welding process the best interval for ASR is 
[1.0–1.4] (Fig. 12) [20]. 

In Fig. 13 the comparison between regression and BPNN prediction 
has been carried out. Based on the acquired results, BPNN model (with 
less than 3% error) is more efficient than the regression based model 
(with about 12% error) for modeling of the process. 

4. An introduction to heuristic algorithms 

Nowadays, different heuristic algorithms for different optimization 
purposes have been proposed (including ant colony (AC), genetic algo-
rithm (GA), bee colony (BC), tabu search (TS), simulated annealing (SA), 
particle swarm optimization (PSO), dragonfly (DF), and etc.) among 
which DF and PSO, based on their merits are being extensively used. Few 
input parameters to adjust (easy programming) and fast convergence are 
the major advantages of PSO algorithm. DFA is employed for optimi-
zation of a wide range of problems in different research areas (simple 
and easy to implement). Moreover, having few parameters for tuning, 
reasonable time of convergence are other merits of DFA over other 
heuristic algorithms. 

Based on the mentioned reasons DF and PSO algorithms have been 
considered as the heuristic algorithms to optimize A-GTAW process 
variables in order to achieve maximum DOP, minimum WBW and 

Fig. 8. 3D surface plot of the predicted responses (DOP and WBW) versus welding speed and activating flux.  

Fig. 9. (a) Example of perceptron and (b) architecture of the proposed BPNN model.  

Fig. 10. Variation of mean squared error (MSE).  
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desired value of ASR simultaneously. The details of these algorithms’ 
procedures are well documented in Ref. [19]. 

4.1. Particle swarm optimization algorithm 

Particle swarm optimization (PSO) is a random-generated and 
population-based evolutionary heuristic algorithm proposed by Ken-
nedy and Eberhart [21]. First, a population of random solutions 
initialized and generations for optimum searching updating. Next, the 
current optimum solutions (called particles) followed by potential par-
ticles through the problem space. The best solution achieved and the 
corresponding location obtained named “pBest” and “gBest” respec-
tively. The PSO algorithm procedure comprises changing the velocity of 
each particle toward its “pBest” and “gBest”. Acceleration toward 
“pBest” and “gBest” is being done using a random term with separate 

random numbers for weighing velocity generated. For updating the 
particles, the following equations (6) and (7) are employed [22–24].  

Vi+1 = w × Vi + C1 × ri × (pBesti- Xi) + C2 × ri × (gBesti- Xi)          (6)  

Xi+1 = Xi + Vi+1                                                                            (7) 

Where, for each potential solution/particle, the term Vi+1 is deter-
mined based on its previous velocity (Vi), global best location and best 
solution (gBest and pBest). The terms “r1” and “r2” are generated in the 
range of [0, 1] randomly. In order to pull each particle/solution towards 
global best location and best solution, acceleration constants (“cl” 
and“c2”) are used. The individual particle’s position (Xi) in solution is 
being updated using Equation (7) [25–28]. 

The term “w” (inertia weight) plays an important role in the algo-
rithm convergence behavior. In order to explore the design space 
globally, the large amount of inertia weights selected. While, small 
amount of inertia weights results in concentrating the velocity updates 
to nearby regions of the design space [25]. 

However, the architecture of BPNN is determined conventionally 
using trial and error, in this study the PSO algorithm has been employed 
to determine the number of hidden layers of BPNN architecture and nods 
in this layers. The performance of each evolutionary algorithm is 
affected by its own distinctive tuning variables. The details of the PSO 
procedure are well documented in Refs. [20–24]. 

The adjusting parameters used for controlling PSO algorithm has 
been carried out as the following. 

PSO variables: Population: 50; Number of iteration performed: 150; 
Learning factor c1 and c2: 2. 

Fig. 11. Performance of the proposed BPNN model in training, validation and test stages.  

Fig. 12. Effect of ASR values on tendency of occurring solidification cracks.  
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The main objective of the training stage of a BPNN is finding an 
appropriate architecture and proper values for network weights that 
leads to minimum error between the real and predicted outputs. A 
3–4–4–5–3 architecture (Fig. 9 (b)) results in the best interpolation 
performance and less MSE value using PSO algorithm. Table 5, repre-
sents only a set of architectures has been proposed by PSO algorithm, 
among which the last is the most appropriate one. The optimized pa-
rameters of BPNN model using PSO algorithm has been illustrated in 
Table 6. 

