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We study the holographic renormalization group (RG) flow in the presence of higher-order curvature
corrections to the (dþ 1)-dimensional Einstein-Hilbert (EH) action for an arbitrary interacting scalar
matter field by using the superpotential approach. We find the critical points of the RG flow near the local
minima and maxima of the potential and show the existence of the bounce solutions. In contrast to the EH
gravity, regarding the values of couplings of the bulk theory, superpotential may have both upper and lower
bounds. Moreover, the behavior of the RG flow is controlled by singular curves. This study may shed some
light on how a c-function can exist in the presence of these corrections.
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I. INTRODUCTION

The Wilsonian approach in renormalization of quantum
field theories (QFTs) [1,2], leads to the concept of the
renormalization group (RG) by integrating out the high
energy degrees of freedom. The RG flow connects different
scale-invariant QFTs in the space of all the parameters
(mass and couplings) of a QFT with a UV cutoff.
The gauge/gravity duality [3] provides a useful tool for

study of the d-dimensional QFTs through the correspond-
ing (dþ 1)-dimensional gravity theories. It is specifically
important when the quantum field theory is in the strong
coupling regime in which the perturbation theory does not
work. Because of this correspondence, the RG flow of the
QFTon the boundary is related to the various geometries of
the bulk gravity, and a holographic dimension plays the role
of the RG scale in the dual QFT. Consequently, the RG flow
between two fixed points of the QFT is supposed to be
given by a domain wall solution on the gravity side which
connects two AdS geometries. Usually, the RG flow
obtains by perturbing the theory at a UV fixed point by
a relevant or marginal operator. Adding these operators
leads to a line of fixed points or an IR fixed point.
The main issue is the duality between the RG (Callan-

Symanzik) equations and equations of the motion of
the bulk action. The reason is that the RG equations are
first-order differential equations and the corresponding

equations of motion in the Einstein-Hilbert (EH) gravity
are from the second order.
There are several approaches to solve this problem.

The first attempts in [4,5] showed the equivalency of the
supergravity equation of motion and the RG flow equation
of the super Yang-Mills boundary theory. Afterward, by
applying the Hamilton-Jacobi formalism [6] found first-
order equations of the classical supergravity action with the
same form of the RG equations of the dual field theory and
correctly predicts the contribution of the conformal
anomaly found in [7]. An alternative method to lower
the order of the differential equations is using an auxiliary
function, the superpotential function, [8] which has been
applied in [9–11]. Despite the naming in the holographic
RG flow literature, this function does not relate to the
supersymmetric theories necessarily [12].
In fact, the idea of the superpotential is more than a

change of variable; It is well known that the supersym-
metric solutions of the supergravity are solutions of a first
order differential equation. The question is if we can
construct such a first order equations for the nonsupersym-
metric theories. The answer was first introduced in [13]
under the title of the fake supergravity where also the
stability of the domain wall solutions is studied. The fake
supergravity is based on defining a superpotential function
(also called the fake superpotential or the prepotential in
some literature) which is not necessarily related to the
superalgebra. Moreover, the governing first order equations
of this function are equivalent to the second order equations
of motion.
A similar behavior is observed in the Hamilton-Jacobi

formalism where in a Hamiltonian system with first order
equations, one can reproduce the second order equations of
motion for the domain wall solutions. For a good review on
comparing these two approaches see [14,15]. Using these
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two methods many works has been done. One of the
pioneer studies in [16] calculates the correlation function in
holographic RG flows by applying the Hamilton-Jacobi
formalism and discusses the stability of the nonsupersym-
metric AdS domain wall solutions. The significance of
these solutions and the fake superpotential function is
studied in [17] (see also the subsequent papers [18,19]).
The studies have been extended to the black hole solutions
in [20–23] by using either the above approaches.
In holographic studies of the RG flow, there are other

approaches. For instance [24] finds a relation between the
holographic RG flow and the Wilsonian RG flow in the
corresponding field theory by using the role of multitrace
operators. Paper [25] shows an equivalence between
integrating out the high energy degrees of freedom of
the field theory and integrating out on a range of the
holographic coordinate in the gravity side.
Using the superpotential method, [26,27] show a new

possible exotic behavior of the RG flow. It has been used for
Einstein-Hilbert bulk gravity in [28]. In superpotential
formalism, the exotic RG flow results from the new possible
zero points of the beta function (the bounce points). The sign
of beta function changes as it crosses this point, and unlike
the usual UV/IR fixed points of the theory, the value of the
potential is not extremum here. In other words, the beta
function has a branch cut in the bounce points.
The result of [28] has been extended to the maximally

symmetric solutions with nonzero curvature in [29].
Following these works, [30,31] have considered the black
hole solutions in Einstein-dilaton theory and studied the
finite temperature exotic RG flows. Also, the c-theorem
along the exotic RG flow has been studied in [32] for
3-dimensional Einstein-dilaton gravity by considering the
entanglement entropy as a holographic c-function. Among
other issues, [33] discusses the exotic behavior of the RG
flow in the anisotropic geometries in Einstein-Maxwell-
scalar theories or equivalently in the dual nonrelativistic
quantum field theories.
Moreover, due to the monotonic behavior of the super-

potential function, at least in the EH gravity, this function
can be used as a candidate for c-function in the holographic
study of the c-theorem [5,34].
A notable suggestion about the holographic study of the

RG flow is the consideration of the higher curvature
corrections to the gravity side. Generally, the order of
the equations of motion is more than two, so we may
encounter the holographic RG equations that are not the
first order either. The study of these equations and their
solutions may help us to understand the RG equations of
the dual QFTs at the strong coupling regime.
The higher-order curvature terms appear in various

theories. For example, in supergravity or string theory,
the action contains a series of higher curvature terms. The
first general nontrivial corrections are the quadratic curva-
ture terms

Lcorr ¼ α1R2 þ α2R2
μν þ α3R2

μνρσ: ð1:1Þ

In general, the coefficients may depend on the other fields
of the theory. Moreover, in string theory, couplings are
suppressed by string length scale, ls. If this length is smaller
than the curvature length, l2sR ≪ 1, then we are in the
perturbative regime and we can truncate the series expan-
sion of the curvature corrections. Otherwise, all higher-
order corrections would also be relevant.
On the other hand, there are various constraints on

the couplings of these corrections. For instance, in five-
dimensional Gauss-Bonnet (GB) gravity (α1 ¼ α3 ¼
−α2=4 ¼ λGB), it has been shown that to avoid the
naked singularity, the GB coupling, λGB, has to be
limited to λGB ≤ 1

4
. Moreover, the unitarity of the dual

boundary theory, demands that − 7
36
≤ λGB≤ 9

100
, for example

see [35,36].
There is some evidence that the higher curvature terms

affect the holographic bounds. For instance, [37,38] show
that the viscosity bound is violated for positive values of the
GB coupling. They also observed that for λGB ≥ 9

100
there

are metastable quasiparticles on the boundary CFT that can
travel faster than the speed of light and violate causality.
The existence of the ghost modes and tachyonic excitations
are generic in these theories. To avoid causality violations,
the higher-derivative couplings should be suppressed by
appropriate powers of the Planck length lP or the string
length scale ls. At least for small values of the couplings,
the ghost or tachyonic modes are integrated out, and their
degrees of freedom are beyond the QFT cutoff.
In this paper, we consider constant coefficients for higher

curvature terms and do not impose any restrictive con-
ditions. Although, we can always apply the above physical
constraints, and our calculations would be trustful as far as
we restrict ourselves in the allowed regions of the couplings
of the theory.
The holographic RG flow of the general quadratic

curvature (GQC) gravity in a simple toy model has been
studied in [39].1 It shows the existence of the a-theorem for
even-dimensional theories by finding the Wess-Zumino
action, which originates from the spontaneous breaking of
the conformal symmetry, by using a radial cutoff near the
AdS boundary.
We will develop our understanding of the holographic

RG flow by looking at the effects of the general quadratic
curvature terms on the flow. Similar to [28], we have
considered a scalar matter field that is minimally coupled to
gravity with an arbitrary potential. We define the super-
potential and write the equations of motion in terms of it.
As the gauge-gravity correspondence suggests, the RG

transformations of the boundary QFT are dual to a domain
wall solution that connects two AdS vacua, i.e., the UV/IR

1For further properties of this theory of gravity for example
see [40–42]
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fixed points. The scale factor of this geometry is related to
the energy scale of the dual QFT, and consequently to the
beta function of the marginal/relevant operator on the
boundary. Finding the zeros of this beta function gives
the critical points of the corresponding dual QFT. We will
explain these steps in more detail in Secs. III and IV.
Usually, the first choice to study the higher curvature

corrections is the GB gravity, in which the order of
derivatives of the equations of motion is the same as the
EH action. Although generally, we have three independent
couplings (a1, a2, a3) in action (1.1), the equations of
motion only depend on two specific combinations of these
couplings, say (κ1, κ2). The GB gravity stays on a specific
simple class of the GQC gravity when κ1 ¼ 0. The space of
two-derivative theories is more significant, and we will
study this space in the first attempt. Then we extend our
results for the general case when the equations of motion
are the fourth-order derivatives.
This paper is organized as follows: In Sec. II we provide

a setup for GQC gravity. In Sec. III, we present the details
of the calculations of the holographic RG flow in two-
derivative theories. We find the superpotential, scalar field
and, the scale factor near the possible critical points
perturbatively. We address the behavior of the holographic
RG flow for GQC gravity in Sec. IV. The last section is the
summary and conclusions.

