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Testing bivariate independence based on a-divergence by
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density estimation
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ABSTRACT
Independence test based on empirical copula does not perform well in the
presence of weak dependency or when dependency occurs only in the
tails. The copula density, which is estimated by a local likelihood probit
transformation method, is used to detect the independence. In this article,
three nonparametric tests of independence based on a-divergence and
copula density are introduced. These tests are capable of considering weak
dependency. The asymptotic consistency of the copula-based a-divergence
estimator is also derived. In addition, the empirical powers of the proposed
tests are computed through extensive simulations. The results show that
the new tests outperform in small sample sizes or weak dependencies.
Finally, an application in uranium exploration is presented to illustrate the
applicability of the proposed tests.
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1. Introduction

Testing independence between two random variables is momentous in statistics and other fields
of science. Most classical testing independence was initially based on some measures of depend-
ence such as the Pearson linear correlation, Kendall’s s (s), and Spearman’s q. Blum, Kiefer, and
Rosenblatt (1961) showed that these tests are usually inconsistent, meaning that their power func-
tions do not tend to one as the sample size under certain alternatives tends to infinity. To solve
this issue, they used the Cram�er-von Mises (CvM) distance to compare the joint empirical distri-
bution function with the product of its corresponding marginal empirical distributions.

Copulas are a useful tool to model multivariate distributions. Sklar (1959) was the first to
introduce the fundamental concept of the copula. The joint distribution H can then be repre-
sented by using copula function C as

Fðx, yÞ ¼ CðFXðxÞ,GYðyÞÞ, x, y 2 R, (1)

where FX and FY are the marginal distributions of X and Y, respectively. A bivariate copula func-
tion C is a cumulative distribution function of random vector (U, V), defined on the unit square
½0, 1�2, with uniform marginal distributions as U ¼ FðXÞ and V ¼ GðYÞ:

If C is an absolutely continuous copula distribution on ½0, 1�2, then its density function is
cðu, vÞ ¼ @2Cðu, vÞ

@u@v : The distribution of independence copula is defined as Pðu, vÞ ¼ uv and so, the
density of independence copula is pðu, vÞ ¼ 1: As a result, the relationship between the copula
density c and the joint density function f of (X, Y) according to Eq. (1) can be represented as
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f ðx, yÞ ¼ cðFðxÞ,GðyÞÞfXðxÞfYðyÞ, ðx, yÞ 2 R
2, (2)

where fX and fY are the marginal density function of X and Y, respectively.
The null hypothesis of copula-based independence test can be expressed as H0 : Cðu, vÞ ¼ uv:

Genest and R�emillard (2004) suggested the test statistic

Sn ¼ n
ð
0, 1½ �2

ðCnðu, vÞ � uvÞ2dCnðu, vÞ, (3)

for testing independence based on the CvM distance, where Cn is the empirical copula that was
initially introduced by Deheuvels (1979). Empirical copula is defined as Cnðu, vÞ ¼ 1

n

Pn
i¼1 IfÛ i �

u, V̂ i � vg, where Û i ¼ nF̂XðxiÞ
nþ1 and V̂ i ¼ nF̂Y ðyiÞ

nþ1 , i ¼ 1, :::, n, are the pseudo observations in which
F̂X and F̂Y are the empirical cumulative distribution function of the observation Xi and Yi,
respectively.

Student-T (T) copula is a useful distribution in the elliptical copula class. Demarta and McNeil
(2007) showed that the lower and upper tail dependence coefficients for this copula with param-
eter q and � degree of freedom are equal to 2t�þ1 �

ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

p ffiffiffiffiffiffiffiffiffiffiffi
1� q

p
=
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p� �
, where t�1

� is the
inverse of the univariate Student’s-T distribution with � degrees of freedom and s ¼ 2

p arcsinðqÞ:
The lower and upper tail dependence for T copula with zero Kendall’s s and 2 and 5 degrees of
freedom are equal to 0.182 and 0.05, respectively. Thus, in these cases, dependency occurs only at
the tails. Also, dependency occurs only at the upper tail when the data are produced from
Student-T-Extreme Value (T-EV) copula with zero Kendall’s s and low degree of freedom.
Therefore, in T and T-EV copulas with a small degree of freedom, zero Kendall’s s does not
necessarily imply independence because dependency may occur in the tails.

Belalia et al. (2017) showed that the test of independence based on empirical copula fails in
term of power when dependency occurs only in the tails. Figure 1 demonstrates the motivation
for using copula density in the construction of new tests, which shows that the copula density is
flexible in detecting the independence between the variables of interest. This figure compares the
distribution (top row) and density (bottom row) of independent, T(�¼ 2), and T-EV(�¼ 2) copu-
las with zero Kendall’s s, respectively. It can be seen that there is no difference between the inde-
pendent copula distribution function and the copula distribution functions of T and T-EV
copulas. Whereas, the shape of the copula densities changes with respect to the type of dependen-
cies in T and T-EV copulas compared with independence copula density. Thus, the density of

Figure 1. Copula distribution and density of independent, T, and T-EV copulas.
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copula is appropriate for the detection of independence and so this result inspired us to use cop-
ula density instead of the empirical copula to test of independence.

The estimation of the copula density is needed to perform the independence test based on
divergence. A specific class of nonparametric copula density estimators is kernel estimators.
Charpentier, Fermanian, and Scaillet (2006) and Nagler (2014, 2018) presented different
approaches to nonparametric estimation of the copula density such as mirror-reflection method,
beta kernel, and transformation technique. The R package kdecopula (Nagler and Wen (2018))
implements several bivariate kernel copula density estimators that have been proposed in recent
years. In this article, the local likelihood probit transformation (LLPT ) technique is used to esti-
mate the copula density suggested by Geenens, Charpentier, and Paindaveine (2017). A compre-
hensive simulation study shown by Nagler (2018) is that the LLPT method for copula density
estimation is very good and easy to implement estimators, fixes boundary issues in a natural way,
and is able to cope with unbounded copula densities.

Kullback–Leibler (KL) divergence was introduced by Kullback and Leibler (1951). By combin-
ing the KL divergence and copula density in Eq. (2), Blumentritt and Schmid (2012) considered a
measure of bivariate association as

Ð
½0, 1�2cðu, vÞ log cðu, vÞ dudv: Initially, Chernoff (1952) proposed

the a-divergence, which is a generalization of the KL divergence. Eguchi and Kato (2010) showed
that the a-divergence is a robust divergence with respect to outliers and consequently has a flex-
ible performance. For some a-divergence investigations, see, for example, Cichocki and Amari
(2010) and Read and Cressie (2012).

In this article, new nonparametric independence tests based on copula density and a-diver-
gence measures are presented to tackle the issue mentioned above. These tests are simple to
implement and also provide bigger power compared to the empirical copula-based test in the
presence of weak dependencies. Also, these tests reduce the complexity of computation because
those only depend on the copula density and there is no need to estimate the joint and the mar-
ginals density functions.

