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Abstract

We introduce vector weighted Stirling numbers, which are a generalization of ordinary Stirling
numbers and restricted Stirling numbers. Some relations between vector weighted Stirling num-
bers and ordinary Stirling numbers and some of their applications are stated. Moreover, as an
application of vector weighted Stirling numbers of the second kind in graph theory, we compute
the number of maximal independent sets of different sizes in k-intersection graphs.
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1. Introduction

For any positive integers n and k, the classical Stirling numbers of the first kind
[
n
k

]
, second

kind
{
n
k

}
, and third kind (or Lah numbers)

∣∣n
k

∣∣ enumerate the number of partitions of a set with
n elements consisting k disjoint nonempty cycles, sets, and ordered lists, respectively. Stirling
numbers also relate the falling factorial (x)n = x(x− 1)(x− 2) · · · (x−n+ 1), the rising factorial
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x(n) = x(x+ 1) · · · (x+ n− 1), and xn as follows:

xn =
n∑
k=0

{
n

k

}
(x)k, (x)n =

n∑
k=0

[
n

k

]
xk, x(n) =

n∑
k=0

∣∣∣∣nk
∣∣∣∣(x)k.

There are different notations for the Stirling numbers in literature, among them
[
n
k

]
,
{
n
k

}
,
∣∣n
k

∣∣;
s1(n, k), s2(n, k), s3(n, k); and s(n, k), S(n, k), L(n, k) are the most famous notations for Stirling
numbers of the first, second, and third kind, respectively. In this paper, we use the first notation to
represent the Stirling numbers. It is also well known that Stirling numbers of the first, second, and
third kind satisfy recurrence relations.[

n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
,{

n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
,∣∣∣∣nk

∣∣∣∣ =

∣∣∣∣n− 1

k − 1

∣∣∣∣+ (n+ k − 1)

∣∣∣∣n− 1

k

∣∣∣∣.
For further information on Stirling numbers, see [6, 17, 16].

There are different generalizations and applications for the Stirling numbers. For example,
Broder [3] considered a kind of restricted r-Stirling numbers that subject to the condition that
the first r elements must be in distinct cycles or subsets. Carlitz [4] defined and studied a com-
pletely different type of generalization of the Stirling numbers and considered the so-called notion
of λ-partitions. Choi and Smith [5] considered r-restricted Stirling numbers of the second kind
and those partitions that each block contains at most r members. To see other researches on the
generalization of Stirling numbers, we refer the reader to [13, 14, 9, 7, 2, 1, 15, 11].

In this paper, we give a new generalization of the Stirling numbers, which we call vector
weighted Stirling numbers. There are some combinatorial problems in which we need a special
kind of partitioning of different objects. In the mentioned partitioning, we need two restrictions,
one on the size and the other on the weight of each block such that the weight is a nonnegative
integer depending on the size of the block. As an example of these combinatorial problems, we
can point to the problem of counting independent vertex sets of different size of a k-intersection
graph. By a k-intersection graph Γ(n,m, k), we mean a graph whose vertices are m-subsets of
{1, . . . , n} and two distinct vertices are adjacent if their intersection is not a subset of {1, . . . , k},
where n,m, and k are positive integers with k ≤ m < n. One can easily see that the union of
some Johnson graphs with specified parameters is an induced subgraph of Γ(n,m, k); see [10].

The importance of this graph comes from various kinds of examples in many fields of science
such as economics, social system modelling, financial matters and so on. For example, consider
n people who want to invest in some companies. These people consist of k foreigners and n − k
native. Each company has m investors,This situation can be modelled with a k-intersection graph
with parameters n,m and k. Each company with m investors is considered as a vertex and two
vertices are connected if the corresponding companies have at least one native investor in common.
The independence number and click number of Γm(Ω,Λ) have important interpretations in this
situation.
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Working on the problem of independent vertex sets of k-intersection graphs leads us to a new
generalization of the Stirling numbers as follows. k-intersection graphs were introduced and men-
tioned extensively in [8].

Section 2 begins with definitions, preliminaries, and some examples for vector weighted Stir-
ling numbers and ends with some related theorems and consequences. In Section 3, we have a
quick look on k-intersection graphs and drive a formula for the number of maximal independent
vertex sets of Γ(n,m, k) with two different approaches.