II. THE GENERAL SETUP

As was told in the introduction, we are going to study the
effect of the quadratic curvature terms in the bulk gravity on
the holographic RG flow. Nearly all steps of the calcu-
lations are based on the techniques of paper [28]. Let us
consider a bulk action in a general (dþ 1)-dimensional
space-time, that in addition to the Einstein-Hilbert action, it
includes the following quadratic curvature terms with three
independent couplings

Sbulk ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
Rþa1R2þa2R2

μν

þa3ðR2−4R2
μνþR2

μνρσÞ−
1

2
ð∂μϕÞ2−VðϕÞ

�
: ð2:1Þ

where ϕ is a real scalar matter field with an arbitrary
potential and couples to gravity minimally. To study the
holographic RG flow, we suppose that the potential is
negative for all the possible values of the scalar field. It
guarantees the existence of a dual conformal field theory at
UVor IR fixed points of the RG flow. In other words, at the
gravity side, we suppose that the scalar field has various
stationary points, specifically at the UVand IR fixed points.
Consequently, at these points, the classical solution of the
equations of motion is the AdSdþ1 space-time.
By gauge-gravity correspondence, the RG transforma-

tions of the boundary quantum field theories are dual to the
diffeomorphisms of the bulk gravity. Therefore, it would be

reasonable to consider a solution for equations of motion of
the bulk fields that smoothly connects the AdS space-time
at the UVand IR fixed points. Therefore, we begin with the
following metric, which in particular is a holographic
representation of the RG flow between the two dual
boundary CFTs

ds2¼e2AðrÞ
�
−dt2þ

Xd−1
i¼1

dxidxi
�
þdr2; ϕ¼ϕðrÞ: ð2:2Þ

Here r is the holographic coordinate, and we suppose that
the boundary is a d-dimensional Minkowski space. In this
description, the warp factor is related to the energy scale of
the holographic dual quantum field theory

log
E
E0

¼ AðrÞ: ð2:3Þ

If we consider the relevant operator O on the boundary
CFT, which couples to the boundary value of the bulk
scalar field, i.e.,

L ¼ LCFT þ ϕðt; xiÞOðt; xiÞ; ð2:4Þ

then it generates an RG flow, that goes away from the UV
fixed point. The coupling of this operator, i.e., gðEÞ ¼
ϕðr; t; xiÞ is running according to the RG flow equation and
its corresponding beta function is given by

βðgÞ ¼ dgðEÞ
d logE

: ð2:5Þ

We can compute the beta function by knowing the scale
factor, AðrÞ, therefore, we need to find the solution of the
bulk fields. For the field configuration in (2.2), the
equations of motion from the variation of the action with
respect to metric are given by

1

2
ϕ0ðrÞ2−VðϕÞ
¼−dð−ðd−1ÞA0ðrÞ2þκ2A0ðrÞ4
þκ1ð2dA0ðrÞ2A00ðrÞ−A00ðrÞ2þ2Að3ÞðrÞA0ðrÞÞÞ; ð2:6aÞ

1

2
ϕ0ðrÞ2 þ VðϕÞ
¼ −dðd − 1ÞA0ðrÞ2 − 2ðd − 1ÞA00ðrÞ
þ κ2ðdA0ðrÞ4 þ 4A0ðrÞ2A00ðrÞÞ þ κ1ð2Að4ÞðrÞ
þ 3dA00ðrÞ2 þ 4dAð3ÞðrÞA0ðrÞ þ 2d2A0ðrÞ2A00ðrÞÞ;

ð2:6bÞ

where the above equations just depend on two combina-
tions of the couplings of the quadratic curvature terms, i.e.,
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κ1¼4da1þðdþ1Þa2;
κ2¼ðd−3Þððd−1Þðd−2Þa3þdððdþ1Þa1þa2ÞÞ: ð2:7Þ

According to the above results, we divide our problem into
two different sections. In section III, we suppose κ1 ¼ 0,
then the equations of motion are at most the second
derivatives of the fields with respect to r. Although the
differential equations are in the same order as the Einstein-
Hilbert equations of motion, we experience new interesting
situations. In Sec. IV, when κ1 ≠ 0 the equations of motion
have fourth-order derivatives of the field and It makes
things a little complicated. However, the analysis of Sec. III
reveals more information and details for the latter case.

III. HOLOGRAPHIC RG FLOW:
κ1 = 0 THEORIES

In this section, we consider a simplified version of the
GQC and suppose that κ1 ¼ 0. In particular, it contains the
well known (dþ 1)-dimensional Gauss-Bonnet gravity
when a1 ¼ a2 ¼ 0. Moreover, this theory in its general
form includes the critical and fðRÞ theories of gravity up to
the quadratic curvature terms.
Following the Einstein-Hilbert case [28], we define a

superpotential that makes the equations of motion as a set
of first-order differential equations2

WðϕðrÞÞ ¼ −2ðd − 1ÞA0ðrÞ: ð3:1Þ
Note that, in order to have a simple comparison with results
of the previous works, we call the above function the
superpotential function. In fact WðϕÞ defined in (3.1) has
no meaning in the context of holography, on the other hand,
under certain circumstances, the fake superpotential that
defines a given domain wall has a direct physical inter-
pretation in the dual field theory as a quantum effective
potential [17].
If we rewrite the equations of motion (2.6a) and (2.6b) in

terms of the superpotential and subtract/add these equa-
tions, then the set of the second order differential equations
will reduce to the following first order equations

ϕ0 ¼
�
1 −

κ2
2ðd − 1Þ3W

2

�
W0; ð3:2aÞ

VðϕÞ ¼ −
d

4ðd − 1Þ
�
1 −

κ2
4ðd − 1Þ3 W

2

�
W2

þ 1

2

�
1 −

κ2
2ðd − 1Þ3W

2

�
2

W02: ð3:2bÞ

The holographic RG flow or the beta function for
coupling ϕ of the relevant operator O is obtained from
Eqs. (2.3) and (2.5) via

βðϕÞ ¼ dϕðrÞ
dAðrÞ

¼ −2ðd − 1Þ
�
1 −

κ2
2ðd − 1Þ3W

2

�
W0

W
; ð3:3Þ

where in the last equality we have substituted the
equations (3.1) and (3.2a). This equation shows that, by
restricting to the region where κ2 < 0, the sign of beta
function would only depend on the sign of W

0
W . Furthermore,

the monotonic behavior of the superpotential along the RG
flow would be guaranteed. This can be seen by

dWðϕðrÞÞ
dr

¼
�
1 −

κ2
2ðd − 1Þ3 W

2

�
W02: ð3:4Þ

Based on the above relation, for a negative coupling κ2,
we can define a monotonically decreasing holographic
c-function constructed out of the superpotential. For
example in [39], for a specific constant α, it is proportional
to 1

Wdþ1 ðW2 þ αW4Þ. However, for positive values of κ2,
one needs to consider an upper bound either for W or κ2,
otherwise, this superpotential would not be a monotonic
function. Before proceeding further, we should emphasize
two important issues:
(1) There is a constraint on the superpotential from the

equation of motion (3.2). If we write it as

W02 ¼ ðd − 1Þ2
2ðκ2W2 − 2ðd − 1Þ3Þ2
× ð16ðd − 1Þ4V þ 4dðd − 1Þ3W2 − dκ2W4Þ;

ð3:5Þ

then the right hand side must be positive which
means that regarding the sign of κ2, there are upper
or lower bounds on the value of the superpotential.
Since we have supposed VðϕÞ < 0 then

W ≥ B− > 0; κ2 < 0; ð3:6aÞ

Bþ≥W≥B−>0; 0<κ2<−
dðd−1Þ2
4VðϕÞ ; ð3:6bÞ

where for simplicity, we have assumed a positive
superpotential for all values of the scalar field.3

The upper and lower bounds are defined as

B2
� ¼ 2ðd−1Þ3

κ2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κ2

dðd−1Þ2VðϕÞ
s !

: ð3:7Þ

2Everywhere in this paper ϕ0 ¼ dϕðrÞ
dr and W0 ¼ dWðϕÞ

dϕ . 3In general, equations of motion are invariant underW ↔ −W.

AHMAD GHODSI and MALIHE SIAHVOSHAN PHYS. REV. D 104, 126025 (2021)

126025-4



(2) The scalar curvature can be written in term of the
superpotential

R¼ d
d−1

�
ϕ0W0−

dþ1

4ðd−1ÞW
2

�

¼ d
d−1

��
1−

κ2
2ðd−1Þ3W

2

�
W02−

dþ1

4ðd−1ÞW
2

�
:

ð3:8Þ

The last equality shows that we should have a finite
value for W0ðϕðrÞÞ to have a regular geometry or
nonsingular curvature.

A. Critical points for κ2 < 0

The zero points of the beta function (3.3) for κ2 < 0 are
equivalent to the points where W0 vanishes. To find a
relation between these extrema of the superpotential and
the scalar potential V, we can differentiate (3.2) with
respect to the ϕ

V 0ðϕÞ ¼
�
1 −

κ2W2

2ðd − 1Þ3
���

1 −
κ2W2

2ðd − 1Þ3
�
W00

−
d

2ðd − 1Þ
�
1þ 2κ2W02

dðd − 1Þ2
�
W

�
W0: ð3:9Þ

In an extremum point of the superpotential, if W00 is finite,
then V 0 ¼ 0. When W00 diverges, the potential is not
necessarily an extremum. In the following subsections,
we will analyze both of these cases separately, i.e.,

(i) W0 ¼ V 0 ¼ 0 and W00 is finite.
(ii) W0 ¼ 0 and W00 diverges but V 0 is finite.
We should emphasize that there is a lower bound on the

superpotential everywhere, as we showed in (3.6a) for
negative values of κ2.