The rest of the article is arranged as follows. In Section 2, the estimation of copula density
function using LLPT method is provided. The a-divergence based on the copula density with
their basic properties is introduced in Section 3. In Section 4, the behavior of copula-based
a-divergence for some copula functions is interpreted. Thereafter, the tests of independence based
on a-divergence and copula density are defined, and the asymptotic distribution of new tests is
achieved in Section 5. The simulation results are provided to compare the empirical size and
power of independence tests based on a-divergence measure in Section 6. In the end, the per-
formance of the considered tests for real data is evaluated.

2. Local likelihood probit transformation estimation

The transformation method for kernel copula density estimation was introduced by Charpentier,
Fermanian, and Scaillet (2006). The simple idea is to transform the data so that it is supported
on the full R2 (instead of the unit cube). On this transformed domain, standard kernel techniques
can be used to estimate the density. An adequate back-transformation then yields an estimate of
the copula density. The inverse of the standard normal cumulative distribution function is most
commonly used for the transformation since it is known that kernel estimators tend to do well
for Gaussian random variables.

Let ðUi,ViÞi¼1, :::, n be independent and identically distributed observations from the bivariate
copula C and the purpose is to estimate the corresponding copula density function. Denote U as
the standard Gaussian distribution and / as its first order derivative. Then ðSi,TiÞ ¼
ðU�1ðUiÞ,U�1ðViÞÞ is a random vector with Gaussian margins and copula C. According to (2),
the corresponding density function can be written as f ðs, tÞ ¼ cðUðsÞ,UðtÞÞ/ðsÞ/ðtÞ: Thus, an
estimation of the copula density function can be given by
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ĉðPT Þ
n ðu, vÞ ¼ f̂ nðU�1ðuÞ,U�1ðvÞÞ

/ðU�1ðuÞÞ/ðU�1ðvÞÞ
, ðu, vÞ 2 ð0, 1Þ2: (4)

However, as ðUi,ViÞ’s are unavailable and one has to use ðŜi, T̂ iÞ ¼ ðU�1ðÛ iÞ,U�1ðV̂ iÞÞ the
pseudo-transformed sample, instead. As a first natural idea, the standard kernel density estimator
for f̂ n in (4) can be considered as follows:

f̂ nðs, tÞ ¼
1

njHST j
1
2

Xn
i¼1

K H
�1

2
ST

s� Ŝi
t � T̂ i

� �� �
, (5)

where K : R2 ! R is a kernel function and HST ¼ bn 0
0 bn

� �
is a bandwidth matrix.

This kernel estimator has asymptotic problems at the edges of the distribution support. To
remedy this problem, an LLPT method was recently suggested by Geenens, Charpentier, and
Paindaveine (2017). Instead of applying the standard kernel estimator, they locally fit a polyno-
mial to the log-density of the transformed sample. The motivation and the advantages of estimat-
ing f(s, t) by local likelihood methods instead of raw kernel density estimation are related to the
detailed discussion in Geenens (2014). The notations are similar to ones used in Geenens,
Charpentier, and Paindaveine (2017).

Around ðs, tÞ 2 R
2 and ðs0, t0Þ close to ðs, tÞ, the local log-quadratic likelihood estimation of

log f ðs, tÞ from the pseudo-transformed sample is defined as follows:

log f ðs0, t0Þ ¼ a2, 0ðs, tÞ þ a2, 1ðs, tÞðs0 � sÞ þ a2, 2ðs, tÞðt0 � tÞ
þ a2, 3ðs, tÞðs0 � sÞ2 þ a2, 4ðs, tÞðt0 � tÞ2 þ a2, 5ðs, tÞðs0 � sÞðt0 � tÞ

� Pa2ðs0 � s, t0 � tÞ:

The vector a2ðs, tÞ � ða2, 0ðs, tÞ, :::, a2, 5ðs, tÞÞ is then estimated by solving a weighted maximum
likelihood problem as

â2ðs, tÞ ¼ argmax
a2

(Xn
i¼1

K H
�1

2
ST

s� Ŝi
t � T̂ i

 ! !
Pa2ðŜi � s, T̂ i � tÞ

� n
ð
R

2
K H

�1
2

ST

s� s0

t � t0

 ! !
exp Pa2ðs0 � s, t0 � tÞ

� �
ds0dt0

)
:

Therefore, the estimation of f(s, t) is ~f
pðs, tÞ ¼ exp fâ2ðs, tÞg and thus the LLPT estimator of

a copula density is

ĉðLLPT Þ
n ðu, vÞ ¼

~f
pðU�1ðuÞ,U�1ðvÞÞ

/ðU�1ðuÞÞ/ðU�1ðvÞÞ
, ðu, vÞ 2 0, 1½ �2: (6)

When the underlying density is on ½0, 1�2, the performance of the kernel estimator depends on
the choice of the kernel function and the bandwidth (smoothing parameter). For bandwidth
choice, a practical approach is to consider the minimization of the asymptotic mean integrated
squared error (AMISE) on the level of the transformed data. In this article, the nearest-neighbor
method is used for bandwidth choice such that smoothing parameters are selected based on uni-
variate least-squares cross-validation on the first principal component in the transformed domain
(see, Geenens, Charpentier, and Paindaveine (2017), Section 4).

The asymptotic normality of the copula density estimator based on local likelihood transform-
ation was demonstrated by Geenens, Charpentier, and Paindaveine (2017) as
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ĉðLLPT Þ
n ðu, vÞ is AN lðu, vÞ, r

2ðu, vÞ
nb2n

 !
,

where

r2ðu, vÞ ¼ 5cðu, vÞ
8p/ðU�1ðuÞÞ/ðU�1ðvÞÞ

, (7)

lðu, vÞ ¼ cðu, vÞ � b4n
8

cðu, vÞ
/ðU�1ðuÞÞ/ðU�1ðvÞÞ

(
@4g
@x4

þ @4g
@y4

þ 2
@4g

@x2@y2

þ 4
@3g
@x3

@g
@x

þ @3g
@y3

@g
@y

þ @3g
@x2@y

@g
@y

þ @3g
@x@y2

@g
@x

 !)
ðx, yÞ,

(8)

and x ¼ U�1ðuÞ, y ¼ U�1ðvÞ, and gðx, yÞ ¼ log cðUðxÞ,UðyÞÞ þ log/ðxÞ þ log/ðyÞ:

3. a-Divergence based on copula density

The a-divergence was defined by R�enyi (1961) for a> 0 with a 6¼ 1 and by Liese and Vajda
(1987) for a< 0. This divergence measure can be derived from the Csisz�ar u-divergence if
uðuÞ ¼ ua�aðu�1Þ�1

aða�1Þ , u � 0, a 6¼ 0, 1: Following Cichocki and Amari (2010), the asymmetric
a-divergence between two probability density functions f1 and f2 of a continuous random variable
can be defined as

ADaðf1 k f2Þ ¼
1

aða� 1Þ

ð
R

f a1 ðxÞf 1�a
2 ðxÞ � af1ðxÞ þ ða� 1Þf2ðxÞ

� �
dx

¼ 1
aða� 1Þ

ð
R

f a1 ðxÞ f 1�a
2 ðxÞdx� 1

� �
, a 2 Rnf0, 1g:

(9)

If a ! 1, then the KL divergence and in special cases for a ¼ 2, 0:5, the well-known Neyman
Chi-square (v2N) divergence and Hellinger (He) distance can be obtained from Eq. (9).