2. Vector weighted Stirling numbers

We remind that a weight vector, denoted by ~w = (w1, w2, . . .), is a vector with possibly infinite
positive integer entries. Let us start with the following definitions. Let n and k be two positive
integers, and consider partitions of a set of n elements into k nonempty blocks.

Definition 2.1. Let ~w be a weight vector, and suppose that P = {P1, . . . , Pk} is a partition of a
set of size n into k nonempty unlabeled blocks. Then weight of partition P with respect to weight
vector ~w , denoted by W (P

~w
), is defined as

∏k
i=1wpi , where pi is the size of Pi.

We say briefly weight of partition P when there is no ambiguity. As an example, consider the
weight vector ~w = (1, 2, 3, . . .) and let P = {{1, 2, 8}, {3}, {4, 5, 6, 7}} and P ′ = {{1, 2}, {3, 4},
{5, 6, 7, 8}} be two partitions of the set {1, 2, 3, 4, 5, 6, 7, 8} into 3 nonempty unlabeled blocks.
Then W (P

~w
) = 3× 1× 4 = 12 and W (P ′

~w
) = 2× 2× 4 = 16.

Definition 2.2. Let ~w be a weight vector and let n and k be two positive integers. Then
{
n
k

}
~w

is the
sum of weights of all possible partitions of n distinct objects into k nonempty unlabeled subsets.
These numbers are called vector weighted Stirling numbers of the second kind with weight vector
~w . Similarly,

[
n
k

]
~w

is the sum of weights of all possible partitions of n distinct objects into k
nonempty unlabeled cycles. These numbers are called vector weighted Stirling numbers of the first
kind with weight vector ~w .

In other words,
{
n
k

}
~w

=
∑
W (P

~w
), where the sum is taken over all possible partitions P of

n distinct objects into k nonempty blocks. Now, we state the recurrence relation for the vector
weighted Stirling numbers as follows.

Proposition 2.3. Let n and k be two positive integers and let ~w be a weight vector. Then{
n

k

}
~w

=
n−k+1∑
i=1

wi

(
n− 1

i− 1

){
n− i
k − 1

}
~w

.

Proof. Let [n] = {1, 2, . . . , n}. We want to count the number of different partitions of [n] into
k nonempty blocks with the weight vector ~w. Consider the element 1 ∈ [n]. Then 1 is in a
partition alone in w1

{
n−1
k−1

}
~w

ways, in a partition with one other number in w2

(
n−1

1

){
n−2
k−1

}
~w

ways,

in a partition with two other numbers in w3

(
n−1

2

){
n−3
k−1

}
~w

ways, and finally in a partition with n−k
other numbers in wn−k+1

(
n−1
n−k

){
k−1
k−1

}
~w

ways. Thus the summation of all these possible conditions
completes the proof.
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With a similar argument, one can show that a recurrence relation for vector weighted Stirling
numbers of the first kind is the following equation:[

n

k

]
~w

=
∑
i=1

wi(i− 1)!

(
n− 1

i− 1

)[
n− i
k − 1

]
~w

.

By convention, for positive integers n and k and an arbitrary weight vector ~w, we define initial
conditions for vector weighted Stirling numbers of the first and second kind as

{
0
0

}
~w

=
[

0
0

]
~w

= 1

and
{
n
0

}
~w

=
{

0
k

}
~w

=
[
n
0

]
~w

=
[

0
k

]
~w

= 0. Using these recurrence relations, we can compute vector
weighted Stirling numbers of the first and second kind for an arbitrary weight vector ~w. The matrix
representation of vector weighted Stirling numbers of the first and second kind for 1 ≤ n, k ≤ 6 is
shown below. Let [

{
n
k

}
~w
]r and [

[
n
k

]
~w
]r be square matrices with r rows and r columns whose (i, j)

entry is
{
i
j

}
~w

and
[
i
j

]
~w

, respectively.