4.2. Dragonfly algorithm 

Dragonflies are small insects which hunt marine insects and even 
small fishes and their unique swarming behavior is interesting fact about 
them. Hunting and migration are the two main purposes of swarm which 
has been carried out by dragonflies. The hunting is called static/feeding 

swarm in which dragonflies make small groups and hunt other flying 
insects. The key characteristics of a static swarm are local movements 
and sudden changes in the flying path [29]. 

The migration is called dynamic/migratory swarm in which an 
enormous number of dragonflies make the swarm for migrating [30]. 

The two mentioned swarming behaviors (hunting and migration) are 
reminiscent of exploration and exploitation in optimization procedure 
using heuristic algorithms. The main objective of the exploration phase 
is creating sub-swarms and fly over different areas in a static swarm, 
which is carried out by dragonflies. In the exploitation phase, dragonflies 
fly in bigger swarms and along one direction. 

Separation (static avoidance of the individuals from other in-
dividuals), alignment (velocity matching of individuals to that of other 
individuals), and cohesion (tendency of individuals towards the center 

Fig. 13. Comparison of experimental and predicted values using regression and BPNN modeling.  

Table 5 
Performance of training different network architectures.  

Network architecture MSE R2 

3-2-2-2-3 0.03242 0.9906 
3-3-2-2-3 0.04631 0.9910 
3-3-3-3-3 0.05212 0.9924 
3-4-3-3-3 0.08431 0.9931 
3-4-4-4-3 0.00391 0.9943 
3-4-4-5-3 0.00463 0.9959  

Table 6 
BPNN model’s parameters based on PSO algorithm optimization.  

BPNN Parameter Value 

Number of hidden layers 1 2 3 
Number of hidden layers’ neurons 4 4 5 
Coefficient of transfer functions For hidden layer 1 
For output layer 1 
Learning rate 0.1 
Momentum constant 0.5 
Screen update rate 100 
Number of iterations 500  
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of the mass of the neighborhood) are three basic principles of swarms’ 
behavior. 

Survival is the main objective of any swarm, so all of the individuals 
should be distracted outward enemies and attracted towards food 
sources considering of which five main factors in individuals position 
updating in swarms required. The stated behaviors are modeled math-
ematically as follows: 

The separation, alignment, attraction towards a food source, and 
distraction outwards an enemy are calculated using Equations (8)–(12) 
respectively. 

Si = −
∑N

j=1

(
X+Xj

)
(8)  

Ai =

∑N
j=1Vj

N
(9)  

Ci =

∑N
j=1Xj

N
− X (10)  

Fi =X+ − X (11)  

Ei =X− + X (12) 

Combination of these five corrective patterns could be assumed as 
the behavior of dragonflies. In this regard, two vectors (step (ΔX) and 
position (X)) have been considered to update the position and simulate 
movements of dragonflies respectively. The step vector displays the 
dragonflies movement direction and defines as Equation (13): 

ΔXt+1 =(sSi+aAi+cCi+fFi+eEi) + wΔXt (13) 

The position vector is calculated as Equation (14): 

Xt+1 =Xt + ΔXt+1 (14) 

A random walk (Lévy flight) is required in order to increase the 
randomness and improve the stochastic behavior of the artificial 
dragonflies. Equation (15) is used in order to update the position of 
dragonflies: 

Xt+1 =Xt + Levy(d) × Xt (15) 

The Lévy flight is calculated using Equation (16): 

Levy(x)= 0.01 ×
r1 × σ
|r2|

1
β

(16)  

where б is calculated using Equation (17): 

σ =

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎝

Γ
(

1 + β
)

× sin
(

πβ
2

)

Γ

⎛

⎝1+β
2

⎞

⎠× β × 2

(
β− 1

2

)

⎞

⎟
⎟
⎟
⎟
⎠

1
β

(17)  

Γ(x)= (x − 1)!