By using Eq. (2), the copula-based a-divergence between joint density function h and marginal
density functions f and g for X and Y, respectively, can be represented as

ADaðcÞ � ADaðh k fgÞ

¼ 1
aða� 1Þ

ð
R

2
hðx, yÞa ðf ðxÞgðyÞÞ1�adxdy� 1

� �
¼ 1

aða� 1Þ

ð
R

2

hðx, yÞ
f ðxÞgðyÞ

� �a

f ðxÞgðyÞdxdy� 1

 !

¼ 1
aða� 1Þ

ð
0, 1½ �2

caðu, vÞdudv� 1

 !
, a 2 Rnf0, 1g:

(10)

This representation of a-divergence reduces the complexity because it depends only on the
copula density. In Proposition 1, some theoretical aspects of this measure of the association will
be reviewed.

Proposition 1. Let C denote the copula distribution of ðX,YÞ and let c be the corresponding copula
density. Then the following assertions hold:

a. ADaðcÞ � 0 and ADaðcÞ ¼ 0 if and only if X and Y are independent.
b. ADaðcÞ < 1 for a > 1 and ADaðcÞ � � 1

aða�1Þ for a < 1:
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c. ADaðcÞ is invariant under strictly monotone transformations of one or two components
of ðX,YÞ:

Proof.
a. Using Jensen’s inequality, we get

ADaðcÞ ¼
1

aða� 1Þ

ð
0, 1½ �2

caðu, vÞdudv� 1

 !

¼ 1
aða� 1Þ E ca�1ðu, vÞ

� �
� 1

� �
� 1

aða� 1Þ E1�a 1
cðu, vÞ

� �
� 1

� �
¼ 0 ,

where a 2 Rnf0, 1g: If X and Y are independent random variables, then cðu, vÞ ¼ 1:
Therefore ADaðcÞ ¼ 0:

b. It is observed that u00ðuÞ ¼ ua�2, uð0Þ ¼ 1
a , and uð1Þ ¼ 0: The function u is convex for

u> 0, and strictly convex at u¼ 1. Thus, from Micheas and Zografos (2006), the upper
bound of a-divergence is

c ¼ uð0Þ � uð1Þ þ lim
u!þ1

uðuÞ
u

¼ 1
a
þ lim

u!þ1

ua � aðu� 1Þ � 1
uaða� 1Þ

¼ 1
aða� 1Þ ð lim

u!þ1
ua�1 � 1Þ:

Hence, c ¼ þ1 for a> 1 and also, c ¼ � 1
aða�1Þ for a< 1. Note that the measure satisfies the

important axioms (A3)–(A5) in Micheas and Zografos (2006), when a< 1, and axioms (A3)
and (A4), when a> 1. Also, we note that, from axiom (A5), when a< 1, ADaðcÞ ¼ � 1

aða�1Þ if
and only if the random variables X and Y are completely dependent.

c. The basic invariance properties of copulas under strictly monotone transformations of ran-
dom variables can be found in Nelsen (2007). Under increasing transformations of the ran-
dom variables, the copula is invariant. Thus the copula density and ADaðcÞ are also
invariant. If d and g are strictly decreasing transformations, then CdðXÞ,Yðu, vÞ ¼ v�
CX,Yð1� u, vÞ and CdðXÞ, gðYÞðu, vÞ ¼ uþ v� 1� CX,Yð1� u, 1� vÞ: For the copula density,
we can get cdðXÞ,Yðu, vÞ ¼ cX,Yð1� u, vÞ and cdðXÞ, gðYÞðu, vÞ ¼ cX,Yð1� u, 1� vÞ: Thus,

ADaðcÞðdðXÞ,YÞ ¼
1

aða� 1Þ

ð
0, 1½ �2

cað1� u, vÞdudv� 1

 !

ðsubstitution of 1� u ¼ zÞ ¼ 1
aða� 1Þ

ð
0, 1½ �2

caðz, vÞdzdv� 1

 !
¼ ADaðcÞðX,YÞ:

In the same way,

6 M. MOHAMMADI ET AL.



ADaðcÞðdðXÞ, gðYÞÞ ¼
1

aða� 1Þ

ð
0, 1½ �2

cað1� u, 1� vÞdudv� 1

 !
,

and by replacing 1� u ¼ z, 1� v ¼ w, we get

ADaðcÞðdðXÞ, gðYÞÞ ¼
1

aða� 1Þ

ð
0, 1½ �2

caðz,wÞdzdw� 1

 !
¼ ADaðcÞðX,YÞ:

w

Now, we will focus on representing the special cases of ADaðcÞ that can be considered as a
measure of association. If a ! 1, then the KL divergence is obtained of the form

KLðcÞ ¼ lim
a!1

ADaðcÞ

¼
ð
0, 1½ �2

cðu, vÞ log ðcðu, vÞÞ dudv

¼ E log ðcðU,VÞÞ
� �

:

(11)

In special cases when a¼ 2, the copula-based Neyman Chi-square (v2N) divergence by using
the Eq. (2) can be represent as

v2NðcÞ ¼ AD2ðcÞ

¼ 1
2

ð
0, 1½ �2

ðcðu, vÞ � 1Þ2 dudv

¼ 1
2
E cðU,VÞð Þ � 1

2
:

(12)

Also, in a special case for a ¼ 1=2, the copula-based Hellinger (He) distance can be rewritten
as follows:

HeðcÞ ¼ 1
4
AD1=2ðcÞ

¼ 1
2

ð
0, 1½ �2

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
cðu, vÞ

p
� 1Þ2 dudv

¼ 1� E
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðU,VÞ
p !

:

(13)

These three divergences separate the dependence structure from the marginal distributions and
are only based on copula density. Now, the properties of copula-based a-divergence for some
copulas will be illustrated. The behavior of ADaðcÞ for the Gaussian copula is described in
Section 3.1, and the behavior of ADaðcÞ for T, T-EV, Clayton, and Gumbel–Hougaard (Gumbel)
copulas is discussed in Section 3.2.