[

{
n

k

}
~w

]6 =


w1 0 0 0 0 0
w2 w2

1 0 0 0 0

w3 3w1w2 w3
1 0 0 0

w4 4w1w3+3w2
2 6w2

1w2 w4
1 0 0

w5 5w1w4+10w2w3 10w2
1w3+15w1w2

2 10w3
1w2 w5

1 0

w6 6w1w5+15w2w4+10w2
3 15w2

1w4+60w1w2w3+15w3
2 20w3

1w3+45w2
1w

2
2 15w4

1w2 w6
1

,

[

[
n

k

]
~w

]6 =


w1 0 0 0 0 0
w2 w2

1 0 0 0 0

2w3 3w1w2 w3
1 0 0 0

6w4 8w1w3+3w2
2 6w2

1w2 w4
1 0 0

24w5 30w1w4+20w2w3 20w2
1w3+15w1w2

2 10w3
1w2 w5

1 0

120w6 144w1w5+90w2w4+40w2
3 90w2

1w4+120w1w2w3+15w3
2 40w3

1w3+45w2
1w

2
2 15w4

1w2 w6
1

.
It is clear that when the weight vector is ~v = (1, 1, . . .), then vector weighted Stirling numbers of
the first and second kind are the following ordinary Stirling numbers of the first and second kind:

[

{
n

k

}
~v

]6 =

[ 1 0 0 0 0 0
1 1 0 0 0 0
1 3 1 0 0 0
1 7 6 1 0 0
1 15 25 10 1 0
1 31 90 65 15 1

]
, [

[
n

k

]
~v

]6 =

[ 1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
6 11 6 1 0 0
24 50 35 10 1 0
120 274 225 85 15 1

]
.

Example 2.4. Let m be a positive square free integer with n prime factors. The number of ways
that we can write m as the multiplication of k positive integers m = m1 · · ·mk such that each mi

has even prime factors is
{
n
k

}
~v
, where ~v = (0, 1, 0, 1, . . .).

Recall that for positive integers n, n1, . . . , nk that n = n1+· · ·+nk, the multinomial coefficient(
n

n1,...,nk

)
is equal to n!

n1!···nk!
. In the following theorem, we have an explicit formula for vector

weighted Stirling numbers of the second kind.

Theorem 2.5. Let k and n be two positive integers with n ≥ k. Let ~w be a weight vector whose a
and A are the minimum and maximum nonzero indices, respectively. Then{

n

k

}
~w

=
∑

∑A
i=a xi=k∑A
i=a ixi=n

∏
wxii
k!

(
k

xa, . . . , xA

)(
n

a, . . . , a︸ ︷︷ ︸
xa

, . . . , A, . . . , A︸ ︷︷ ︸
xA

)
.
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Proof. Let xi stands for the number of blocks with i balls. Then, we are going to find the sum
taken over all possible sets of {xa, xa+1, . . . , xA} such that

∑A
i=a xi = k and

∑A
i=a ixi = n. For

fix xa, . . . , xA, first we count the number of all possible partitions with xi blocks of size i. We
choose axa members of n and then put them in xa blocks of size a. The number of such choices is
equal to (

n

axa

)
1

xa!

(
axa
a

)(
a(xa − 1)

a

)
· · ·
(
a

a

)
=

(
n

axa

)
1

xa!

(axa)!

(a!)xa
.

Next, we choose (a + 1)xa+1 members of the remaining n − axa members and then put them
in xa+1 blocks of size a+ 1. The number of them is equal to(

n− axa
(a+ 1)xa+1

)
1

xa+1!

(
(a+ 1)xa+1

a+ 1

)
· · ·
(
a+ 1

a+ 1

)
=

(
n− axa

(a+ 1)xa+1

)
1

xa+1!

(a+ 1)xa+1!

(a+ 1)!xa+1
.

Continuing the same process for other xi’s, we will have the following number of partitions:

(
∏A

i=a

(n−∑i−1
j=a jxj
ixi

)
)( 1
xa!
· · · 1

xA!
)( n!
a!xa ···A!xA

)

= n!
(axa)!···(AxA)!

( 1
xa!
· · · 1

xA!
)( (axa)!···(AxA)!

a!xa ···A!xA
)

= 1
k!

(
k

xa,...,xA

)(
n

a, . . . , a︸ ︷︷ ︸
xa

,...,A, . . . , A︸ ︷︷ ︸
xA

)
. (2.1)

Since these partitions have xa blocks of size a, xa+1 blocks of size a+ 1, and so on, the weight
of partition is wxaa w

xa+1

a+1 · · ·w
xA
A . Now, it is clear that

{
n
k

}
~w

is the summation of (2.1) over all

possible sets like {xa, xa+1, . . . , xA} such that
∑A

i=a xi = k and
∑A

i=a ixi = n. Thus, the number
of all possible partitions is obtained.