1. Local maxima of the potential

Near a local maximum, the potential can be expanded as
a sum of the cosmological term and other possible
interacting terms

VðϕÞ ¼ −
dðd − 1Þ

L2
−
1

2
m2ϕ2 þOðϕ3Þ; ð3:10Þ

where in the above relationm2 > 0 and the negative sign of
the mass term is considered in the overall coefficient. For
simplicity in the notation, we have considered the
extremum at ϕ ¼ 0. After substitution of the potential
(3.10) in equation of motion (3.2b), two independent
solutions appear for superpotential

W�ðϕÞ ¼
2ðd − 1Þ

L̃
þ Δ�

2L̃
ϕ2 þ C�ϕz� þ � � � ; ð3:11Þ

where dots denote the subleading terms and C� are the
constants of integration. The other parameters are defined
as follows

L̃ ¼ Lffiffiffi
2

p
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4κ2
ðd − 1ÞL2

s !1
2

; ð3:12aÞ

Δ� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2−4L̃2m2

p

2λ
; λ¼ 1−

2κ2
ðd−1ÞL̃2

: ð3:12bÞ

The reality condition for Δ� implies that the mass is
bounded from above, 0 < m2 ≤ d2

4L̃2.
4 Also, κ2 < 0 implies

λ > 1 which leads to L < L̃. As we will show, the new
parameter L̃ is the radius of AdSdþ1 solution at the fixed
point. For negative values of κ2, it is larger than the radius
of the AdSdþ1 solution of the Einstein-Hilbert action. The
power of the first leading terms are fixed by equations of
motion

z� ¼ d
λΔ�

; 0 < zþ < 2; 2 < z−; ð3:13Þ

which consequently implies the boundary condition
Cþ ¼ 0, otherwise ϕ ¼ 0 would not be a fixed point
because W0 diverges and the geometry is not smooth here.
In Fig. 1, the generic behavior of the W� are depicted in
green and red curves. These curves are limited to the region
above the bound curve (gray region), i.e., W > B−.
As we already mentioned, the RG flow is given by (3.4)

and since dW
dr ≥ 0 for negative values of κ2, thereforeW and

r have the same increasing or decreasing behavior. The
arrows in the Fig. 1, show the increasing direction of the
radial coordinate, or equivalently the RG flow direction.
The outgoing RG flow from ϕ ¼ 0 indicates that this
critical point is a UV fixed point.
By solving the equation of motion (3.2a) around ϕ ¼ 0

and by using the superpotential solutions in (3.11), the
leading terms of the scalar field solutions around this
critical point can be found as

ϕþðrÞ ¼ ϕþe
λΔþ
L̃
r þ � � � ; ð3:14aÞ

ϕ−ðrÞ ¼ ϕ−e
λΔ−
L̃
r þ C−dL̃

Δ−ðd − 2λΔ−Þ
ϕΔþ=Δ−− e

λΔþ
L̃
r

þ � � � ; ð3:14bÞ

whereϕ� are the constants of the integration. These solutions
are similar to the EH case found in [16,28] and are just
modified by the proper effective parameters (3.12) due to the
second order nature of the equations of motion.

4Note that since in (3.10) m2 > 0, therefore m2 ¼ d2

4L̃2 is the
Breitenlohner and Freedman (BF) bound on mass square.
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On the boundary field theory side we can associate two
sources J� to the operator O. In the standard quantization
with using the above solution for scalar field, these
sources are

Jþ ¼ 0; J− ¼ ϕ−

L̃λΔ−
: ð3:15Þ

Using the AdS=CFT dictionary, the vacuum expectation
value of the corresponding boundary operator, O, to the
bulk scalar field is related to the coefficients of the above
solutions of ϕðrÞ as follows

hOiþ ¼ 2λΔþ − d

L̃λΔþ
ϕþ;

hOi− ¼ d

L̃λΔþΔ−
C−L̃ϕΔþ=Δ−− : ð3:16Þ

The VEV for the negative branch of the solutions is
proportional to the integration constant C−, which corre-
sponded to a specific choice of holographic renormalization
scheme [28]. Therefore, hOi− is zero, up to scheme
dependent contact terms [16,18].
In the last step, we can read the geometry, near the fixed

point, by using the definition of the superpotential (3.1)

AþðrÞ ¼ −
r − r�
L̃

−
ϕ2þ

8λðd − 1Þ e
2λΔþ
L̃

r þ � � � ; ð3:17aÞ

A−ðrÞ¼−
r−r�
L̃

−
ϕ2
−

8λðd−1Þe
2λΔ−
L̃

rþO
�
e
dr
L̃

�
þ���: ð3:17bÞ

Since λΔ� > 0, both geometries are asymptotically AdS
spaces with radius L̃ when r → −∞. This indicates that
ϕ ¼ 0 is a UV fixed point and we expect a dual CFT.

2. Local minima of the potential

We can perform the same analysis as the previous section
if the potential is locally near its minima (m2 > 0)

VðϕÞ ¼ −
dðd − 1Þ

L2
þ 1

2
m2ϕ2 þOðϕ3Þ; ð3:18Þ

We expect the same solutions for the superpotential similar
to (3.11), with an exception that here Δ� are equal to

Δ� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4L̃2m2

p
2λ

: ð3:19Þ

Since we have considered m2 > 0, the ϕz term is not the
first leading term because

z ¼ z� ¼ d
λΔ�

; 0 < zþ < 1; z− < 0; ð3:20Þ

therefore we should choose C� ¼ 0. Finally, the solutions
for the scalar field and the scale factor are given by

ϕ�ðrÞ ¼ ϕ�e
λΔ�
L̃
r þ � � � ; ð3:21aÞ

A�ðrÞ ¼ −
r − r�
L̃

−
ϕ2
�

8λðd − 1Þ e
2λΔ�
L̃

r þ � � � : ð3:21bÞ

In Fig. 2, we have sketched the generic behavior of
the superpotential (again green and red curves forW�). The
arrows on the curves show the increasing direction of the
holographic coordinate r. Therefore, ϕ ¼ 0 is an IR fixed
point for the W− solution, and at the same time, it is a UV
fixed point for theWþ branch. Knowing the UV fixed point
sits at r → −∞ whereas the IR fixed point is located at
r → þ∞ together with the defined positive (negative) sign
of Δþ (Δ−), determine the situation of ϕ ¼ 0 for each
branch of the superpotential solutions.

FIG. 2. The generic behavior of the superpotential near the local
minimum of the potential. The green curve isWþ and the red one
is for W−. The blue curves represent the bounce solutions.

FIG. 1. The generic behavior of the superpotential near the local
maximum of the potential. The green curve isWþ and the red one
is for W−. The blue curves represent the bounce solutions. The
gray region is the forbidden area specified by the bound equation.
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In other words, the endpoint of an RG flow is the starting
point of another RG flow (see the same behavior and its
related discussions for Einstein-Hilbert action in [28]).
On the boundary field theory side the associate sources
and vacuum expectation values of the operator O are as
follow

J� ¼ 0; hOi� ¼ 2λΔ� − d

L̃λΔ�
ϕ�: ð3:22Þ

3. Bounces

313 As we already discussed, there is another possibility
for a critical point. The initial conditions for derivatives of
the superpotential and potential at this point are given by

W0ðϕBÞ¼ 0; V 0ðϕBÞ≠ 0; DivergentW00ðϕBÞ: ð3:23Þ

It means that near the so-called bounce points [28], the
superpotential is still at the extremum, however for a
general potential with V 0 ≠ 0, equation (3.9) leads to a
divergent W00. By differentiating the equation of motion
(3.2b) with respect to ϕ and imposing the above conditions
of the bounce point we get

V 0ðϕBÞ ≃
�
1 −

κ2
2ðd − 1Þ3W

2

�
2

W0W00: ð3:24Þ

Consider the following superpotential for some arbitrary
constants WB and Cz

W ¼ WB þ Czðϕ − ϕBÞz þ…: ð3:25Þ

By definition [Eq. (3.5)], for a general potential function,
the lower bound is a set of points whereW0 ¼ 0. Therefore,
all the critical points belong to this curve, and the extremum
points of the potential are just specific points on this curve.
So, the bounce point is an arbitrary point on the lower
bound curve (3.6a) and the corresponding value of the
superpotential at this point is

WB ¼B−ðϕBÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd−1Þ3

κ2

s  
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κ2

dðd−1Þ2VðϕBÞ
s !1

2

: ð3:26Þ

Substituting the ansatz (3.25) into the (3.24) and keeping
the leading terms, we find that z ¼ 3

2
and the constant Cz is

equal to

C2z ¼
8

9

�
1 −

κ2
2ðd − 1Þ3 B−ðϕBÞ2

�
−2
V 0ðϕBÞ

¼ 8

9

�
1þ 4κ2

dðd − 1Þ2 VðϕBÞ
�

−1
V 0ðϕBÞ; ð3:27Þ

where in the second equality we have used the Eq. (3.26).
Finally, we have two distinct solutions for the super-
potential near the bounce point

W↑;↓ðϕÞ ¼ B−ðϕBÞ �
2

3

�
1 −

κ2
2ðd − 1Þ3 B−ðϕBÞ2

�
−1

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðϕBÞ

p
ðϕ − ϕBÞ32 þ…: ð3:28Þ

The corresponding (blue) curves for ↑ and ↓ solutions are
depicted in Figs. 1 and 2. It should be noted that for positive
(negative) V 0, ϕ is greater (smaller) than ϕB, i.e., the
bounces are reaching the bounds from the right(left) hand
side. These superpotentials lead to the following solutions
for the scalar field near the bounce point. From equa-
tion (3.2a) and the conditions of the bounce point we know
that the r-derivative of the ϕ must be zero (since W0 ¼ 0 at
this point), so we find

ϕ↑;↓ðrÞ ¼ ϕB þ 9

16

�
1 −

κ2
2ðd − 1Þ3 B−ðϕBÞ2

�
2

C2zðr − rBÞ2

þOðr − rBÞ3

¼ ϕB þ V 0ðϕBÞ
2

ðr − rBÞ2 þOðr − rBÞ3; ð3:29Þ

where rB is the corresponding radius of the bounce point
and up (down) solution corresponds to r > rBðr < rBÞ.
The second line above is simplified by using the value of Cz
and shows that at least at the first nontrivial order of the
equations, the value of κ2 does not play a role in the scalar
field solution.
The next step would be the determination of the geometry

at this point. Using the definition of the superpotential in
(3.1) while we have the functionality of the superpotential
and the scalar field near the bounce point we get

AðrÞ ¼ AB −
B−ðϕBÞ
2ðd − 1Þ ðr − rBÞ

−
V 0ðϕBÞ2
24ðd − 1Þ

�
1 −

κ2B−ðϕBÞ2
2ðd − 1Þ3

�
−1
ðr − rBÞ4

þ…; ð3:30Þ

which is the same solution for the both branches of W↑;↓.
As r → rB, the above geometry tends to a regular geometry.
The behavior of the beta function (3.3) near the bounce point
is given by

β↑;↓ðϕÞ ¼ � 2ðd − 1Þ
B−ðϕBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0ðϕBÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ − ϕB

p
þOðϕ − ϕBÞ2: ð3:31Þ

Although the beta function is zero, it is not a fixed point and
the RG flow does not reverse its direction at the bounce
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point. It should be emphasized that the geometry in (3.30),
unlike the local maxima and minima points, is a (dþ 1)-
dimensional asymptotically flat space.