3.1. ADaðcÞ for the Gaussian copula

In practice, the Gaussian (normal) copula is the most important case in quantitative finance
applications. The bivariate Gaussian copula with parameter q is defined as

CGðu, v,qÞ ¼ U2ðU�1ðuÞ,U�1ðvÞ; qÞ, ðu, vÞ 2 0, 1½ �2, q 2 �1, 1½ �, (14)

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 7



where U2 is the bivariate normal distribution function with zero means, variances one, and cor-

relation matrix
1 q
q 1

� �
, and U�1 denotes the quantile function of the standard normal distribu-

tion. The density of the Gaussian copula is determined by

cGðu, v; qÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p exp

2qU�1ðuÞU�1ðvÞ � q2ðU�1ðuÞ2 þ U�1ðvÞ2Þ
2ð1� q2Þ

( )
, ðu, vÞ 2 0, 1½ �2, (15)

where q 2 ½�1, 1�:
The general form of the a-divergence for multivariate normal distribution was obtained by

Micheas and Zografos (2006). Thus, by using part (c) of Proposition 1 and Eq. (10), the a-diver-
gence for bivariate Gaussian copula can be shown as follows:

ADaðcGÞ ¼
1

aða� 1Þ
j1� q2j

1�a
2

ð1� ð1� aÞ2q2Þ
1
2

� 1

 !
, a 2 Rnf0, 1g, q 2 �1, 1½ �: (16)

So, it is easy to see that

KLðcGÞ ¼ � log ð1� q2Þ=2,

v2NðcGÞ ¼
q2

2ð1� q2Þ ,

HeðcGÞ ¼ 1� 2ð1� q2Þ
1
4=ð4� q2Þ

1
2:

Remark (Normalization). As shown in Eq. (16), the range of ADaðcÞ is ½0,1�, and therefore,
normalization to ½0, 1� is desirable. Thus, a suitable transformation T : ½0,1� ! ½0, 1� is required,
which is continuous and strictly increasing and satisfies Tð0Þ ¼ 0 and Tð1Þ ¼ 1: The normaliza-
tion transformation TðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2x

p
, denoted by AD�

aðcÞ, is used for this purpose, which was
suggested by Joe (1989).

The behavior of the normalize and unnormalize form of the special cases of the a-divergence
for bivariate Gaussian copula versus different values of Kendall’s s is shown in Figure 2, where
s ¼ 2

p arcsinðqÞ in this copula. Note that ADaðcGÞ and AD�
aðcGÞ take their minimum values (zero)

in s¼ 0.

Figure 2. Normalize and unnormalize measure of a-divergence for Gaussian copula.
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3.2. ADaðcÞ for T, T-EV, Clayton and Gumbel copulas

In this Subsection, the copula-based a-divergence measure for T, T-EV, Clayton, and Gumbel
copulas is considered. Moreover, ADaðcÞ for these copulas does not have a closed form and
should be computed numerically. For more details on T, T-EV, Clayton, and Gumbel copulas,
see Joe (2014).

The bivariate T copula with parameter q and � degrees of freedom takes on the form

Cðu, v; q, �Þ ¼ t2, �ðt�1
� ðuÞ, t�1

� ðvÞ; qÞ, ðu, vÞ 2 0, 1½ �2, q 2 �1, 1½ �, � � 1,

where t�1
� is the inverse of the univariate Student’s-T distribution with � degrees of freedom.

The bivariate T-EV copula with parameter q and � degrees of freedom is

Cðu, ; q, �Þ ¼ exp f�ðxþ yÞB x
xþ y

; q, �
� �

g; ðu, vÞ 2 0, 1½ �2, q 2 �1, 1½ �, � > 0,

with x ¼ log ðuÞ, y ¼ log ðvÞ, and

Bðw; q, �Þ ¼ w t�þ1

ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ð w
1� w

Þ
1
� � q

� � !
þ ð1� wÞ t�þ1

ffiffiffiffiffiffiffiffiffiffiffi
� þ 1

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ð1� w
w

Þ
1
� � q

� � !
,

where t� is the univariate distribution function of the Student-T distribution with � degrees
of freedom.

The Clayton and Gumbel copulas belong to the class of Archimedean copulas. Table 1 presents
a summary information for Clayton and Gumbel copulas such as the parameter space and
Kendall’s s of them.

The special case of normalized copula-based a-divergence values AD�
aðcÞ for T(�¼ 2), T-

EV(�¼ 2), Clayton, and Gumbel copulas versus different values of s and sample size n¼ 200 is
obtained numerically and is reported in Table 2. In this table, it is visible that when the Kendall’s
s increases, the normalized a-divergence values also increase. As a result, KL�ðcÞ, v2�N ðcÞ, and
He�ðcÞ can be considered as new measures of association.

4. Estimation of a-divergence

A nonparametric estimation of ADaðcÞ based on the LLPT method to estimate the copula dens-
ity can be written as

dADaðcÞ ¼
1

aða� 1Þ

ð
0, 1½ �2

ĉðLLPT Þ
n ðu, vÞa�1dCnðu, vÞ � 1

 !

¼ 1
aða� 1Þ

1
n

Xn
i¼1

ĉðLLPT Þ
n ðUi,ViÞa�1 � 1

 !
, a 2 Rnf0, 1g:

(17)

In Proposition 2, we show the asymptotic first-order consistency of a-divergences estimator in
Eq. (17) under conditions. The proof method is similar to the work of Ahmad and Lin (1976) in
which the consistency of entropy estimation by the kernel method has been proved.

Proposition 2. Let ðUi ,ViÞi¼1, :::, n be an i:i:d: sample from the copula C. Assume the following
assumptions:

Table 1. Some bivariate Archimedean copulas.

Copula C(u, v) Parameter space Kendall’s s

Clayton ðu�h þ v�h � 1Þ�1=h ð0, þ1Þ h
hþ2

Gumbel exp f�½ð� ln uÞh þ ð� ln vÞh�1=hg ½1, þ1Þ h�1
h
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(i) bn ! 0, as n ! 1;
(ii) nb2n ! 1, as n ! 1;
(iii) lðu, vÞ < 1;
(iv)

Ð
½0, 1�2c

2a�1ðu, vÞdudv < 1:

Then, for a 2 Rnf0, 1g,

E dADaðcÞ � ADaðcÞ
			 			! 0, n ! 1:

Proof. We will write ĉðu, vÞ for ĉðLLPT Þ
n ðu, vÞ, ADa for aða� 1ÞADaðcÞ þ 1, and dADa for aða�

1ÞdADaðcÞ þ 1 on I ¼ ½0, 1�: Define

ADa ¼
ð
I2
ca�1ðu, vÞdCðu, vÞ ¼ Eðca�1ðU,VÞÞ, (18)

dADa ¼
ð
I2
ĉa�1ðu, vÞdCnðu, vÞ ¼

1
n

Xn
i¼1

ĉa�1ðÛ i, V̂ iÞ, (19)

La ¼
ð
I2
Eðĉðu, vÞÞð Þa�1dCnðu, vÞ ¼

1
n

Xn
i¼1

Eð̂cðÛ i , V̂ iÞÞ
� �a�1

, (20)

Ma ¼
ð
I2
ca�1ðu, vÞdCnðu, vÞ ¼

1
n

Xn
i¼1

ca�1ðÛ i, V̂ iÞ: (21)

Then by using the Minkowski inequality, we have

E dADaðcÞ � ADaðcÞ
			 			 ¼ 1

jaða� 1ÞjE
dADa �ADa

			 			
� 1

jaða� 1Þj E dADa � La
			 			þ E La �Maj j þ E Ma �ADaj j

� �
¼ 1

jaða� 1Þj ðI1 þ I2 þ I3Þ:

To prove the theorem, it suffices to show that Ij ! 0 as n ! 1 for j ¼ 1, 2, 3: Substituting
(19) and (20) into I1, we have

Table 2. Special case of AD�
aðcÞ for some copulas.