Example 2.6. Consider n dice with different colors. Now we compute the number of ways that
one can put these n dice in k nonempty boxes such that each box contains at most m dice.

Consider a box that contains r dice. Since each die has six sides, so there are 6r different ways
for this box. Let ~w = (6, 62, 63, . . . , 6m, 0, 0, . . .). Then the number of all possible ways is exactly{
n
k

}
~w
.

As we mentioned above, for positive integers n and k, different kinds of Stirling numbers
(the first, second and third) are precisely the number of partitions of an n-set into k unlabeled
cycles, subsets, and lists, respectively. If one puts some restrictions on blocks, then we will have
restricted Stirling numbers. Different restrictions have been mentioned in some papers. Most of
these restrictions are special cases of vector weighted Stirling numbers for some special weight
vectors. For instance, Comtet [6] introduced r-associated Stirling numbers of the second kind, that
is, those partitions that the size of each block is at least r, which is a vector weighted partitioning
with weight vector ~w = {w1, w2, . . .} where wi = 1 if i ≥ r and wi = 0 if i < r. Choi
and Smith [5] considered r-restricted Stirling numbers of the second kind, that is, the number
of those partitions that the size of each block is at most r, which is

{
n
k

}
~w

for the weight vector
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~w = {w1, w2, . . .} where wi = 1 if i ≤ r and wi = 0 if i > r. Recently, Engbergs et al. [7]
considered the R-restricted Stirling number of the second kind, that is, the number of partitions of
[n] into k nonempty subsets such that the cardinality of each subset is restricted to lie in R. That
is,
{
n
k

}
~w

for the weight vector ~w = {w1, w2, . . .} where wi = 1 if i ∈ R and wi = 0 if i /∈ R.
At the end of this section, let us compute

{
n
k

}
~w

for some special cases. It is clear that if k = 1,
then

{
n
1

}
~w

= wn. If k = 2, then for the weight vector ~w = (w1, w2, . . .), we have

{
n

2

}
~w

=

[n
2

]∑
i=1

(
n

i

)
wiwn−i.

Since we have only two blocks and we can divide the balls into two parts that one of them contains
i balls and the other has n− i balls. Blocks are nonempty and unlabeled, therefore the summation
is over 1 ≤ i ≤ [n

2
].

Moreover, in the case when ~w = (w1, w2, 0, 0, . . .) for nonzero positive integers w1, w2, we
have {

n

k

}
~w

=


w2k−n

1 wn−k2

(n− k)!

∏n−k−1
i=0

(
n−2i

2

)
, k ≤ n ≤ 2k,

0 otherwise.

Because, this is the case that the size of each block can be either 1 or 2. Consider n ≤ 2k, then
n− k blocks contain 2 balls and other blocks have just one ball. Thus the statement is clear.

3. Application in graph theory

In this section, we give an application of vector weighted Stirling numbers in graph theory.
First, let us remind some main concepts of graph theory, which are necessary for this section. A
simple graph is a graph that is without any loop and multiple edges. The diameter of a simple
graph is the length of the largest path between any arbitrary two distinct vertices. A Hamiltonian
graph is a graph possessing a Hamiltonian cycle and a Hamiltonian cycle is a cycle that visits each
vertex exactly once. An independent set of vertices in a graph is a set of vertices such that for
every two vertices in that set, there is no edge connecting the two vertices. The cardinality of the
largest independent vertex set (that is, the size of a maximum independent vertex set) is called the
independence number of a graph. For more information on graph theory, see [18]. It is a graph
associated with a finite set Ω of size n whose vertex set is the power set of Ω and two subsets A
and B of Ω are adjacent if and only if A ∩B 6= ∅.