B. Critical points for κ2 > 0

In this section, we consider κ2 > 0 and repeat all the
previous steps in κ2 < 0. Here, the beta function in
Eq. (3.3) has two types of fixed points for positive κ2.
In addition to the extremum points of the superpotential,
there are specific values for the superpotential at

WE ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ3

κ2

s
; ð3:32Þ

where the beta function vanishes. We should be careful
since the beta function would be zero atW ¼ WE only ifW0
gets a finite value. Therefore we divide our analysis into
two subsections when W is equal to WE or not.
Before we proceed, it is worth reminding that according

to the relation (3.6) the superpotential is limited between
two regions, i.e., Bþ ≥ W ≥ B−, provided that the coupling
κ2 has an upper bound

0 < κ2 ≤ −
dðd − 1Þ2
4VMax

; ð3:33Þ

where VMax is supposed to be a global maximum of the
potential, i.e., VðϕÞ ≤ VMax < 0.

1. Critical points for W ≠ WE

Away from W ¼ WE, we have various critical points:

(i) Local maxima of the potential: Near ϕ ¼ ϕmax [see
Fig. 3(a)], the solutions of the superpotential sim-
ilarly are written as (3.11) with a slightly change in
the parameters of the solutions. Unlike the negative
coupling solutions, there are two acceptable values
for L̃ for each branches. By choosing ϕmax ¼ 0 we
have

Wu
�ðϕÞ¼

2ðd−1Þ
L̃u

þ Δu
�

2L̃u
ϕ2þCu�ϕ

u� þ���; ð3:34aÞ

Wd
�ðϕÞ¼

2ðd−1Þ
L̃d

þ Δd
�

2L̃d
ϕ2þCd�ϕ

v� þ���; ð3:34bÞ

where � define the branches and u and d indices
denote the solutions according to their starting
points on the upper or lower bounds. The parameters
of the solutions are defined as follows

L̃ðu;dÞ ¼
Lffiffiffi
2

p
 
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4κ2
ðd − 1ÞL2

s !1
2

;

Δðu;dÞ
� ¼

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − 4L̃2

ðu;dÞm
2

q
2λðu;dÞ

; ð3:35aÞ

λðu;dÞ ¼ 1 −
2κ2

ðd − 1ÞL̃2
ðu;dÞ

; u� ¼ d
Δu

�λu
;

v� ¼ d
Δd

�λd
: ð3:35bÞ

FIG. 3. (a): The generic behavior of the superpotential near a local maximum ϕmax or minimum ϕmin of the potential and its RG flow
are depicted as green and red curves. The local maxima are the UV fixed points, but the local minima are the UV fixed points for W−
branch and IR fixed points forWþ. The bounce solutions also exist everywhere away from the extrema (purple curves). The blue dashed
line is W ¼ WE, which is the location of curvature singularity. (b) In a specific point where the two bounds meet each other, the
singularity removes, and an IR fixed point appears at the cross points.
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The reality conditions of these parameters restrict
the mass of the scalar field and the value of κ2
coupling to

0 < m ≤
d

2L̃ðu;dÞ
; 0 < κ2 ≤

d − 1

4
L2: ð3:36Þ

Therefore, the upper bound on κ2 is determined via

minðd−1
4
L2;− dðd−1Þ2

4VMax
Þ. The parameters of the solu-

tions obey the following inequalities

0 < L̃u ≤
Lffiffiffi
2

p ≤ L̃d < L; ð3:37aÞ

−1 ≤ λu < 0 ≤ λd < 1 → Δu
� < 0 < Δd

�; ð3:37bÞ

1 < uþ < 2 < u− → Cuþ ¼ Cdþ ¼ 0: ð3:37cÞ

By using the above results, we have sketched the
superpotential in Fig. 3(a), in terms of the scalar field
near ϕ ¼ ϕmax. In this figure, the gray regions are the
forbidden areas of the superpotential due to the
upper and lower bounds. The blue dashed line
represents the critical value W ¼ WE. For those
solutions above the WE line, L̃ ¼ L̃u and for those
under the line L̃ ¼ L̃d. In Fig. 3(a), all green curves
are sketched for Wþ solution and the red ones for
W−. The analysis of RG flow shows that in
ϕ ¼ ϕmax, there are two UV fixed points related
to the up and down solutions of the superpotential,
and the RG flow goes out of the local maxima
points.

(ii) Local minima of the potential: Similar to the local
maxima, there are two sets of solutions correspond-
ing to the two possible values for L̃. We have the
same solutions as (3.34a) and (3.34b) for W > WE
and W < WE together with the same parameters as
(3.35a) and (3.35b) but with a change m2 → −m2.
The leading terms of the superpotential near ϕ ¼
ϕmin ¼ 0 is given by

Wðu;dÞ
� ðϕÞ ¼ 2ðd − 1Þ

L̃ðu;dÞ
þ Δðu;dÞ

�
2L̃ðu;dÞ

ϕ2 þ � � � : ð3:38Þ

A generic behavior of the superpotential is depicted
in the Fig. 3(a) near the point ϕ ¼ ϕmin. It should be
noted that in this case,

Δuþ < 0 < Δu
−; Δd

− < 0 < Δdþ: ð3:39Þ

The critical point above the line ofW ¼ WE is an IR
fixed point for Wu

− branch (red curve) and a UV
fixed point for Wuþ branch (green curve). The same

UV/IR behavior holds for Wd
� below the line

of W ¼ WE.
(iii) Bounces: For positive values of κ2, the bounces are

sitting on both the upper and lower bounds. The
solutions are

Wðu;dÞ
↑;↓ ðϕÞ¼B�ðϕBÞ�

2

3

�
1−

κ2
2ðd−1Þ3B�ðϕBÞ2

�
−1

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0ðϕBÞ

p
ðϕ−ϕBÞ32þ…; ð3:40Þ

where the upper and lower bounds, B�, are given in
Eq. (3.7). Two examples of the bounce solutions are
sketched as the purple curves in Fig. 3(a).

2. Critical points near W =WE

As we discussed earlier, the beta function in (3.3) or
equivalently

βðϕÞ ¼ −2ðd − 1Þ
�
1 −

W2

W2
E

�
W0

W
; ð3:41Þ

tends to zero at a specific critical value of the super-

potential, WE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ðd−1Þ3

κ2

q
, if W0 has a finite value. On the

other hand the equation of motion (3.2) can be written as
follow

VðϕÞ ¼ −
d

4ðd − 1Þ
�
1 −

1

2

W2

W2
E

�
W2 þ 1

2

�
1 −

W2

W2
E

�
2

W02:

ð3:42Þ

Therefore for a finite W0 at W ¼ WE we get

VðϕcÞ ¼ Vc ¼ −
dðd − 1Þ2

4κ2
: ð3:43Þ

If we insert Vc into the equation of the bounds in (3.7), then
WE ¼ Bþ ¼ B−. It means that this critical point exists only
if the two bounds meet each other atW ¼ WE. However, if
VðϕÞ ≠ Vc, then W0 tends to infinity, and therefore, we
would have a curvature singularity. This singularity is
shown as a blue dashed line in Figs. 3(a) and 3(b). The RG
flow never crosses the line of W ¼ WE, except at the
specific points where the two bounds meet each other, see
Fig. 3(b). As we see in (3.4), above and below the line of
W ¼ WE, the RG flow changes its sign

W > WE∶
dW
dr

< 0; W < WE∶
dW
dr

> 0; ð3:44Þ

It means that the RG flow stops on the cross points of the
bounds at ϕ ¼ ϕc. If there is no crossing point, then the RG
flow tends to the W ¼ WE line asymptotically from above
and below as r goes to �∞. To find the solutions of
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superpotential near the crossing points, we consider the
following ansatz for the potential and the superpotential

VðϕÞ ¼ Vc þ V1ðϕ − ϕcÞ þ V2ðϕ − ϕcÞ2 þ � � � ; ð3:45aÞ

WðϕÞ ¼ WE þ
X
i

Ciðϕ − ϕcÞzi : ð3:45bÞ

For a finite value ofW0ðϕcÞ, the solution exists if V1 ¼ 0
and V2 > 0. It means that ϕc is a local minimum of the
potential. The superpotential is

W ¼ WE þ C1ðϕ − ϕcÞ þ C2ðϕ − ϕcÞ2 þ � � � ; ð3:46aÞ

C1 ¼ �WE

 
d

8ðd − 1Þ

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

V2

W2
E

ðd − 1Þ2
d2

s !!1
2

;

ð3:46bÞ

C2 ¼
2ðd − 1ÞV2

dWE − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ðd − 1Þ2V2 þ d2W2

E

p ; ð3:46cÞ

and the scalar field and scale factor are given by

ϕ�ðrÞ ¼ ϕc þϕ�e
−2

C2
1

WE
r � jC1jdWE

12ðd− 1ÞC21 þ dW2
E
ðϕ�e

−2
C2
1

WE
rÞ2

þ � � � ; ð3:47aÞ

A�ðrÞ ¼ −
WE

2ðd − 1Þ ðr − r�Þ �
WE

2jC1j
ϕ�e

−2
C2
1

WE
r

þ � � � : ð3:47bÞ

The last equation obviously shows that ϕc is an IR fixed
point as r → þ∞ and the radius of AdS space is given by
L̃E ¼ 2ðd−1Þ

WE
. Moreover, by using the definition of the

superpotential in (3.1), AþðA−Þ belongs to the region above
(below) the line of W ¼ WE as discussed in (3.44).
Depending on how the RG flow approaches ϕ ¼ ϕc from
the left or right, there might be four solutions, two
correspond to the up and two for the down points of
W ¼ WE. These solutions are depicted by brown curves in
Fig. 3(b).