Copula Measure

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T(�¼ 2) KL�ðcÞ 0.373 0.456 0.558 0.662 0.759 0.843 0.911 0.960 0.990
v2�N ðcÞ 0.497 0.602 0.722 0.832 0.917 0.970 0.994 1.000 1.000
He�ðcÞ 0.171 0.220 0.286 0.362 0.444 0.528 0.616 0.705 0.801

T-EV(�¼ 2) KL�ðcÞ 0.346 0.481 0.640 0.747 0.827 0.891 0.938 0.974 0.993
v2�N ðcÞ 0.418 0.593 0.854 0.907 0.974 1.000 1.000 1.000 1.000
He�ðcÞ 0.176 0.241 0.348 0.450 0.511 0.576 0.638 0.749 0.815

Clayton KL�ðcÞ 0.179 0.355 0.506 0.637 0.748 0.838 0.909 0.960 0.990
v2�N ðcÞ 0.215 0.477 0.726 0.884 0.962 0.992 0.999 1.000 1.000
He�ðcÞ 0.080 0.168 0.256 0.348 0.440 0.529 0.622 0.718 0.811

Gumbel KL�ðcÞ 0.201 0.362 0.502 0.627 0.735 0.827 0.901 0.956 0.989
v2�N ðcÞ 0.222 0.439 0.624 0.772 0.882 0.953 0.989 0.999 1.000
He�ðcÞ 0.106 0.189 0.269 0.352 0.438 0.530 0.624 0.720 0.813
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I1 ¼ E
ð
I2

ĉa�1ðu, vÞ � Eðĉðu, vÞÞð Þa�1

 �

dCnðu, vÞ
				 				

� E
ð
I2
ĉa�1ðu, vÞ � Eðĉðu, vÞÞð Þa�1		 		dCnðu, vÞ:

Since a Taylor expansion of the differentiable function g(z) about a real number b may be
expressed as gðzÞ ¼ gðbÞ þ ðz � bÞ g0½hbþ ð1� hÞz�: for some h, 0 < h < 1, we have

jgðzÞ � gðcÞj � jz � cj jg0 hcþ ð1� hÞz½ �j, 0 < h < 1: (22)

Now taking gðzÞ ¼ za�1 with z ¼ ĉðu, vÞ and b ¼ Eðĉðu, vÞÞ, we have

I1 � ja� 1jE
ð
I2
ĵcðu, vÞ � Eð̂cðu, vÞÞj hEðĉðu, vÞÞ þ ð1� hÞĉðu, vÞð Þa�2dCnðu, vÞ 0 < h < 1ð Þ

� ja� 1jha�2E
ð
I2
ĵcðu, vÞ � Eðĉðu, vÞÞj Eðĉðu, vÞÞð Þa�2dCnðu, vÞ ĉðu, vÞ � 0ð Þ

¼ ja� 1jha�2E
1
n

Xn
i¼1

ĵcðÛ i, V̂ iÞ � EðĉðÛ i, V̂ iÞÞj EðĉðÛ i , V̂ iÞÞ
� �a�2

 !
¼ ja� 1jha�2E ĵcðÛ , V̂ Þ � Eð̂cðÛ , V̂ ÞÞj EðĉðÛ , V̂ ÞÞ

� �a�2
� 

¼ ja� 1jha�2
ð
Eĉðĵcðu, vÞ � Eðĉðu, vÞÞj Eðĉðu, vÞÞð Þa�2 jÛ ¼ u, V̂ ¼ vÞcðu, vÞdudv:

(23)

The second equality in (23) follows from the fact that ĉðÛ i, V̂ iÞ for i ¼ 1, 2, :::, n are identically
distributed. From Eqs. (7) and (8), and it can be shown that, for all n sufficiently large,

Eð̂cðu, vÞÞ ¼ cðu, vÞ þ Oðb4nÞ,

Varð̂cðu, vÞÞ ¼ O
1
nb2n

� �
:

Therefore, with the aid of assumptions i and ii we have, for all ðu, vÞ 2 ð0, 1Þ2,
Eðĉðu, vÞÞ ! cðu, vÞ,

and

ĉðu, vÞ � Eðĉðu, vÞÞj j � Varð̂cðu, vÞÞð Þ1=2 ! 0,

as n ! 1: Hence the integrand in the last expression of Eq. (23) converges to zero as n ! 1:
Furthermore, with the assumption iii, note that

Eĉ ðĵcðu, vÞ � Eðĉðu, vÞÞjðEð̂cðu, vÞÞÞa�2Þcðu, vÞ � ðEð̂cðu, vÞ þ Eðĉðu, vÞÞðEð̂cðu, vÞÞÞa�2cðu, vÞ

¼ 2ðEðĉðu, vÞÞÞa�1cðu, vÞ < 1,

which is integrable. By an application of the Lebesgue dominated convergence theorem, the last
integral in Eq. (23) converges to zero as n ! 1: Therefore, I1 ! 0 as n ! 1:

To show that I2 ! 0, let gðzÞ ¼ za�1 with z ¼ Eð̂cðu, vÞÞ and let b ¼ cðu, vÞ in Eq. (22). Then,
similar to Eq. (23), we have
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I2 ¼ E
ð
I2

Eð̂cðu, vÞÞð Þa�1 � ca�1ðu, vÞ

 �

dCnðu, vÞ
				 				

� E
ð
I2

Eðĉðu, vÞÞð Þa�1 � ca�1ðu, vÞ
		 		dCnðu, vÞ

� ja� 1jE
ð
I2
Eð̂cðu, vÞÞ � cðu, vÞj j hcðu, vÞ þ ð1� hÞEðĉðu, vÞÞð Þa�2dCnðu, vÞ 0 < h < 1ð Þ

� ja� 1jha�2E
ð
I2
Eðĉðu, vÞÞ � cðu, vÞj jcðu, vÞa�2dCnðu, vÞ Eðĉðu, vÞÞ � 0ð Þ

¼ ja� 1jha�2E
1
n

Xn
i¼1

Eð̂cðÛ i, V̂ iÞÞ � cðÛ i, V̂ iÞ
		 		ca�2ðÛ i, V̂ iÞÞ

 !
¼ ja� 1jha�2E EðĉðÛ , V̂ ÞÞ � cðÛ , V̂ Þ

		 		ca�2ðÛ , V̂ ÞÞ
� 

¼ ja� 1jha�2
ð
Eĉ Eðĉðu, vÞÞ � cðu, vÞj jca�2ðu, vÞjÛ ¼ u, V̂ ¼ v
� �

cðu, vÞdudv:

(24)

Since Eð̂cðu, vÞÞ � cðu, vÞj j ! 0 as n ! 1, for all ðu, vÞ 2 ð0, 1Þ2 and Eðĉðu, vÞÞ � cðu, vÞj j �
Eðĉðu, vÞÞ þ cðu, vÞ, which is integrable and converges to an integrable limit 2cðu, vÞ as n ! 1,
we conclude that I2 ! 0 as n ! 1 by an application of the Lebesgue dominated conver-
gence theorem.

