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ABSTRACT
A series of novel derivatives of dipyrimido[4,5-b:40,50-e][1,4]thiazepine were
synthesized by the treatment of 2,4-dichloro-5-(chloromethyl)-6-methylpyri-
midine with 2-substituted-5-amino-6-methyl-pyrimidine-4-thiol in the pres-
ence of trimethylamine in acetonitrile as solvent and subsequently with
various appropriate amines in boiling ethanol. The regioselectivity of heter-
ocyclizaion was confirmed by GIAO calculations. The theoretical result
revealed that the attachment of -SH moiety to the CH2 group is more
plausible. Also, the theoretical inhibitory activity of the newly synthesized
compounds against soybean 15-lipoxygenase was studied. The docking
results showed that the theoretical inhibitory activity (ki) of compounds
(10a), (10b), (10e), (10j) was lower than 4-MMPB as the standard inhibitor
of 15-SLO. Among them, compound (10e) was a potent theoretical inhibi-
tor with (Ki ¼ 1.13 nM) and binding energy �12.21 kcal mol�1. We propose
that the orientation of the four synthesized compounds toward the Fe-OH
and the hydrogen bond interaction between a sulfur atom of thiazepine
ring and His 518 of 15-lipoxygenase seems to play an essential role in lip-
oxygenase inhibition.
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Introduction

During recent years, the increasing attentions to nitrogen and sulfur-containing heterocycle com-
pounds has been attended because of their presence in various biologically and pharmacologically
active molecules.1 Thiazepines as 7-membered rings containing N- and S-heteroatoms are being
known for their enjoyable biological activities. They are widely found in many pharmaceutical
compounds.2,3 Among them, fused 1,4-thiazepine derivatives have been reported to possess
diverse biological activities such as antipsychotic,4 anticonvulsant,5 antibacterial,6 antioxidan,7 and
anticancer.8 This scaffold is also found in the structure of various drugs such as Temocapril for
the treatment of hypertension,9,10 Diltiazem and CGP37157 for the treatment of hypertension
and angina pectoris,11 and Clotiapine and Quetiapine drugs for the treatment of schizophrenia,
the depressive and bipolar disorders (Figure 1).12

Over the years, various chemical synthesis techniques have been used to prepare the com-
pounds bearing 1,4-thiazepines subunit. Among the articles that have been published in recent
years, the following can be mentioned: thionation of N-propargylic b-enaminones with
Lawesson’s reagent followed by electrophilic cyclization with zinc chloride,13 cyclization of 2-(4-
acetyl-2-aminophenylsulfanyl)benzoic acid using N, N0-dicyclohexyl carbodiimide (DCC),14 the
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multicomponent reaction of benzimidazole, aromatic aldehyde, and mercaptoacetic acid,15 and
one-pot three-component reaction between 3,4-methylenedioxyaniline, aldehydes, and a-mercapto
carboxylic acids.16

Moreover, the pyrimidine skeleton, as a critical molecule in synthetic organic chemistry, is a
part of numerous interesting bioactive compounds with many pharmacological properties.17–22

Regarding the various biological activities of pyrimidine and thiazepine moieties, it seems that the
integrating of pyrimidine and 1,4-thiazepine in one molecular scaffold may be potentially produce
biologically active compounds. However, a literature survey reveals that a few synthetic proce-
dures have been used for the synthesis of the pyrimidothiazepine platform. These methods
include the reaction of 6-methyl-4-phenyl-N-(pyridine-2-yl)-2-thioxo-1,2,3,4-tetrahydropyrimi-
dine-5-carboxamide with 2-(benzo[d]thiazol-2-yl)-4-chloro-3-oxobutannitrile,23 Pictet-Spengler
reaction of 4-chloro-6-((3,4-dimethoxyphenyl)thio)pyrimidine-5-amine upon heating at 40 �C,24

the reaction of 2-amino-3-cyano-4-(2-thienyl)[1,5]benzothiazepine with urea in acetic acid,25

Bischler�Napieralski-type reaction of 5-amino-4,6-bis(arylthio)pyrimidines and carboxylic
acids,26 the condensation reaction of 6-chloro-3-nitrobenzaldehyde and 5-amino-6-mercapto-4-
methoxypyrimidine in methanolic KOH,27 and the reaction of 6-chlorouracil with 2-amino thio-
phenol followed by heating with substituted aromatic aldehydes.28