IV. HOLOGRAPHIC RG FLOW:
GENERAL CASE

In this section, we consider the general quadratic
curvature action in which both κ1 and κ2 are nonzero. In
these theories, one may find the spin two ghost modes (for
example see [43–45]) where the holographic dual quantum
field theories suffer the lack of unitarity, nevertheless, we
can consider the coefficient to be small (suppressed by
including a Planck or string length scale). We hope that the
study of the holographic RG flow would give interesting
information on the RG equations of the dual QFTs at a
strong coupling regime.
To find the critical points of this theory, we use the same

definition of the superpotential in (3.1), although, it does
not reduce the differential equations to the first-order ones.
By writing the equations of motion in terms of the super-
potential, we encounter with the higher-order derivatives of
ϕðrÞ which we can eliminate by using the equation of
motion of the scalar field

ϕ00ðrÞ ¼ V 0ðϕðrÞÞ − dA0ðrÞϕ0ðrÞ: ð4:1Þ

This equation is coming either from the variation of the
Lagrangian with respect to the ϕðrÞ or equivalently by a
simple combination of the equations of motion (2.6a) and
(2.6b) and their derivatives. Doing this, we get the follow-
ing set of equations

V −
1

16ðd − 1Þ4 ðdκ2W
4 − 4dðd − 1Þ3W2 þ 4ðd − 1Þ2ð2ðd − 1Þ2 − dκ1W02Þϕ02

þ 8dðd − 1Þ2κ1WðV 0W0 þ ϕ02W00ÞÞ ¼ 0; ð4:2aÞ

V þ 1

16ðd − 1Þ4 ð−dκ2W
4 þ 4ðd − 1ÞW2ðdðd − 1Þ2 þ 2κ2W0ϕ0Þ − 8dðd − 1Þ2κ1WðV 0W0

− ϕ02W00Þ þ 4ðd − 1Þ2ϕ0ð−dκ1W02ϕ0 − 4ðd − 1ÞW0ðd − 1 − κ1V 00Þ
þ 2ðd − 1Þððd − 1Þϕ0 þ 6κ1V 0W00 þ 2κ1ϕ

02Wð3ÞÞÞÞ ¼ 0: ð4:2bÞ

To extract the value of ϕ0 it is enough to subtract the
above equations

ϕ0 ¼ ζ1 − ζ2
4κ1ðd − 1ÞWð3Þ ¼

−2ζ3
ðd − 1Þðζ1 þ ζ2Þ

; ð4:3Þ

where for simplicity in the notation and analysis it would be
better to work with the following variables

ζ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ22 − 8κ1ζ3Wð3Þ

q
; ð4:4aÞ

ζ2 ¼ −dκ1W02 þ 2ððd − 1Þ2 þ dκ1WW00Þ; ð4:4bÞ
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ζ3 ¼ W0ðκ2W2 − 2ðd − 1Þ2ðd − 1 − κ1V 00ÞÞ
þ 6ðd − 1Þ2κ1V 0W00: ð4:4cÞ

Notice that the expression (4.3) reduces to the equa-
tion (3.2a) as κ1 → 0. In the next step, we add two
equations (4.2a) and (4.2b). This gives a relation between
superpotential and potential, which we need to solve for
finding the solutions

½4κ1ζ2ζ3Wð3Þ þ2κ21ð16ðd−1Þ4VþdWð4ðd−1Þ3W− κ2W3

−8ðd−1Þ2κ1V 0W0ÞÞWð3Þ2−ζ32þζ1ζ
2
2�=ðκ1Wð3ÞÞ2¼ 0:

ð4:5Þ

This is a polynomial equation for Wð3Þ and to have a real
solution for W we should have the following condition

ζ2ð16ðd − 1Þ4V þ dWð4ðd − 1Þ3W − κ2W3

− 8ðd − 1Þ2κ1V 0W0ÞÞ ≥ 0: ð4:6Þ

This condition is precisely the reality condition for ϕ0ðrÞ
when we find it from equation (4.2). As we see, by keeping
κ1 ¼ 0, we regain the bound conditions that we found in
Sec. III, i.e., (3.6a), (3.6b) and (3.7). Therefore, the
above relation describes two possible bounds on the value
of the superpotential W and its derivatives. We should note
that there is another condition for the reality of ζ1 in
Eq. (4.4a) which leads to the condition (4.6) and puts a
constraint on the values of Wð3Þ. Consequently, this con-
straint together with (4.6) determine the allowed values of
W0, W00 and Wð3Þ.
It is important to check another condition that connect

with the curvature singularity. Similar to the κ1 ¼ 0 case,
the curvature is given by

R ¼ d
d − 1

�
ϕ0W0 −

dþ 1

4ðd − 1ÞW
2

�
; ð4:7Þ

however, the singularity occurs when ϕ0W0 diverges. If we
suppose that W0 has a nonzero finite value then from the
equation of motion (4.2a) we realize that the divergence of
ϕ0 happens at ζ2 ¼ 0 or

−dκ1W02 þ 2ððd − 1Þ2 þ dκ1WW00Þ ¼ 0: ð4:8Þ

Therefore, the ζ2 ¼ 0 bound in (4.6) is in fact a singularity
curve. This singularity can be avoided either whenW0 → 0
faster than the divergence behavior of ϕ0 or when ϕ0 itself
becomes finite. The latter happens if the (4.8) bound
intersect with the second bound in relation (4.6), i.e.,

16ðd − 1Þ4V þ dWð4ðd − 1Þ3W − κ2W3

− 8ðd − 1Þ2κ1V 0W0Þ ¼ 0: ð4:9Þ

We can solve (4.8) exactly. The curve of curvature
singularities is given by

WS ¼ cðϕ − ϕ0Þ2 −
ðd − 1Þ2
2cdκ1

: ð4:10Þ

By considering a solution of the superpotential around an
arbitrary point ϕ we expect that this solution respects the
above bounds. For example, let us suppose that RG flow
starts or ends at the second bound (4.9). If we insert (4.10)
into the (4.9) at this point, we can choose boundary
conditions that fix the constants of integration, ϕ0 and c
in (4.10) and fix the singularity curve. For a generic

potential one choice would be ϕ0 ¼ 0 and c ¼ − ðd−1ÞL̃
4dκ1

.
Therefore, in this example the singularity curve is

WS ¼
2ðd − 1Þ

L̃
−
ðd − 1ÞL̃
4dκ1

ϕ2; ð4:11aÞ

L̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−dðd − 1Þ
2Vð0Þ

s  
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κ2Vð0Þ

dðd − 1Þ2
s !1

2

: ð4:11bÞ

The critical points of the RG flow can be found by
analyzing the zero points of the beta function. We have the
same definition of the beta function as in Sec. III

β ¼ dϕðrÞ
dAðrÞ ¼

ζ2 − ζ1
2κ1WWð3Þ ¼

ζ3
4Wðζ1 þ ζ2Þ

: ð4:12Þ

So if we suppose a finite value for the superpotential and its
derivatives, the condition of a critical point is coming from
ζ3 ¼ 0

W0ðκ2W2 þ 2ðd − 1Þ2ðκ1V 00 − dþ 1ÞÞ
þ 6ðd − 1Þ2κ1V 0W00jϕ¼ϕc

¼ 0: ð4:13Þ

If we insert this condition into the equation of motion (4.5)
and suppose that ζ2 ≥ 0, then find the equation (4.9) at the
critical point ϕ ¼ ϕc. It means that this family of the critical
points of (4.13) lives on the bound of (4.9) even when
ζ2 ¼ 0. We had already observed this behavior in Sec. III
when the line of W ¼ WE, which was the location of
curvature singularities, met the upper and lower bounds.
With the help of (4.9) and (4.13) we can predict the
conditions of a critical point:
(1) Local maxima and minima of the potential: Here, we

assume that W0 ¼ V0 ¼ 0, then W2 ¼ B2
� gives the

location of the bounds where B� are those in
Eq. (3.7). This condition is similar to the previous
section and corresponds to the critical points near the
local maxima and minima of the potential. We
should emphasize that the RG flow starts or ends
on the bound (4.9) and always avoids hitting the
singularity bound (4.8).
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(2) Bounces: If we consider V 0 ≠ 0 it may have various
situations:
(i) W0 ¼ W00 ¼ 0 then the bound is located at

W2
B ¼ B2

�.
(ii) W0;W00 ≠ 0 therefore the bound is modified

according to (4.9).
(iii) W0 ≠ 0 but W00 ¼ 0. There is a new value for

superpotential at the bounce point

WB ¼ �ðd − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðκ1V 00 − dþ 1Þ

κ2

s
: ð4:14Þ

All the above cases are not necessarily every possibility
of the critical points because we supposed that derivatives
of the superpotential are finite. For example, the last
equality of (4.12) suggests that for a finite nonzero value
of ζ3 when Wð3Þ is diverging, the beta function tends
to zero.
Finally, the direction of the RG flow is controlled by the

sign of W0ðrÞ

dWðϕðrÞÞ
dr

¼ W0ϕ0 ¼ d − 1

d
Rþ dþ 1

4ðd − 1ÞW
2 ð4:15Þ

In general, it is not clear that this function remains
monotonic from one fixed point to another one along with
the RG flow. Although we have supposed a negative value
of the potential, it is not apparent that the curvature of
the domain wall geometry remains negative or not as the
holographic coordinate changes. The reason backs to the
existence of the higher curvature correction terms in

the Lagrangian. A conflict between these terms and
potential may change the sign of the curvature.
Nevertheless, we can put a bound on superpotential at
each point if we want to have a monotonic function

jWj < 2ðd − 1Þ
Lc

→
dW
dr

< 0;

jWj > 2ðd − 1Þ
Lc

→
dW
dr

> 0; ð4:16Þ

where Lc is a critical length at each point of the holographic
coordinate r and is defined by the curvature of space-time

Lc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðdþ 1Þ

−R

r
: ð4:17Þ

So, as far as the superpotential does not cross the critical

value 2ðd−1Þ
Lc

, there is a c-function which may constructed
from the superpotential. In the following sections, we will
discuss the direction of the RG flow near the critical points.