Finally, for I3, note that

I3 ¼ E
1
n

Xn
i¼1

ca�1ðÛ i, V̂ iÞ � Eðca�1ðU,VÞÞ
					

					
� 1ffiffiffi

n
p Varðca�1ðU ,VÞÞ
� �1=2

¼ 1ffiffiffi
n

p
ð
I2
c2a�1ðu, vÞdudv�AD2

a

� �1=2

:

(25)

Thus, with the aid of assumptions iv, I3 ! 0 as n ! 1: w

Now, a simple example for Proposition 2 is presented.

Example 1. Let U and V be uniform (0, 1) random variables whose joint distribution function is
an arbitrary copula function. In Proposition 2, consider bn ¼ n�1=4 and a ¼ 1=2: It can be shown
that assumptions ðiÞ � ðivÞ based on Gaussian copula density in Eq. (15), are established asð

0, 1½ �2
c2a�1ðu, vÞdudv ¼

ð
0, 1½ �2

dudv < 1:

According to the proof of Proposition 2, we have

E dADaðcÞ � ADaðcÞ
			 			 � 1

jaða� 1Þj ðI1 þ I2 þ I3Þ ! 0 as n ! 1:

Under these assumptions, we have

Eðĉðu, vÞÞ ¼ cðu, vÞ þ O
1
n

� �
,

Varð̂cðu, vÞÞ ¼ O
1ffiffiffi
n

p
� �

,

and so, Ij ! 0 as n ! 1 for j ¼ 1, 2, 3:
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4.1. High-dimensional copula-based a-divergence

A multivariate d-dimensional of copula-based a-divergence according to Eq. (10) can be pre-
sented as

ADaðcÞ ¼
1

aða� 1Þ

ð
0, 1½ �d

caðu1, u2, :::, udÞdu1du2:::dud � 1

 !
, a 2 Rnf0, 1g: (26)

In practice, to use Eq. (26), the copula density must be estimated. Nonparametric density esti-
mators in high-dimensional (d> 3) suffer a great deal from the well-known curse of dimensional-
ity. In this situation, nonparametric density estimators converge more slowly to the true density
as dimension increases (see Scott 2008). Sparseness of the data is a probable reason of the curse
of dimensionality.

Nagler and Czado (2016) showed that one can evade the curse of dimensionality by assuming
a simplified vine copula model for the dependence between variables, which use marginal den-
sities and bivariate copulas as building blocks. Vine copula models follow the idea of Joe (1996)
that any d-dimensional copula can be expressed in terms of dðd � 1Þ=2 bivariate (conditional)
copulas. Nagler and Czado (2016) formulated a general nonparametric estimator for such a model
and showed under high-level assumptions that the speed of convergence is independent of
dimension. Also, they discussed the asymptotic normality of their estimator under these assump-
tions and their simulation experiments illustrated a large gain in finite sample performance when
the assumptions are at least approximately true.

4.2. Test of independence

In practical applications, a first natural question is whether the copula function in Eq. (1) is actu-
ally different from the independence copula. If variables are independent, then only marginal
modeling is necessary, which can be carried out by using classical statistical approaches for uni-
variate i:i:d: observations. If independence is rejected, then a typical next step is to fit an appro-
priate parametric copula family to the available data. So, according to Genest and R�emillard
(2004), this amounts to testing

H0 : Cðu, vÞ ¼ uv versus H1 : Cðu, vÞ 6¼ uv: (27)

The classical alternative consists of testing

H0 : s ¼ 0 versus H1 : s 6¼ 0:

From Hofert et al. (2018), we know that Cðu, vÞ ¼ uv implies s¼ 0, but that the converse is
false in general. This lack of equivalence, however, is usually not an issue in practice as copulas
Cðu, vÞ 6¼ uv such that s¼ 0 do not seem to arise often in applications. In any case, the latter
configuration can be easily discarded by a scatter plot of the observations.

Thus, the null hypothesis of independence test in Eq. (27) based on copula density is equiva-
lent to testing

H0 : cðu, vÞ ¼ 1 versus H1 : cðu, vÞ 6¼ 1: (28)

In order to test the null hypothesis (28), nonparametric estimators of the special cases a-diver-
gence as KL(c), v2NðcÞ, and He(c) are considered as test statistics. Therefore, by replacing the
unknown copula density in Eqs. (11)–(13) with its LLPT estimation in Eq. (6), the plug-in esti-
mators of the copula-based a-divergence measures can be obtained as

cKLðcÞ ¼ 1
n

Xn
i¼1

log ĉðLLPT Þ
n ðÛ i, V̂ iÞ

� 
, (29)
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cv2N ðcÞ ¼ 1
2

1
n

Xn
i¼1

ĉðLLPT Þ
n ðÛ i, V̂ iÞ � 1

 !
, (30)

cHeðcÞ ¼ 1� 1
n

Xn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉðLLPT Þ
n ðÛ i, V̂ iÞ

q , (31)

where ðÛ i , V̂ iÞi¼1, :::, n are pseudo observations. It is notable that the null hypothesis of independ-
ence is equivalent to the nullity of the measures cKLðcÞ, cv2N ðcÞ, and cHeðcÞ and the null hypothesis
Eq. (28) will be rejected for large value of these measures.

5. Simulation study

Simulation studies are performed under the null hypothesis to evaluate the finite-sample proper-
ties of the nonparametric tests of independence proposed in the previous sections. Under the
alternative hypothesis, the Gaussian, T, T-EV, Clayton and Gumbel copulas are considered
because they cover every degree of dependence, as measured by Kendall’s s. The procedure pro-
vided in Section 5.1 is used to calculate the critical value (C:V:), P – value, and empirical power
(E:P:) of the independence tests based on Sn, cKLðcÞ, cv2N ðcÞ, and cHeðcÞ at 5% significance level.