The details about DFA are well documented in Refs. [29,30]. 
DFA variables declaration: 

X– Position of current individual 
Xj – jth neighboring individual positions 
N – Number of neighboring individuals 
X+ – Food source position 
X− – Enemy positions 
Si – Separation of the ith individual 
Ai – Alignment of the ith individual 
Ci – Cohesion of the ith individual 
s – Separation weight 

a – alignment weight 
c – Cohesion weight 
x– Inertia weight 
f – Food factor, 
e − Enemy factor 
t – Iteration count 
w – Inertia weight 
Fi – Food source of the ith individual 
Ei – Position of enemy of the ith individual 
d – Dimension of the position vectors 
r1, r2 – Two random numbers in [0, 1] 
β– A constant (equal to 1.5 in this work) 

In the proposed approach, the BPNN based model has been driven 
from BBD experimental matrix and compared with regression modeling 
results. Next, DF and PSO algorithms have been used to optimize the 
proposed model (fitness function) by BPNN in such a way that DOP 
maximized, WBW minimized, and desired ASR achieved simulta-
neously. As commonly, the architecture of the BPNN is determined 
based on the trial and error approach, in this study PSO algorithm has 
been used to determine the proper BPNN architecture and parameters 
(Tables 5 and 6). Table 7, represents the results of the optimization 
procedure based on which, DFA could accurately optimize the process 
responses (with less than 3% error). Fig. 14, illustrates the cross section 
of weldments for optimized conditions. The convergence of DF and PSO 
algorithms have been shown in Fig. 15. Apart from using the proposed 
method for optimization, BBD provides an optimization technique using 
which ends in quite the same optimization results (Table 7). Fig. 16, 
represents the optimal levels for the process input parameters in order to 
obtain the desired output characteristics based on the BBD optimization. 

DFA. 

5. Results and discussion 

Different weights (W1 and W2) may have been considered for A- 
GTAW process responses (DOP and WBW) based on the importance 
considered (Equation (5)). In this study the value of 0.5 has been 
considered for W1 and W2. 

In order to attain the best results of using PSO algorithm, three 
swarm sizes’ values (20, 30 and 50) and three iteration numbers (50, 
100 and 150) have been used to test the adequacy of the algorithm. The 
appropriate swarm size value and iterations have been determined 50 
and 150 respectively. The best results for determination of parameters c1 
and c2 and w were 2 and 0.729 respectively. As the same token, Number 
of artificial dragonflies, max iterations, and max archive size were ob-
tained 500, 150, and 50 respectively. 

As per the results of the algorithms (Table 7), it is obvious that the DF 
algorithm outperforms PSO. Based on the results achieved in this study, 
the DF algorithm has better efficiency, higher convergence speed, lower 
computational complexity, better ability to determine the optimal so-
lution. Hence, the DFA is an appropriate algorithm for optimizing the 
welding process. 

6. Conclusion 

The problem of modeling and optimization of A-GTAW process for 
AISI316L austenite stainless steel parts considering both the process 
input variables and percentage of activating fluxes combination 
(TiO2+SiO2) have been addressed throughout this study. First, Box- 
behnken design based on response surface methodology has been used 
to design the experimental tests matrix required for data gathering, 
modeling, and optimization purposes. Next, DOP and WBW values have 
been measured using MIP software. Based on the results of WBW and 
DOP, ASR values have been computed. Then, BPNN and regression 
modeling have been employed to establish the relations between process 
input variables (welding speed, current and percentage of activating 
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fluxes combination) and output responses (DOP, WBW and ASR). 
Moreover, based on the achieved results, BPNN was more suitable for 
modeling purpose (less than 3% error) than regression method (about 
12% error) based on which BPNN considered as an appropriate tool for 
modeling purpose. Furthermore, in order to determine the proper BPNN 
architecture (number of neurons/nodes and hidden layers) PSO algo-
rithm has been used. Then, DF and PSO algorithms have been employed 
to optimize the proposed BPNN model in such a way that DOP increased, 
WBW decreased, and desired ASR achieved simultaneously. Based on 
the optimization results (Table 7), it is clear that the DF algorithm 
outperforms PSO due to its higher convergence speed and lower 
computational complexity. Using the proposed hybrid BPNN-DFA 

approach either process input variables have been optimized (133 
mm/s for welding speed and 100 Amp for welding current) and the 
optimum activating fluxes formula (73% SiO2 and 27% TiO2) has been 
determined in order to achieve the desired process output characteristics 
(maximum DOP, minimum WBW and desired ASR). The result of pro-
posed optimization procedure showed that the proposed method can 
precisely simulate and optimize (with less than 3% error) the A-GTAW 
process. 
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