A. Local maxima of the potential

As the first type of critical point, we examine the points
near the local maxima of the potential. We consider again
the following potential

VðϕÞ¼−
dðd−1Þ

L2
−
1

2
m2ϕ2þOðϕ3Þ; m2 > 0: ð4:18Þ

By solving the equation of motion (4.5) we obtain

W�ðϕÞ ¼
2ðd − 1Þ

L̃
þ Δ�

2L̃
ϕ2 þ C�ϕz� þ � � � ; ð4:19aÞ

L̃ ¼ L̃� ¼ Lffiffiffi
2

p
 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4κ2
ðd − 1ÞL2

s !1
2

; ð4:19bÞ

Δ� ¼ 2ðd − 1ÞL̃4m2

dððd − 1ÞL̃2 − 2κ2Þ � ð2κ2 − ð4κ1m2 þ d − 1ÞL̃2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − 4m2L̃2

p : ð4:19cÞ

These solutions reduce to (3.12b) when κ1 ¼ 0, and are

real for κ2 <
ðd−1ÞL2

4
. The scalar field mass has an upper

bound m < d
2L̃
. Moreover, for κ2 < 0 just the L̃ ¼ L̃þ is

a valid choice.5

By solving the equation of motion up to the first leading
terms forWþ function, we find three different values for zþ
as follows

u0 ¼
2d

dþ Δ0

; u� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ δ

p

dþ Δ0

; ð4:20Þ

where we have defined the following parameters that
control the behavior of the solutions

5In the following computations we keep L̃ ¼ L̃� and analyze
the results for both positive and negative values of κ2 at the same
time.
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δ ¼ 4
ðd − 1ÞL̃2 − 2κ2

κ1
; Δ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − 4L̃2m2

p
: ð4:21Þ

A simple algebraic analysis shows that we have the
following regions for u0 and u�. Note that only those
regions give the leading terms that zþ restricts to 2 < zþ

u− < 0; 1 < u0 < 2; u0 < uþ; δ > 0; ð4:22aÞ

0< u− < 1;
1

2
<uþ < 2; 1< u0 < 2; −d2 < δ< 0:

ð4:22bÞ
Also, the leading term for W− branch has the following

values for z−

v0 ¼
2d

d − Δ0

; v� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ δ

p

d − Δ0

; ð4:23Þ

where these parameters are restricted

v− < 0; 2 < v0 < vþ; δ > 0; ð4:24aÞ

0<v−<vþ<v0; 2<v0; −d2< δ< 0: ð4:24bÞ

According to the value of δ, we have different solutions
for the superpotential. We have listed the various regions
for δ in the first row of Table I. In this table we have defined

δ� ¼ 4Δ0ðd� Δ0Þ: ð4:25Þ
The correct solutions ofW� in each region are presented in
the second and third rows of Table I. Every solution in this
table is one of the following expressions

W1þ ¼ 2ðd − 1Þ
L̃

þ Δþ
2L̃

ϕ2 þ Cþϕuþ þ � � � ; ð4:26aÞ

W2þ ¼ 2ðd − 1Þ
L̃

þ Δþ
2L̃

ϕ2 þ � � � ; ð4:26bÞ

W1
− ¼ 2ðd − 1Þ

L̃
þ Δ−

2L̃
ϕ2 þ C−ϕv0 þ � � � ; ð4:26cÞ

W2
− ¼ 2ðd − 1Þ

L̃
þ Δ−

2L̃
ϕ2 þ C−ϕv− þ � � � ; ð4:26dÞ

W3
− ¼ 2ðd − 1Þ

L̃
þ Δ−

2L̃
ϕ2 þ C−ϕvþ þ � � � : ð4:26eÞ

Here, by using the relations (4.21) and (4.25) we can
rewrite Δ� in Eq. (4.19c) as

Δ� ¼ −L2δðd� Δ0Þ
2ðL2 − 2L̃2Þðδ ∓ δ�Þ

: ð4:27Þ

We should also remember that for κ2 > 0 both L̃ ¼ L̃þ and
L̃ ¼ L̃− are valid; therefore, we have two distinct sets of
upper and lower bounds on the superpotential.
The superpotential solution must respect the bounds in

(4.6). Since we have assumed V 0 ¼ 0, the shape of the
second bound (4.9) is given by W ¼ B� in (3.7). To
analyze and draw the shape of the superpotential easier,
it would be better to find the shape of the bounds
approximately. If we insert a series solution similar to
the superpotential, into the Eq. (4.6) we will get the
following results

Wb¼
2ðd−1Þ

L̃
þΔb

2L̃
ϕ2þ���; Δb¼Δð1;2Þ; ð4:28aÞ

Δ1 ¼ −
ðd − 1ÞL̃2

2dκ1
;

Δ2 ¼
ðd − 1ÞL̃4m2

dð−2κ2 þ L̃2ðd − 1þ 2κ1m2ÞÞ : ð4:28bÞ

To simplify our analysis we write

Δ1 ¼
L2δ

8dðL2 − 2L̃2Þ ; Δ2 ¼
L2δδ�

8dðL2 − 2L̃2Þðδ − δ�Þ ;

δ� ¼ 2ðΔ2
0 − d2Þ: ð4:29Þ

Since 0 < Δ0 < d, we have δ� < −δ− < 0 < δþ.
Moreover, 0 < L̃− ≤ Lffiffi

2
p ≤ L̃þ < L. Therefore, in various

regions of δ (the first column of table II), the signs of Δb ’s
determine the region of forbidden area, bounded by the
(4.28a) curves.
Also, the shape of W� curves depends on the relation

between Δ� with Δb. We have summarized these infor-
mation in the second and third columns of table II for
L̃ ¼ L̃�. Note that for the upper bound L̃ ¼ L̃− and for
lower bound L̃ ¼ L̃þ. For every region, we can draw a
generic behavior of the superpotential. We have addressed
every related configuration in the last column of the Table II
to Figs. 4(a)–4(f). To find which W� corresponds to which
figure, we should use the Table I and the related region of δ.

TABLE I. Superpotential and corresponding regions near the local maxima of the potential.

δ interval δ < −δ−;Δ0 <
d
2

δ < −δ−; d2 < Δ0 −δ− < δ < 0 0 < δ < δþ δþ < δ

Wþ W2þ W2þ W2þ W2þ W1þ
W− W1

− W2
− W3

− W1
− W1

−
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To compute the scalar field, we insert each function of
W� into the Eq. (4.3) and then solve the differential
equation

ϕ1þðrÞ¼ϕþe
d

L̃u0
rþαðu0;uþ;u−ÞCþL̃u0

duþ
ðϕþe

d
L̃u0

rÞuþþ1þ��� ;

ð4:30aÞ

ϕ2þðrÞ ¼ ϕþe
d

L̃u0
r þ � � � ; ð4:30bÞ

ϕ1
−ðrÞ¼ϕ−e

d
L̃v0

rþ αC−L̃v0
dðv0−2Þðϕ−e

d
L̃v0

rÞv0−1þ�� � ; ð4:30cÞ

ϕ2
−ðrÞ ¼ ϕ−e

d
L̃v0

rþαðv0; v−; vþÞC−L̃v0
dv−

ðϕ−e
d

L̃v0
rÞv−þ1þ� � � ;

ð4:30dÞ

ϕ3
−ðrÞ ¼ϕ−e

d
L̃v0

rþαðv0;vþ;v−ÞC−L̃v0
dvþ

ðϕ−e
d

L̃v0
rÞvþþ1þ�� � ;

ð4:30eÞ

where in the above relations we have used the following
definitions

αða; b; cÞ ¼ 1

2dðd − 1Þκ1ð4 − 4aþ bcÞ2
× ðd2κ1ð4 − 4aþ bcÞð2 − 3bþ b2Þ
þ 2κ2að8þ 2ð4þ cÞbþ ðc − 6Þb2
þ 2b3 þ 2aðb2 − 3b − 4ÞÞÞ; ð4:31aÞ

α ¼ d2κ1v0vþv−ð4 − 2v0 þ vþv−Þ
ð4v0 − vþv− − 4Þð2κ2v20 − d2κ1vþv−Þ

: ð4:31bÞ

In the last step, we can find the scale factors associated
with the above solutions

A1þðrÞ ¼ −
r − r�
L̃

þ u0Δþ
8dð1 − dÞ ðϕþe

d
u0L̃

rÞ2

þ CþL̃u0
2dð1 − dÞuþ

ðϕþe
d

u0L̃
rÞuþ þ � � � ; ð4:32aÞ

A2þðrÞ ¼ −
r − r�
L̃

þ u0Δþ
8dð1 − dÞ ðϕþe

d
u0L̃

rÞ2 þ � � � ; ð4:32bÞ

A1
−ðrÞ ¼ −

r − r�
L̃

þ v0Δ−

8dð1 − dÞ ðϕ−e
d

v0L̃
rÞ2

þ
C−L̃ð1þ v0αΔ−

dðv0−2ÞÞ
2dð1 − dÞ ðϕ−e

d
v0L̃

rÞv0 þ � � � ; ð4:32cÞ

A2
−ðrÞ ¼ −

r − r�
L̃

þ v0Δ−

8dð1 − dÞ ðϕ−e
d

v0L̃
rÞ2

þ C−L̃v0
2dð1 − dÞv−

ðϕ−e
d

v0L̃
rÞv− þ � � � ; ð4:32dÞ

A3
−ðrÞ ¼ −

r − r�
L̃

þ v0Δ−

8dð1 − dÞ ðϕ−e
d

v0L̃
rÞ2

þ C−L̃v0
2dð1 − dÞvþ

ðϕ−e
d

v0L̃
rÞvþ þ � � � : ð4:32eÞ

As a result, the local maxima is a UV fixed point at
r → −∞. This is clear also from the computation of the
beta function near the extremum point

β1;2þ ðrÞ ¼ −
d
u0

ϕþe
d

u0L̃
r þ � � � ;

β1;2;3− ðrÞ ¼ −
d
v0

ϕ−e
d

v0L̃
r þ � � � ; ð4:33Þ

where all the beta functions are vanishing at r → −∞
where the UV fixed point is located. This is exactly what
we expect from Eq. (4.13) where for all solutions of the
superpotential at the critical point, W0 vanishes and W00 is
finite.

TABLE II. The shape of the bounds and consequently the forbidden area of the solutions depend on the sign of Δ1

and Δ2. The orientation of W� curves is given by sign of Δ�. The behavior of each solution can be read from this
table according to the above inequalities. In every allowed δ interval, the corresponding figures are addressed in the
last column.

δ interval L̃ ¼ L̃− L̃ ¼ L̃þ Fig.