5.1. Bootstrap procedure for calculating the empirical power

A procedure to compute the empirical power was proposed by Genest and R�emillard (2008) and
Genest, R�emillard, and Beaudoin (2009) and it is a pattern for authors. The following procedure
leads to the C:V:, approximate P – value, and E:P: for the test of independence based on Sn,cKLðcÞ, cv2N ðcÞ, and cHeðcÞ: For example, C:V:, approximate P – value, and E:P: for cKLðcÞ can be
obtained by means of the following procedure:

1. Generate B (a large integer) random samples of size n from independence copula (null
hypothesis) and for each of these samples, determine the values of the test statis-
tics; cKLjðcÞ; j ¼ 1, 2, :::,B:

2. Compute cKL†
ðcÞ by using pseudo-observations from the alternative hypothesis (or real data).

3. If cKL1:BðcÞ,cKL2:BðcÞ, :::,cKLB:BðcÞ denote the ordered test statistical values calculated in step 3,
then an estimate of the C:V: at 0.05 level of significance (C:V: 5%) is cKLbð1�aÞBc:BðcÞ, where
bac denotes the integer part of a. Thus, the approximate P – value is given by

Table 3. Empirical size and power of the test statistics for Gaussian, Clayton, and Gumbel copulas and different values of
Kendall’s s coefficient and sample size.

Copula Statistic

n¼ 50 n¼ 100 n¼ 200

s¼ 0 s¼ 0.1 s¼ 0.25 s¼ 0 s¼ 0.1 s¼ 0.25 s¼ 0 s¼ 0.1 s¼ 0.25

Gaussian S n 0.045 0.180 0.695 0.060 0.261 0.960 0.050 0.463 1.000bKLðcÞ 0.047 0.185 0.711 0.052 0.269 0.972 0.053 0.456 0.998bv2N ðcÞ 0.053 0.181 0.698 0.056 0.255 0.941 0.054 0.448 0.996bHeðcÞ 0.049 0.191 0.723 0.051 0.274 0.978 0.050 0.471 0.999
Clayton Sn 0.051 0.195 0.625 0.062 0.285 0.935 0.072 0.491 1.000bKLðcÞ 0.049 0.206 0.712 0.058 0.292 0.941 0.053 0.476 0.996bv2N ðcÞ 0.048 0.197 0.665 0.061 0.281 0.932 0.065 0.469 0.994bHeðcÞ 0.049 0.216 0.715 0.052 0.298 0.945 0.051 0.493 0.999
Gumbel Sn 0.031 0.165 0.692 0.041 0.291 0.932 0.065 0.502 1.000

K̂LðcÞ 0.047 0.188 0.705 0.053 0.309 0.941 0.054 0.491 0.996bv2N ðcÞ 0.046 0.179 0.696 0.055 0.286 0.928 0.055 0.476 0.991bHeðcÞ 0.048 0.192 0.719 0.049 0.315 0.947 0.051 0.511 1.000
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P � value ¼ 1
B

XB
j¼1

I bKLjðcÞ�bKL†

ðcÞ
n o:

5) Finally, to evaluate the E:P: at the a level for some large integer M, repeat the calculating
approximate P – value and thus E:P: is equal to the number of approximate P – values less
than a.

The kdecopula package (Nagler and Wen (2018)) in R software is used for estimation of the
copula density. A Monte Carlo experiment based on 1000 replications is performed according to
the bootstrap procedure. The power function of the new tests in Eqs. (29)–(31) is compared with
the power function of the classical test, which is based on the empirical copula for various sample
sizes n ¼ 50, 100, 200 and different degrees of dependency based on different Kendall’s s coeffi-
cient, s ¼ 0, 0:1, 0:25: For Kendall’s s coefficient greater than 0.5, all the considered tests provide
good and comparable results.

The empirical size and power of all the considered tests for the Gaussian, Clayton, and
Gumbel copulas are reported in Table 3, and for T and T-EV, copulas with 2, 5, and 10 degrees
of freedom are reported in Tables 4 and 5. In Tables 3–5, the power of the test increases as the
sample size increases and also, the power of the test increases as the degree of dependency meas-
ured by Kendall’s s increases.

In Table 3, the empirical size of all the tests is obtained when Kendall’s s is equal to zero. For
T and T-EV copulas, when Kendall’s s is equal to zero and the degree of freedom is small (�¼ 2
and �¼ 5), dependency occurs in the tails and in this case there is no independence. Thus, in

Table 4. Empirical size and power of the test statistics for T copula with 2, 5, and 10 degree of freedom and different values
of Kendall’s s coefficient and sample size.

Copula Statistic

n¼ 50 n¼ 100 n¼ 200

s¼ 0 s¼ 0.1 s¼ 0.25 s¼ 0 s¼ 0.1 s¼ 0.25 s¼ 0 s¼ 0.1 s¼ 0.25

T(�¼ 2) Sn 0.120 0.215 0.730 0.112 0.410 0.945 0.165 0.680 1.000
0.291 0.338 0.782 0.551 0.791 0.975 0.891 0.976 1.000bv2N ðcÞ 0.288 0.331 0.773 0.532 0.746 0.966 0.875 0.966 1.000bHeðcÞ 0.296 0.345 0.797 0.598 0.813 0.979 0.909 0.982 1.000

T(�¼ 5) Sn 0.070 0.205 0.680 0.075 0.380 0.935 0.085 0.520 1.000bKLðcÞ 0.112 0.256 0.741 0.143 0.402 0.946 0.301 0.536 1.000bv2N ðcÞ 0.102 0.225 0.733 0.131 0.397 0.939 0.297 0.524 1.000bHeðcÞ 0.125 0.282 0.752 0.153 0.415 0.961 0.316 0.549 1.000
T(�¼ 10) Sn 0.061 0.171 0.686 0.055 0.365 0.960 0.055 0.521 1.000bKLðcÞ 0.052 0.212 0.706 0.056 0.383 0.975 0.053 0.509 1.000bv2N ðcÞ 0.055 0.209 0.698 0.059 0.354 0.943 0.059 0.497 0.998bHeðcÞ 0.052 0.221 0.713 0.051 0.395 0.979 0.050 0.526 1.000

Table 5. Empirical size and power of the test statistics for T-EV copula with 2, 5, and 10 degree of freedom and different val-
ues of Kendall’s s coefficient and sample size.

Copula Statistic

n¼ 50 n¼ 100 n¼ 200

s¼ 0 s¼ 0.1 s¼ 0.25 s¼ 0 s¼ 0.1 s¼ 0.25 s¼ 0 s¼ 0.1 s¼ 0.25

T-EV(�¼ 2) Sn 0.216 0.482 0.971 0.348 0.583 1.000 0.581 0.918 1.000bKLðcÞ 0.286 0.523 0.981 0.488 0.706 1.000 0.726 0.943 1.000bv2N ðcÞ 0.273 0.498 0.978 0.452 0.681 1.000 0.717 0.933 1.000bHeðcÞ 0.293 0.541 0.985 0.513 0.726 1.000 0.749 0.968 1.000
T-EV(�¼ 5) Sn 0.091 0.221 0.521 0.095 0.415 0.890 0.095 0.932 1.000bKLðcÞ 0.112 0.229 0.543 0.099 0.466 0.912 0.128 0.937 0.999bv2N ðcÞ 0.096 0.226 0.536 0.098 0.431 0.902 0.115 0.934 0.999bHeðcÞ 0.118 0.232 0.557 0.102 0.476 0.926 0.131 0.946 1.000
T-EV(�¼ 10) Sn 0.075 0.134 0.552 0.061 0.245 0.795 0.031 0.473 1.000bKLðcÞ 0.054 0.142 0.568 0.053 0.265 0.821 0.055 0.449 0.989bv2N ðcÞ 0.056 0.139 0.558 0.058 0.236 0.788 0.061 0.443 0.971bHeðcÞ 0.051 0.148 0.572 0.051 0.273 0.837 0.050 0.461 0.996
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Tables 4 and 5, the empirical size of the tests for T and T-EV copulas is obtained when Kendall’s
s is equal to zero and the degree of freedom is equal to 10. In Tables 3–5, it can be observed that
all the tests generally control the size.