Lipoxygenases are non-heme iron-containing proteins that act as biocatalysts in the peroxida-
tion of lipids. These enzymes convert unsaturated fatty acids like arachidonic acid and linoleic
acid into their corresponding metabolites. They are classified into 5, 8, 12 and 15-lipoxygenases
(LOX) due to their positions of oxygenation.29 Studies revealed that 15-LOXes are involved in
various human diseases such as asthma, immune disorders,29 prostate and breast cancers,30 ath-
erosclerosis,31 neurodegeneration,32 obesity, and diabetes.33 Among the versatile chemical struc-
tures of 15-lipoxygenase inhibitors,34 fused pyrimidine heterocycles extensively were studied by
our research team.35–37

In view of the literature survey38,39 and continuing our effort to synthesize the heterocyclic
compounds containing tricyclic core structures 40–46 as well as the structural similarity of syn-
thetic dipyrimido[4,5-b:40,50-e][1,4]thiazepines with potent inhibitors of 15-lipoxygenase,35–37

Figure 1. Examples of some drugs with 1,4-thiazepine scaffold: (a) Temocapril, (b) Diltiazem, (c) CGP37157, (d) Clotiapine,
(e) Quetiapine.
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herein, we report the synthesis, theoretical evaluations and 15-Lipoxygenase soybean inhibitory of
4,9-dimethyl-5,10-dihydrodipyrimido[4,5-b:40,50-e][1,4]thiazepine derivatives as a novel heterocyc-
lic system.

Results and discussion

Initially, 2,4-dichloro-5-(chloromethyl)-6-methylpyrimidine (3) was prepared by the reaction of 6-
methylpyrimidine-2,4-(1H,3H)-dione (1) and formaldehyde in 5% aqueous NaOH solution at
room temperature followed by chlorination in boiling POCl3 and N(i-Pr)2Et.

47 Furthermore, the
reaction of 2,4-dichloro-6-methylpyrimidine-5-amine (5) which was prepared from nitro group
reduction of 2,4-dichloro-6-methyl-5-nitropyrimidine (4),48 with potassium thiocyanate in boiling
DMF led to the synthesis of 5-chloro-7-methylthiazolo[5,4-d]pyrimidine-2-amine (6). Afterwards,
the chlorine atom at the C-2 position of the pyrimidine core was displaced with morpholine, and
pyrrolidine, in boiling ethanol. Finally, the 2-substituted-5-amino-6-methyl-pyrimidine-4-thiols
(8a, 8b) was prepared in good yields from the basic hydrolysis of thiazole ring in compounds
(7a, 7b).49

In order to synthesize the new heterocyclic system containing tricyclic core, 4,9-dimethyl-5,10-
dihydrodipyrimido[4,5-b:40,50-e][1,4]thiazepine, 2,4-dichloro-5-(chloromethyl)-6-methyl-pyrimi-
dine (3) was treated with 2-substituted-5-amino-6-methyl-pyrimidine-4-thiol (8a, 8b) in the pres-
ence of triethylamine in acetonitrile. The chlorine atoms on the position-4 and methylene of
compound (3) were replaced by sulfur and amino groups. In this reaction, seven-membered ring
formation takes place through combined nucleophilic substitution and addition-elimin-
ation reactions.

According to the fact that the synthesized dipyrimido[4,5-b:40,50-e][1,4]thiazepine may have
two plausible structures based on the orientation of nucleophilic attack of dinucleophile, (Scheme
1) we decided to run a set of GIAO50 calculations to find out which of these structures are more
logically formed. To this, two subsets of dipyrimido-1,4-thiazepine derivatives have been selected
for calculation step that in one of them, -NH moiety attached to CH2 group (1) and in the other
one, -S atom connected to -CH2 (2). Thus, GIAO calculation was run on B3LYP/6-
311þþg(2d,p)//B3LYP/6-31þ g(d,p) level of theory51 with ensuring all optimized structures were
located in their true energy minima stationary point by performing frequency calculations. The
same procedure was held for trimethylsilane (TMS) as 1H and 13C chemical shifts reference. All
calculations were performed by Gaussian 0952 software. See the S.I. for additional info (Cartesian
coordination, etc.) (Figure 2).