ð−d2; 2δ�Þ 0 > Δ2 > Δ− > Δþ > Δ1 Δ1 > Δþ > Δ− > Δ2 > 0 4a
ð2δ�; δ�Þ 0 > Δ1 > Δþ > Δ− > Δ2 Δ2 > Δ− > Δþ > Δ1 > 0 4b
ðδ�;−δ−Þ Δ2 > 0 > Δ1 > Δþ > Δ− Δ− > Δþ > Δ1 > 0 > Δ2 4c
ð−δ−; 0Þ Δ− > Δ2 > 0 > Δ1 > Δþ Δþ > Δ1 > 0 > Δ2 > Δ− 4d
ð0; δþÞ Δþ > Δ1 > 0 > Δ2 > Δ− Δ− > Δ2 > 0 > Δ1 > Δþ 4e
ðδþ;∞Þ Δ1 > 0 > Δ2 > Δ− > Δþ Δþ > Δ− > Δ2 > 0 > Δ1 4f
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FIG. 4. Figures (a)–(f) show the generic behavior of the superpotential near the local maxima of the potential. The green (red) curves
belong to Wþ (W−) branch. The shaded regions are the forbidden areas restricted by the blue bound (singularity curve) and the black
(second) bound. In these figures ϕ ¼ 0 is always a UV fixed point for both solutions.
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B. Local minima of the potential

For the local minima of the potential, we consider again the following potential

VðϕÞ ¼ −
dðd − 1Þ

L2
þ 1

2
m2ϕ2 þOðϕ3Þ; m2 > 0: ð4:34Þ

The solutions of the equation of motion (4.5) are similar to the local maxima solutions with a change in the sign of m2,
specifically

Δ� ¼ −2ðd − 1ÞL̃4m2

dððd − 1ÞL̃2 − 2κ2Þ � ð2κ2 þ ð4κ1m2 − dþ 1ÞL̃2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2L̃2

p : ð4:35Þ

The computation of the leading term for Wþ branch leads
to three different values for zþ with different ranges

u0 ¼
2d

dþ Δ0

; u� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ δ

p

dþ Δ0

; ð4:36aÞ

u− < 0 < u0 < 1; u0 < uþ; δ > 0; ð4:36bÞ

0 < u− < uþ < u0 < 1; −d2 < δ < 0; ð4:36cÞ

where we have defined

δ ¼ 4
ðd − 1ÞL̃2 − 2κ2

κ1
; Δ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4L̃2m2

p
: ð4:37Þ

The leading terms of W− branch have also three values for
z− with the following constraints

v0 ¼
2d

d − Δ0

; v� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ δ

p

d − Δ0

; ð4:38aÞ

vþ < v0 < 0 < v−; δ > 0; ð4:38bÞ

v0 < v− < vþ < 0; −d2 < δ < 0: ð4:38cÞ

There exist three regions for δ with a specific solution
of W� in each region. These are shown in the first
row of Table III where δ� have the same definition
as (4.25).
The W� solutions are presented in the second and third

rows of Table III. Every solution in this table has one of the
following values

W1þ ¼ 2ðd − 1Þ
L̃

þ Δþ
2L̃

ϕ2 þ Cþϕuþ þ � � � ; ð4:39aÞ

W2þ ¼ 2ðd − 1Þ
L̃

þ Δþ
2L̃

ϕ2 þ � � � ; ð4:39bÞ

W1
− ¼ 2ðd − 1Þ

L̃
þ Δ−

2L̃
ϕ2 þ C−ϕ

v− þ � � � ; ð4:39cÞ

W2
− ¼ 2ðd − 1Þ

L̃
þ Δ−

2L̃
ϕ2 þ � � � : ð4:39dÞ

To draw the RG flow curves near the local minima of the
potential, similar to the local maxima, we find the shape of
the bounds from Eq. (4.6). Here again, at the critical point,
the upper or lower bounds are given by B� in Eq. (3.7). A
little away from this point, we should solve the constraint
(4.6). If we insert a series solution into the Eq. (4.6), we
obtain the following results

Wb¼
2ðd−1Þ

L̃
þΔb

2L̃
ϕ2þ���; Δb¼Δð1;2Þ ð4:40aÞ

Δ1 ¼ −
ðd − 1ÞL̃2

2dκ1
;

Δ2 ¼
−ðd − 1ÞL̃4m2

dð−2κ2 þ L̃2ðd − 1 − 2κ1m2ÞÞ : ð4:40bÞ

To simplify our analysis let us write

Δ1 ¼
L2δ

8dðL2 − 2L̃2Þ ;

Δ2 ¼
−L2δδ�

8dðL2 − 2L̃2Þðδþ δ�Þ ; ð4:41aÞ

Δ� ¼ −L2δðd�Δ0Þ
2ðL2−2L̃2Þðδ∓ δ�Þ

; δ� ¼ 4Δ0ðd�Δ0Þ;

δ� ¼ 2ðd2−Δ2
0Þ; ð4:41bÞ

where 0 < −δ� < −δ− < −2δ� < δþ. For various values of
δ (the first column of table IV), the signs of Δb’s determine

TABLE III. Superpotential and corresponding regions near the
local minima of the potential.

Interval −d2 < δ < −δ− −δ− < δ < δþ δþ < δ

Wþ W2þ W2þ W1þ
W− W2

− W1
− W1

−
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the region of forbidden areas bounded by the (4.40a)
curves. The orientation of W� curves also depend on the
relation between Δ� with Δb. We have summarized these
information in the second and third columns of table IV
for L̃ ¼ L̃�.
For every region, we can draw a generic behavior of the

superpotential. We have addressed the related figures in the
last column of table IV. To find which W� corresponds to
each figure we should use table III according to the region
of δ. In the next step, by inserting the values of W�
functions from (4.39a) to (4.39d) into the Eq. (4.3) and
solving the differential equation, we obtain the first leading
terms of the scalar field solution

ϕ1þðrÞ ¼ ϕþe
d

L̃u0
r þ αðu0; uþ; u−ÞCþL̃u0

duþ
ðϕþe

d
L̃u0

rÞuþþ1

þ � � � ; ð4:42aÞ

ϕ2þðrÞ ¼ ϕþe
d

L̃u0
r þ � � � ; ð4:42bÞ

ϕ1
−ðrÞ ¼ ϕ−e

d
L̃v0

r þ αðv0; v−; vþÞC−L̃v0
dv−

ðϕ−e
d

L̃v0
rÞv−þ1

þ � � � ; ð4:42cÞ

ϕ2
−ðrÞ ¼ ϕ−e

d
L̃v0

r þ � � � ; ð4:42dÞ

where the coefficients can be read from Eq. (4.31a). In
addition, the scale factor associated to each superpotential
is given by

A1þðrÞ ¼ −
r − r�
L̃

þ u0Δþ
8dð1 − dÞ ðϕþe

d
u0L̃

rÞ2

þ CþL̃u0
2dð1 − dÞuþ

ðϕþe
d

u0L̃
rÞuþ þ � � � ; ð4:43aÞ

A2þðrÞ ¼ −
r − r�
L̃

þ u0Δþ
8dð1 − dÞ ðϕþe

d
u0L̃

rÞ2 þ � � � ; ð4:43bÞ

A1
−ðrÞ ¼ −

r − r�
L̃

þ v0Δ−

8dð1 − dÞ ðϕ−e
d

v0L̃
rÞ2

þ C−L̃v0
2dð1 − dÞv−

ðϕ−e
d

v0L̃
rÞv− þ � � � ; ð4:43cÞ

A2
−ðrÞ ¼ −

r − r�
L̃

þ v0Δ−

8dð1 − dÞ ðϕ−e
d

v0L̃
rÞ2 þ � � � : ð4:43dÞ

Since u0 > 0 and v0 < 0, at the local minima, the Wþ
branch tends to a UV fixed point as r → −∞, in contrary,
this point is an IR fixed point for W− branch as r → þ∞.
The behavior of the beta function near the UV/IR fixed

point is as follow

β1;2þ ðrÞ ¼ −
d
u0

ϕþe
d

u0L̃
r þ � � � ;

β1;2− ðrÞ ¼ −
d
v0

ϕ−e
d

v0L̃
r þ � � � ; ð4:44Þ

where the both functions vanish at the fixed point. This is
an expected result from equation (4.13), where at the
critical point, W0 is zero while W00 is finite.

C. Bounces

To have a general analysis of other possible solutions,
let us consider the following ansatz near a critical point
ϕ ¼ ϕB as a starting point

VðϕÞ ¼
X
n¼0

Vnðϕ − ϕBÞn; ð4:45aÞ

WðϕÞ ¼ WB þ
X5
i¼0

Ciðϕ − ϕBÞiþ1
2 þ Czðϕ − ϕBÞz

þ � � � ; ð4:45bÞ
where we have assumed that V 0ðϕBÞ ≠ 0 which means
ϕB is no longer located near a local minimum or maximum.
Moreover, although in this ansatz W0 diverges at ϕB but

one can check that at the same time ϕ0 → 0, so the
curvature remains finite. If we put the above ansatz into
the equation of motion (4.5) then we can read the unknown
coefficients. For example the first three coefficients are

TABLE IV. The shape of the bounds and the allowed area of the solutions depend on the sign of Δ1 and Δ2. The orientation of W�
curves is given by sign of Δ�. The behavior of each solution can be read from this table according to the above inequalities. In every
allowed δ interval, the corresponding figures are addressed in the last column.

δ interval L̃ ¼ L̃− L̃ ¼ L̃þ Fig.

ð−d2; 0Þ Δ2 > Δ− > 0 > Δþ > Δ1 Δ1 > Δþ > 0 > Δ− > Δ2 5(a)
ð0;−δ�Þ Δ1 > Δþ > 0 > Δ− > Δ2 Δ2 > Δ− > 0 > Δþ > Δ1 5(b)
ð−δ�;−δ−Þ Δ2 > Δ1 > Δþ > 0 > Δ− Δ− > 0 > Δþ > Δ1 > Δ2 5(c)
ð−δ−;−2δ�Þ Δ− > Δ2 > Δ1 > Δþ > 0 0 > Δþ > Δ1 > Δ2 > Δ− 5(d)
ð−2δ�; δþÞ Δþ > Δ1 > Δ2 > Δ− > 0 0 > Δ− > Δ2 > Δ1 > Δþ 5(d)
ðδþ;∞Þ Δ1 > Δ2 > Δ− > 0 > Δþ Δþ > 0 > Δ− > Δ2 > Δ1 5(f)
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C1 ¼ C0