A comprehensive survey of the results leads to general ideas as follows. In Tables 3–5, cHeðcÞ
has the best performance among the new a-divergence tests. Based on Proposition 1, part (b), it
is observed that the maximum value cHeðcÞ is finite, and according to Micheas and Zografos
(2006), we suggest that this measure of dependence will be preferred from another. Also, the
results show that the performance of a-divergence independence test decreases with increasing
alpha value in Eq. (17). Overall, the proposed tests based on a-divergence have a better perform-
ance than Sn for a small sample size or weak dependency.

According to the results of Table 3, the empirical power functions of all the tests for Gaussian,
Clayton, and Gumble copulas are comparable. In this table, for all degrees of dependence, the
outcomes can be stated as follows:

a. When the sample size is equal to 50, the new independence tests based on a-divergence per-
form better than Sn.

b. When the sample size is equal to 100, the independence tests based on cHeðcÞ and cKLðcÞ
have outperform than Sn.

c. When the sample size is greater than 100 and the degree of dependency is very low
(s � 0:1), the independence tests based on cHeðcÞ perform better than Sn.

In Tables 4 and 5, when the degree of freedom is equal to 10, the same result as in Table 3 is
obtained for n ¼ 50, 100, 200: In these two tables, when the degree of freedom is equal to 2 or 5,
the new independence tests based on a-divergence outperform than Sn and cHeðcÞ has the best
performance among the tests based on a-divergence. In these cases, the difference becomes even
more important when the sample size increases.

For example, in T copula with 2 degree of freedom, n¼ 200, and s¼ 0, the empirical powers
of the tests cKLðcÞ, cv2N ðcÞ, and cHeðcÞ are equal to 0.891, 0.875, and 0.909, respectively, where as
the power of test Sn is equal to 0.165. The same remark applies for T-EV copula when the degree
of dependencies is small. For example, in T-EV copula with 2 degree of freedom, n¼ 200, and
s¼ 0, the empirical powers of the tests cKLðcÞ, cv2N ðcÞ, and cHeðcÞ are equal to 0.726, 0.717, and
0.749, respectively, where as the power of test Sn is equal to 0.581. These results for T and T-EV
copulas were to be expected according to Figure 1.

6. Application

An application of the new tests is presented to a given dataset for the uranium exploration. This
dataset is considered by Cook and Johnson (1986), and Genest, Quessy, and R�emillard (2006)

Table 6. Independence tests for some pairs of uranium exploration dataset.

Pairs

(U,Co)
(s ¼ 0:0596)

(U,Sc)
(s ¼ 0:0923)

(Li,Co)
(s ¼ 0:0061)

(Li,Ti)
(s ¼ 0:0028)

(K,Ti)
(s ¼ 0:0406) C:V: 5%

Sn Statistic 0.2256 0.4480 0.0995 0.0959 0.1832 0.1124
P-value 0.004 < 0.001 0.082 0.094 0.007bKLðcÞ Statistic 0.0498 0.0656 0.0142 0.0251 0.0352 0.0189
P-value < 0.001 < 0.001 0.441 0.003 < 0.001bv2N ðcÞ Statistic 0.0381 0.0473 0.0088 0.0169 0.0251 0.0121
P-value < 0.001 < 0.001 0.43 0.005 < 0.001bHeðcÞ Statistic 0.0211 0.0268 0.0052 0.0139 0.0153 0.0072
P-value < 0.001 < 0.001 0.462 0.002 < 0.001
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and is given in the package copula by Hofert et al. (2018). The uranium exploration dataset is
consist of 655 chemical analyses of water samples collected from the Montrose quadrangle of
western Colorado (USA). Concentrations for the following elements were measured: uranium
(U), lithium (Li), cobalt (Co), potassium (K), cesium (Cs), scandium (Sc), and titanium (Ti). In
Table 6, the values of the test statistics Sn, cKLðcÞ, cv2N ðcÞ, and cHeðcÞ for selected pairs of variables
are shown. For these pairs, the corresponding P – value and C:V: are calculated at 5% level of
significance with 1000 iterations according to the bootstrap procedure that is illustrated in the
Section 5.1.

Based on the results in Table 6, the copula-based a-divergence tests are generally in agreement
with the empirical copula-based test for the pairs (U, Co), (U, Sc), (Li, Co), and (K, Ti). These
tests lead to a different result in rejecting the independence hypothesis as for the pair (Li, Ti).
According to the test Sn, the independence test is not rejected with a P – value of 0.094, whereas
the independence tests based on a-divergence are rejected and their P – values are less than 0.05.
Also, the value of test statistics Sn is less than C:V 5% that it can be observed in the last column
of Table 6 and thus the independence hypothesis is not rejected.

The scatter plot of the pair (Li, Ti) can be seen in Figure 3. The presence of tail dependency
or outlying observations in the pair (Li, Ti) may be reasons to get different results. According to
the results of Section 5, when Kendall’s s is close to zero (s � 0:1), the independence test based
on cHeðcÞ is more reliable than the independence test based on empirical copula, because depend-
ency may occur at the tails and these tests can measure this kind of dependency. Thus, based on
the results of cHeðcÞ, the independence hypothesis for the pair (Li, Ti) is rejected.

7. Conclusion

This study introduced three nonparametric independence tests based on the a-divergence in the
class of continuous random variables. The special cases of a-divergence were calculated in terms
of copula density, and their features were investigated. The properties of copula-based a-diver-
gence for some copulas were described. The asymptotic first-order consistency of a-divergence
estimators was demonstrated. The test statistics cKLðcÞ, cv2N ðcÞ, and cHeðcÞ were estimated by the
LLPT estimator of passive copula density. A Monte Carlo experiment was run to investigate the
performance of the tests in comparison with the existing test based on empirical copula. The pro-
posed tests based on the a-divergence have a better performance than Sn for a small sample size

Figure 3. Scatter plot for the pair (Li, Ti) of uranium exploration dataset.
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or weak dependency. Moreover, cHeðcÞ has the best performance among the new a-divergence
tests. The simulation results showed that the suggested tests outperform for T and T-EV copulas
with small degrees of freedom.
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