By subtracting TMS’s isotropic tensors for 1H and 13C nuclei from corresponding ones in opti-
mized structures, Table 1 resulted and presented brief data that could help through recognition
of a more plausible product.

There are two obvious distinctions between several 13C and one 1H nucleus of two regio-iso-
mers. Putting these values together with the experimental chemical shifts’ magnitude would lead
us to the right regio-isomer. In this manner, we could see a peak in a calculated 13C NMR chem-
ical shift at 185 ppm (9a0), but there was no assignable peak at such chemical shift or nearby in
experience. On the other side, a good correlation existed between calculated 13C-chemical shifts
of two pyrimidine rings in (9a), and those had been found in experimental spectra, e.g., 117 ppm
for atom 5 and 129 ppm for atom 3 (compared to two 112 and 122 ppm peaks in experience,
respectively). The other discriminator chemical shifts to distinguish two regio-isomers was the
1H-chemical shift of the NH moiety. The mentioned value in (1) and (2) was 3.32 and 6.35 ppm
downfield of TMS. A Simple comparison with actual spectra, e.g., for pyrrolidine-containing
product that was 6.48 ppm, revealed that compound (2) would be the more correlated structure
of the true regio-isomer.
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For example, in the 1H NMR spectrum of compound (9a), the presence of three singlet signals
at d 2.37, 2.41 and 3.86 ppm belonging to the methyl moieties of pyrimidine rings, and methylene
protons of CH2S moiety, respectively. Two triplet signals at d 1.99 and 3.58 ppm corresponding
to the methylene protons of pyrrolidine ring and a broad signal at d 6.92 ppm due to the
exchangeable proton of the NH group confirmed the structure of the new heterocyclic system.
The 13C NMR spectrum reveals five signals at d 21.7, 21.8, 25.5, 30.8, and 46.8 ppm for the car-
bons of methyl groups, methylene moieties of pyrrolidine ring, CH2-S, CH2-N, respectively, as
well as eight distinct signals for the unsaturated carbons at 112.5, 122.2, 155.0, 157.6, 159.1, 159.3,
160.3, and 165.0 ppm.

The nucleophilic substitution of the 2-Cl atom of pyrimidine with the excess amount of vari-
ous amines gave quantitatively the derivatives of the novel heterocyclic ring system (10a-j).

The monitoring of the reactions were performed by thin-layer chromatography (TLC) using n-
hexane/ethyl acetate as eluent. All the structural assignments of the synthesized compounds were
confirmed by FT-IR, Mass, 1H NMR, 13C NMR, and elemental analysis. For instance, the 1H
NMR spectrum of the product (10c) showed two triplet signals at d 1.97, 3.56 ppm corresponding
to the methylene protons of the pyrrolidine ring. Three singlet signals at d 2.36, 2.52, 3.96 ppm
attributed to the methyl groups on the pyrimidine rings and the CH2S hydrogens, respectively,
along with a multiple signals around d 3.18 ppm due to the methylene protons of morpholine
ring also confirmed the structure. The D2O exchangeable broad signal of the NH moiety also
appeared at d 6.48 ppm. The 13C NMR spectrum showed seven distinct signals at d 21.7, 22.0,
25.5, 37.3, 44.6, 46.5, and 66.9 ppm assigned to the carbons of aliphatic carbons groups. The eight
signals at d 107.9, 125.2, 155.3, 157.3, 159.6, 162.2, 163.3, and 168.4 ppm were also assigned to

Scheme 1. Reagents and conditions: (i) CH2O, 5% NaOH solution), rt, 12 h; (ii) POCl3, N(i-Pr)2Et, reflux, 6 h; (iii) Fe powder, HOAc,
rt, 2 h; (iv) KSCN, DMF, reflux, 3 h; (v) morpholine, EtOH, reflux, 6 h; (vi) KOH (aq), reflux, 10 h
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the unsaturated carbon signals. The IR spectrum of compound (10c) also showed the stretching
vibration C-H bands at 2790, 2864, 2929, 2952 cm�1, respectively (Scheme 2).