�
C0
4WB

þ dWB

3
ffiffiffiffiffiffiffiffi
2V1

p ðd − 1Þ
�
þ 16ðd − 1Þ4V0 þ 4dð−1þ dÞ3W2

B − dκ2W4
B

8dðd − 1Þ2κ1V1WB
; ð4:46aÞ

C2 ¼ C0

�
12ðd − 1Þ2ð2d − 2 − κ1V2Þ þ ðd2κ1 − 12κ2ÞW2

B

72ðd − 1Þ2κ1V1

þ C0d
4
ffiffiffiffiffiffiffiffi
2V1

p ðd − 1Þ
�
; ð4:46bÞ

C3 ¼ −
C20ðd2κ1 þ 20κ2ÞWB − 20C1ð2ðd − 1Þ2ðd − 1 − 2κ1V2Þ − κ2W2

BÞ
240ðd − 1Þ2κ1V1

þ C0dð108C1ðd − 1Þ2κ1V1 − 6ðd − 1Þ2ð5ðd − 1Þ − 4κ1V2ÞWB − ðd2κ1 − 15κ2ÞW3
BÞ

540
ffiffiffiffiffiffiffiffi
2V3

1

p
ðd − 1Þ3κ1

; ð4:46cÞ

where we have supposed that C0 ≠ 0 in finding the above
results. Here for ϕ > ϕB we assumed that V1 > 0, other-
wise for ϕ < ϕB, we should consider V1 < 0. It is related to
how the bounce is reaching the bound from the left or
the right.
In this general solution, although all derivatives of W

diverge at the critical point, the bounce solution respects the
condition (4.6). Moreover, we can write all the coefficients
in terms of C1 and C3 or ϕ and ϕ2 coefficients, in this way,
the location of the bound,WB, is specified by two boundary
conditions. Now we can compute the scalar field and scale
factor and we get

ϕðrÞ ¼ ϕB þ 1

2
V1ðr − rBÞ2 þOðr − rBÞ3; ð4:47aÞ

AðrÞ ¼ AB −
WB

2ðd − 1Þ ðr − rBÞ −
C0

ffiffiffiffiffiffiffiffi
2V1

p
8ðd − 1Þ ðr − rBÞ2 þ � � � :

ð4:47bÞ

This shows that their values are independent of two
branches of the superpotential. Finally, the behavior of the
beta function near the bounce point is given by

βðϕÞ ¼ −signðC0Þ
2ðd − 1Þ ffiffiffiffiffiffiffiffi

2V1

p
WB

ðϕ − ϕBÞ12 þOðϕ − ϕBÞ:

ð4:48Þ

We can trace the direction of RG flow by computing

dWðrÞ
dr

¼
ffiffiffiffiffiffi
V1

2

r
C0 þ � � � : ð4:49Þ

For a fixed value of C0, as the holographic coordinate
changes from values below the r ¼ rB to the values above
it, the direction of the RG flow does not change. It means
that rB is a bounce point.
As already stated in the above solutions, we have

considered C0 ≠ 0. To find other possible bounces with
other boundary conditions, we should solve the equations

of motion from the beginning. These solutions are those
that we indicated for the bounce points above the
Eq. (4.15).

1. W 0 =W 00 = 0

As we mentioned earlier, the boundary location is
determined when we impose boundary conditions on W0
and W00. To maintain on the bound of the previous section,
from Eq. (4.9) we conclude that W0 ¼ 0 at this point. On
the other hand, regarding our discussion below the
Eq. (4.13), we should also insert W00 ¼ 0 at this point.
Imposing both conditions on (4.45b) or equivalently on its
coefficients, we can read the superpotential of the bounce
solution

WðϕÞ ¼ B� �
ffiffiffi
2

p ðd − 1Þ
15κ1

ffiffiffiffiffiffi
V1

p ðϕ − ϕBÞ52

þ dB�
90κ1V1

ðϕ − ϕBÞ3 þ � � � ; ð4:50Þ

where B� is given in Eq. (3.7). According to this solution,
the scalar field and scale factor near the critical point
behave as

ϕðrÞ ¼ ϕB þ 1

2
V1ðr − rBÞ2 þOðr − rBÞ3; ð4:51aÞ

AðrÞ ¼ AB −
B�

2ðd − 1Þ ðr − rBÞ −
V2
1

720κ1
ðr − rBÞ6 þ � � � :

ð4:51bÞ

Therefore the direction of the RG flow is

dW
dr

¼ V2
1ðd − 1Þ
12

ðr − rBÞ4 þ � � � : ð4:52Þ

Again below and above the critical point r ¼ rB, the sign of
W0ðrÞ does not change as we expect for a bounce point.
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2. W 0 ≠ 0 and W 00 = 0

In this case, the shape of the bound near the critical point
is given by WB in (4.14). If we start from the following
ansatz

WBðϕÞ ¼ WB þ C1ðϕ − ϕBÞ þ Czðϕ − ϕBÞz þ � � � ; ð4:53Þ

a perturbative analysis around the ϕB shows that z ¼ 5
2
. This

can be confirmed by equation of motion for scalar field
(4.1). Then the coefficients are given by

C1 ¼
16ðd − 1Þ4V0 þ 4ðd − 1Þ3dW2

B − dκ2W4
B

8ðd − 1Þ2dκ1V1WB
; ð4:54aÞ

Cz ¼ � 2ðd − 1Þ2 − C21dκ1
15ðd − 1Þκ1

ffiffiffiffiffiffi
V1

p : ð4:54bÞ

Now if we compute the leading term of the scalar field
we find that

ϕðrÞ ¼ ϕB þ V1ðr − rBÞ2 þOðr − rBÞ3: ð4:55aÞ

FIG. 5. The generic behavior of the superpotential near the local minima of the potential. The green (red) curves belong to Wþ (W−)
branch. The shaded regions are the areas restricted by the blue bound (singularity curve) and the black (second) bound. In these figures
ϕ ¼ 0 is a UV fixed point for Wþ branch and an IR fixed point for W−.
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However, for V1 ≠ 0, equation (4.1) predicts the coef-
ficient of the first term equal to 1

2
V1. This behavior is

happening in every bounce point that we have found up to
now except this last one solution. In other words such a
solution with W0 ≠ 0 and W00 ¼ 0 does not exist.

V. SUMMARY AND CONCLUSION

In this work, in the context of gauge-gravity duality, we
study the holographic RG flow of a CFT that is perturbed
by a marginal/relevant operator. The bulk action contains
the Einstein-dilaton gravity with an arbitrary scalar field
potential together with the general quadratic curvature
corrections (2.1). Since the equations of motion are gen-
erally differential equations with more than two derivatives,
see (2.6a) and (2.6b), we may encounter the holographic
RG equations that are not the first order either. The study of
these equations and their solutions may help us to under-
stand the RG equations of the dual QFTs at their strong
coupling regimes.
We do not impose any condition on the couplings, but we

emphasize that our calculations are valid as far as we
include all possible constraints or stability conditions on
higher derivative theories. At least for small values of the
couplings, we expect that one may avoid the ghost or
tachyonic modes, which are integrated out and are beyond
the QFT cutoff.
The equations of motion are classified by two combi-

nations of the couplings, κ1 and κ2, in equation (2.7). As
long as κ1 is zero, we have a second-order differential
equation of motion. The GB gravity is a particular case in
this class.
The sign of κ2 plays an important role in the analysis

of the critical points. For the negative values of κ2 in
Sec. III A, we observe similar behavior for holographic RG
flow like the known EH case in [28]. The superpotential
solutions near the local maxima (Fig. 1) or minima (Fig. 2)
of the potential are parametrizing by some new coefficients
as a function of κ2. For example, the radii of AdS solutions
at the fixed points get modified according to (3.12).
Moreover, the superpotential and its bound, B−, in (3.7),
are shifted according to the value of this coupling. In
Sec. III. A. 3, similar to EH case, we observe the bounce
solution (3.28) in this theory. For negative values of κ2, one
can show that the superpotential has the monotonic
behavior (3.4), and so it can be used to construct a
c-function in this theory.
For positive values of κ2, the situation is different. In

addition, to the former lower bound on the superpotential,
there is an upper bound, see Fig. 3(a). According to the
potential functionality, the values of the superpotential are
more restricted, and they may confine to a specific region(s).
For both positive and negative values of κ2, the curvature

singularity removes if we restrict W0 to the finite values.
However, for positive values of κ2, a new condition should
be added. The W ¼ WE line (3.32) is a boundary for the

RG flows that divides the space of superpotential into two
distinct upper and lower subspaces. We can find the
superpotential near the local minima and maxima of the
potential and the bounce solution on both the upper and
lower bounds of the W ¼ WE line. On this line, we have a
curvature singularity. To avoid crossing this line and to
have a smooth geometry, the RG flow should change its
direction.
For each positive value of κ2, there is a lower bound for

superpotential, which above that it has a monotonic
behavior (3.4). If this situation holds, we expect the RG
flow to reach asymptotically to theW ¼ WE line at infinity.
Otherwise, as we have shown in Sec. III B 2, there are IR
fixed points at the intersection of the upper and lower
bounds, Fig. 3(b), and therefore the flow ends on these
points.
In regions below the W ¼ WE, the RG flow from a UV

fixed point to an IR fixed point occurs such that L̃UV > L̃IR

where L̃’s are the radii of AdS spaces at the fixed points. In
the upper regions L̃UV < L̃IR. The same behavior has been
reported already in [39] via an ansatz for holographic RG
flow. In this paper, the authors show that the a-anomaly,
which is proportional to the number of degrees of freedom,
decreases from UV to IR fixed points. In other words,
a�UV > a�IR, in both situations above. If we consider a
monotonic superpotential, then we expect to have the same
argument here.
In Sec. IV, we consider the nonzero values of the κ1.

Although the equations of motion are more involved, we
can find the perturbed solutions of the superpotential near
the critical points of the theory. As we expect, since the
equations of motion are fourth-order differential equations,
there is more diversity in the solutions at fixed points that
depend on the various parameters of the theory. The generic
behavior of these solutions for fixed points near the local
maxima of the potential, are shown in Figs. 4(a)–4(f) and
for local minima, in Figs. 5(a)–5(f). It is a general property
that the local maxima of the potential are the UV fixed
points, and the local minima could be either UVor IR fixed
points.
According to the sign of κ2, we may have two upper and

lower bounds on the superpotential. However, the equa-
tions of the bounds are changed. We have a couple of
constraints on the superpotential and its derivative, (4.6).
The fixed singularity line W ¼ WE in the previous case
replaces by parabolic curves (4.10). These singular curves
restrict the orientation of the superpotential. In other words,
besides the value of the superpotential, the direction of the
RG flow is controlled by the singular curves everywhere.
In the general theory, it is not clear that the superpotential

remains a monotonic function. Nevertheless, the Eq. (4.15)
shows that it controls by the curvature of the domain wall
solution. In other words, we can define a critical length at
each point of the RG flow, and violation of a monotonous
superpotential is related to the length scale in Eq. (4.17).
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