A special kind of intersection graph which was recently introduced in [8] is k-intersection
graph. It is denoted by Γ(n,m, k) and defined as follows. Let Ω be a set of size n and let Λ be a
subset of Ω of size k. The vertex set of Γ(n,m, k) is the set of all subsets of Ω of size m, namely,
m-subset of Ω. Two distinct m-subsets A and B are adjacent if and only if A∩B * Λ. It is shown
that a k-intersection graph is nonempty if and only if n ≥ m and that it is connected if and only if
m > k. Moreover, when Γ(n,m, k) is connected, then its diameter is less than or equal to 2 and
Γ(n,m, k) is complete if and only if 2(m− k) > n− k. For more results on k-intersection graphs,
we refer the reader to [8].
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Let Γ(n,m, k) be a k-intersection graph. For a given positive integer `, we are going to find the
number of different ways of choosing maximal independent vertex sets of size ` in Γ(n,m, k). We
note that a maximal independent set of vertices is a set of vertices that all of them are independent
and one cannot add any other vertex to them such that they stay independent. Let I`(G) be the set
of all different `-maximal independent sets in G and put I`(G) = |I`(G)|. As we mentioned earlier
in this section, for a graph G, the size of the largest independent vertex set is called independence
number of G and is shown by α(G).

In this paper, we always assume that n > m and without loss of generality, let Ω = {1, . . . , k, . . .
, n} and let Λ = {1, . . . , k}. When there is no ambiguity, we shortly write Γ instead of Γ(n,m, k).

The following proposition computes the independence number of Γ(n,m, k).

Proposition 3.1. The independence number of Γ(n,m, k) is [ n−k
m−k ].

Proof. Consider all vertices of Γ(n,m, k) that contain {1, . . . , k} and other members of them
are disjoint, that is, all m-subsets of the form V = {1, 2, . . . , k, vk+1, . . . , vm} with disjoint
{vk+1, . . . , vm}. The size of the set consisting of these vertices is [ n−k

m−k ]. Clearly, it is an inde-
pendent set and there is no greater independent set of vertices of Γ(n,m, k).

Proposition 3.2. The necessary and sufficient condition that Γ(n,m, k) has at least one `-maximal
independent set is

k(1− `) 6 n−m` < m.

Proof. It is clear that the necessary and sufficient condition to have an `-independent set of vertices
is (m − k)` ≤ n − k. Moreover, to have at least one `-maximal independent set, it is necessary
that n − k − m` < m − k. Therefore the necessary and sufficient condition for this property is
k(1− `) 6 n−m` < m.

As an example, let G = Γ(6, 3, 2). For the sake of brevity, we may write each vertex as abc,
instead of {a, b, c}. It is clear that G has 20 vertices, 144 edges, and α(G) = 4. So V (G) =
{345, 346, 356, 456, 134, 234, 135, 235, 136, 236, 145, 245, 146, 246, 156, 256, 123, 124, 125, 126}.

For ` = 2, 3, 4 we have

I4(G) = {(123, 124, 125, 126)}
I3(G) = {(123, 124, 156), (123, 124, 256), (123, 125, 146), (123, 125, 246),

(123, 126, 145), (123, 126, 245), (124, 125, 134), (124, 125, 234),

(124, 126, 135), (124, 126, 235), (125, 126, 134), (125, 126, 234)}
I2(G) = {(134, 156), (134, 256), (234, 156), (234, 256), (135, 146), (135, 246),

(235, 146), (235, 246), (136, 145), (136, 245), (236, 145), (236, 245),

(123, 456), (124, 356), (125, 346), (126, 345)}.

Therefore I4(G) = 1, I3(G) = 12, I2(G) = 16, and Ii(G) = 0 for i 6= 2, 3, 4.

In the rest of this section, we have two different approaches to find I`(Γ(n,m, k)). First,
we define a new graph Γ̃(n,m, k) and compute I`(Γ̃(n,m, k)). Then we give a formula for
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I`(Γ(n,m, k)) by means of the relation between Γ(n,m, k) and Γ̃(n,m, k). The second approach,
which is shorter and easier, uses weighted Stirling numbers of the second kind to demonstrate a
recurrence relation for I`(Γ(n,m, k)).

Let V1 and V2 be two different vertices of Γ(n,m, k) such that V1 ∩ {k + 1, . . . , n} = V2 ∩
{k + 1, . . . , n}. Then these two vertices have exactly the same manner in Γ(n,m, k), that is, for
any vertex V of Γ(n,m, k), V1 is adjacent to V if and only if V2 is adjacent to V . We define an
equivalence relation on vertices of Γ(n,m, k) as follows.

Two vertices V1 and V2 are equivalent if and only if V1∩{k+ 1, . . . , n} = V2∩{k+ 1, . . . , n},
which we show it by V1 ∼ V2. One can easily check that ∼ is an equivalence relation on the set of
vertices of Γ(n,m, k).