Due to the structural similarity of synthetic dipyrimido[4,5-b:40,50-e][1,4]thiazepines with pyri-
midothiazines and dipyrimidothiazines as the potent inhibitors of soybean 15-lipoxygenase,35–37

the theoretical inhibitory activity of the synthetic compounds against soybean 15-lipoxygenase
were studied. For this purpose, the minimized 3D structure of compounds (10a-j) were docked
into the SLO (PDB entry: 1IK3) active site, then the Fe core was altered to FeIII-OH and the side
chain of Leu227, Leu557, Leu560, Leu565, Ile572, Phe576, Leu773, and Ile857 had been made
flexible. One hundred docked conformers of the compounds were created in ADT (Auto Dock
Tools) software.53

The docking analysis showed versatile interactions between these molecules and nonpolar and
polar amino acids. The individual assessment of the output clusters of the 15-SLO showed that
there is a cluster for each docked molecule with maximum statistical population and minimum
bonding energy. One of the conformers of this cluster with the lowest theoretical inhibition con-
stant (Ki) was considered as the basic model for further analyses. The docking results revealed
that compounds (10a), (10b), (10e), (10j) exhibited the best theoretical inhibitory activity toward
soybean 15-lipoxygenase (ki) and lower than 4-methyl-2-(4-methylpyrazine-1-yl)pyrimido[b
4,5][1,4]benzothiazine (4-MMPB) as the standard inhibitor of 15-SLO (Table 2). As shown by
data, compound (10e) had a potent theoretical inhibitor with (Ki ¼ 1.13 nM) and binding energy
�12.21 kcal mol�1.

To find out the correlation between Ki and the structural parameters of the synthetic com-
pounds, the proposed binding of fundamental models inactive site pocket of 15-SLO were ana-
lyzed. It was observed that pyrimidine scaffold in all the most stable conformers in compounds
(10a), (10b), (10e), and (10j) had been directed to Fe-OH to make hydrogen bond. Also, the sul-
fur atom in pyrimidothiazepine able to make another hydrogen bond with His 518. These strong
interactions, along with other intermolecular interactions, led to have lower bonding energy in
comparison with 4MMPB in the active site of 15-LOX. While the dipyrimidothiazepine moiety in
compounds (10c), (10d), (10f), (10 g), (10 h), (10i) had only Van der waals interactions with

Figure 2. Optimized structures of two regio-isomer of morpholine- (up) and pyrrolidine-compounds (down) at B3LYP/
6-31þ g(d,p).
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adjacent amino acids and due to the distance of this scaffold to iron core, the interaction of p
electrons of pyrimidine moieties with Fe-OH becomes weaker (Figures 3 and 4).

Moleculare docking of 4-(8-(4-methylpiperazin-1-yl)-5H-dipyrimido[4,5-b:50,40-e][1,4]thiazin-
2-yl)morpholine (11) with experimental inhibition constant (IC50¼ 14.4 ± 1.1 lM)35 was studied
in similar parameter with products (10a-j).

The comparison of the theoretical docking data of compound (11) with the synthesized prod-
ucts (10a-j) demonstrated that compounds (10a), (10b), (10e), and (10j) have better inhibition
constant than compound (11). The superimposition of compounds (10e), (11) clearly demon-
strated that the appropriate inhibition constant of compound (10e) is the result of better filling
the hydrophobic cavity of the enzyme by piperidine moiety. This hydrophobic cavity is formed
by the lipophilic side chain of the Leu 277, 560, 565, 773, as well as Ile 557, 772, 857. Moreover,
pyrimidine scaffold in compound (11) instead of hydrogen bond with Fe(III)-OH could form
electrostatic p-cation interaction with Fe core (Figure 5).

Finally, based on the theoretical docking data, it is anticipated that the synthesized dipyrimido-
thiazepines were more potent soybean 15-lipoxygenase inhibitors in vitro than dipyrimidothia-
zines and 4MMPB as a standard inhibitor.

Table 1. GIAO chemical shift values of selected 1H- and 13C-nuclei of compound (1) and (2). (in ppm downfield of TMS).