Definition 3.3. For a given k-intersection graph Γ(n,m, k), we define a new graph Γ̃(n,m, k)
in such a way that the vertices of Γ̃(n,m, k) are equivalent classes of Γ(n,m, k) under ∼. Two
different vertices of Γ̃(n,m, k), say [V1] and [V2] are adjacent in Γ̃(n,m, k) if and only if V1 and
V2 are adjacent in Γ(n,m, k).

The number of vertices and edges of graph Γ̃(n,m, k) is much less than the vertices and edges
of Γ(n,m, k). In fact, since all vertices in an equivalence class have the same manner in relation
to other vertices of Γ(n,m, k), we can put one representative of each class in Γ̃(n,m, k). The
following proposition gives a recurrence relation for I`(Γ̃(n,m, k)).

Proposition 3.4. For positive integers n,m, k, and ` with n ≥ m > k and k(1−`) 6 n−m` < m,
we have

I`(Γ̃(n,m, k)) =

min{m,n−k}∑
i=m−k

∑̀
j=1

(n− k)!

(i!)j(n− k − ij)!
I`−j(Γ̃(n− ij − 1,m, k − 1))

with the initial assumption

I0(Γ̃(n,m, k)) =

{
1, n < m,
0, n ≥ m,

and

I`(Γ̃(n,m, 0)) =


n!

`!(m!)`(n−ml)!
, [ n

m
] = `,

0 otherwise.

Proof. Consider a vertex V = {v1, . . . , vm} of Γ(n,m, k), where vi ∈ {1, . . . , n}. The members
of each vertex can be divided into two parts. First, the main part that contains those elements
belonging to {k + 1, . . . , n} and second, the null part that contains those elements belonging to
{1, . . . , k}. The reason for these names is that members that belong to {1, . . . , k} have no effect on
the adjacency of vertices. Note that under the equivalence relation∼, the size of the null part of all
members of an equivalence class is the same as each other. The size of the null part and the main
part of each vertex of Γ̃ is equal to the size of the null part and the main part of the representative
element of that class, respectively.
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For each vertex of Γ, like V , the size of the main part varies betweenm−k and min{m,n−k}.
Let L be an `-maximal independent set of Γ̃(n,m, k) and let i be the minimum size of main part of
vertices of L. An `-maximal independent set may contain j vertices with main part size equaling
i, where 1 ≤ j ≤ `. It can be easily seen that the number of different ways to choose j sets of

Γ̃(n,m, k) with i main members, is equal to
(n−m)!

(i!)j(n− k − ij)!
.

Finally, since the size of the main part of other members of L is greater than i, the number of
different ways of choosing other ` − j members of L is equal to the number of different (` − j)-
maximal independent sets of graph Γ̃(n− ij − 1,m, k − 1) and the proof is completed.

Example 3.5. Consider the graph H = Γ̃(6, 3, 2). Then, H has 14 vertices and 66 edges. Thus

V (H) = {[345], [346], [356], [456], [134], [135], [136], [145], [146], [156], [123], [124], [125], [126]}.

For ` = 2, 3, 4, I`(H) is nonempty and we have I4(H) = 1, I3(H) = 6, and I2(H) = 7 as follows:

I4(H) = {([123], [124], [125], [126])},
I3(H) = {([123], [124], [156]), ([123], [125], [146]), ([123], [126], [145]),

([124], [125], [134]), ([124], [126], [135]), ([125], [126], [134])},
I2(H) = {([134], [156]), ([135], [146]), ([136], [145]), ([123], [456]),

([124], [356]), ([125], [346]), ([126], [345])}.

Figure 1. Γ(6, 3, 2) and Γ̃(6, 3, 2)

Now, we define the map f : V (Γ(n,m, k)) → N such that f(V ) = |[V ]| for every vertex V ,
where |[V ]| is the size of the equivalence class of V under the equivalence relation ∼. By using
the function f , we can give a formula for I`(Γ(n,m, k)) in the following theorem.

Theorem 3.6. We have
I`(Γ(n,m, k)) =

∑
L∈I`(Γ̃)

∏
vi∈L

f(vi).
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Proof. Assume that L = {[V1], . . . , [V`]} is an arbitrary `-maximal independent set of Γ̃(n,m, k).
Then one can easily check that

{[V1], . . . , [V`]} ∈ I`(Γ̃(n,m, k))⇔ {V1, . . . , V`} ∈ I`(Γ(n,m, k)).

More generally, if we replace V1, V2, . . . , V` by U1, U2, . . . , U`, where U1 ∈ [V1], . . . , U` ∈ [V`],
then we have the same property, again. Since the size of equivalence classes [V1], [V2], . . . , [V`] are
f(V1), f(V2), . . . , f(V`), respectively, we can get the result directly.

As we mentioned at the beginning of this section, we can compute I`(Γ(n,m, k)) in two differ-
ent ways. The first way is using the graph Γ̃(n,m, k), which we stated in Theorem 3.6. Now, the
second way is counting l-maximal independent sets of Γ(n,m, k) directly without using the graph
Γ̃(n,m, k). The following theorem gives the new formula for I`(Γ(n,m, k)) by means of vector
weighted partitioning.

Theorem 3.7. For positive integers n, m, and k, let Γ(n,m, k) be a k-intersection graph. Then,
for a given positive integer `, we have

I`(Γ(n,m, k)) =
s∑
i=0

(
n− k
i

){
n− k − i

`

}
~w

,

where s = m− k − 1 and ~w = (0, . . . , 0︸ ︷︷ ︸
m−k−1

,
(
k
k

)
, . . . ,

(
k
1

)
,
(
k
0

)
, 0, 0, . . .).

Proof. Let L = {V1, . . . , V`} be a maximal independent set of ` vertices, where each Vi is an
m-subset of {1, . . . , n}. Let S = ∪`j=1Vj \ {1, . . . , k}, and consider i =| {k + 1, . . . , n} \ S |.
Since L is a maximal independent set of vertices of Γ, therefore i ranges from 0 to m − k −
1 = s. To count the number of different `-maximal independent sets for fixed i, we choose
i numbers from {k + 1, . . . , n} to be aside in

(
n−k
i

)
different ways and then we partition the

remains into ` nonempty subsets in some restrictions. Each subset contains at least m − k and
at most m members such that by adding some members of {1, . . . , k} it become an m-subset of
{1, . . . , n}. On the other hand, whereas for each subset of size r of the above partition, there are(

k
m−r

)
vertices that their behavior is as the same as each other, so a partition of size r should be

counted
(

k
m−r

)
times. Therefore the answer is a vector weighted partitioning with weight vector

~w = (0, . . . , 0,
(
k
k

)
, . . . ,

(
k
1

)
,
(
k
0

)
, 0, 0, . . .). Since i runs from 0 to m − k − 1, we have a sum over

i.

Example 3.8. LetG = Γ(6, 3, 2). The number of 2-maximal independent sets ofG is I`(Γ(6, 3, 2)) =(
4
0

){
4
2

}
~w

where ~w = (1, 2, 1, 0, 0, . . .).{
4

2

}
~w

=
3∑
i=1

wi

(
3

i− 1

){
4− i

1

}
~w

= w1

(
3

0

){
3

1

}
~w

+ w2

(
3

1

){
2

1

}
~w

+ w3

(
3

2

){
1

1

}
~w

= 1 + 12 + 3

= 16.
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Finally, we remind that for a graph G, the polynomial I(x) =
∑α(G)

`=0 a`x
` is called indepen-

dence polynomial of G, where a` is the number of independent vertex sets of cardinality ` in the
graph G (see [12] for more details). For a k-intersection graph, I`(Γ) is the number of maximal
independent vertex sets of size ` as we computed I`(Γ) in Theorems 3.6 and 3.7. In a similar
way, we can compute the coefficients of x` in the independence polynomial of Γ(n,m, k) by using
vector weighted Stirling numbers of the second kind as follows.

Proposition 3.9. For positive integers n,m and k, let
∑α(G)

`=0 a`x
` be the independence polynomial

of Γ(n,m, k). Then

a` =
n−k∑

e=`(m−k)

(
n− k
e

){
e

`

}
~w

,

where ~w = (0, . . . , 0︸ ︷︷ ︸
m−k−1

,
(
k
k

)
, . . . ,

(
k
1

)
,
(
k
0

)
, 0, 0, . . .).

The proof is very similar to the proof of Theorem 3.7 and we omit it here. One should note that
the desired `-independent sets are not necessarily maximal.
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