Position Atom 90a 9a Exp. jDdj90a jDdj9a 90b 9b Exp. jDdj90b jDdj9b
Ring carbons C1 162.3 161.5 155 7.3 6.5 160.9 160.0 155 5.9 5

C2 167.6 172.0 159.3 8.3 12.7 168.0 172.1 159.3 8.7 12.8
C3 138.7 129.2 122.2 16.5 7 137.7 128.6 122.2 15.5 6.4
C4 161.3 164.4 157.6 3.7 6.8 161.3 164.9 157.6 3.7 7.3
C5 133.8 117.2 112.5 21.5 4.7 133.7 116.9 112.5 21.2 3.5
C6 185.3 165.5 159.1 26.2 6.4 185.8 165.5 159.1 26.7 6.4
C7 173.5 174.5 165 8.5 9.5 173.3 174.3 165 8.3 9.3
C8 171.4 172.3 160.3 11.1 12 171.2 172.1 160.3 10.9 11.8

C->Me C13 24.1 23.7 21.8 2.3 1.9 24.1 23.7 21.8 2.3 1.9
C’->Me’ C17 21.7 23.3 21.7 0 1.6 21.7 23.4 21.7 0 1.7
H->Me 14 2.33 2.32 2.41 0.08 0.09 2.32 2.30 2.51 0.19 0.21
H->Me 15 2.45 2.37 2.41 0.04 0.04 2.45 2.35 2.51 0.06 0.16
H->Me 16 2.43 2.36 2.41 0.02 0.05 2.41 2.33 2.51 0.1 0.18
H’->Me’ 18 2.13 2.44 2.37 0.24 0.07 2.14 2.41 2.47 0.33 0.06
H’->Me’ 19 2.15 2.35 2.37 0.22 0.02 2.18 2.36 2.47 0.29 0.11
H’->Me’ 20 2.30 2.43 2.37 0.07 0.06 2.33 2.47 2.47 0.14 0
H->X-CH2 22 3.70 3.51 3.86 0.16 0.35 3.71 3.52 3.97 0.26 0.45
H->X-CH2 23 4.40 4.09 3.86 0.54 0.23 4.41 4.07 3.97 0.44 0.1
H->NH 25 3.32 6.36 6.81 3.49 0.45 3.28 6.36 6.92 3.64 0.56
Dd: the difference between the calculated and experimental (Exp.) chemical shifts.

Scheme 2. Synthetic route for the synthesis of compounds (10a-j).
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Conclusions

In this study, we have successfully synthesized novel derivatives of dipyrimido[4,5-b:40,50-e][1,4]
thiazepine through the initial treatment of 2,4-dichloro-5-(chloromethyl)-6-methylpyrimidine
with 2-substituted-5-amino-6-methyl-pyrimidine-4-thiol followed by the substitution of 2-Cl of
the pyrimidine core with various amines. The GIAO calculations reveal that among the two
nucleophilic atoms, sulfur and nitrogen, the bonding of sulfur atom to methylene group is more
plausible. Moreover, we have found that among the synthesized compounds, compound (10e) is a

Table 2. Inhibitory data of synthesized compounds and compounds (11) compared with the standard compound of 4MMPB
relative to the plant enzyme 15-lipoxygenase.

Entry (10a) (10b) (10c) (10d) (10e) (10f) (10g) (10h) (10i) (10j) (11) 4MMPB

Bonding Energy
(Kcal/mol)

�1.25 �11.87 �4.6 �5.24 �12.2 �5.44 0 �6.77 �7.32 �10.87 �6.84 -10.93

Ki 5.66 nM 2 nM 421.36mM 144.43mM 1.13 nM 102.64 nM – 10.85 mM 4.3 mM 10.74 nM 14.4mM 9.73 nM

Ki, the lowest theoretical inhibition constant.

Figure 3. Two-dimensional structure of compound interactions (10e) at the active site of 15SLO enzyme (A) Model bar structure
of compound (10e) in the active site of 15SLO enzyme (B) Two-dimensional power of compound interactions (10c) at the active
site of the 15SLO enzyme (C).
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potent theoretical inhibitor with (Ki ¼ 1.13 nM) and binding energy �12.21 kcal mol-1 against
soybean 15-lipoxygenase.

Experimental

Materials and methods

All chemicals were purchased from Aldrich. All reagents were used without further purification.

Figure 4. The most stable rod model of structures (10a), (10b) and (10e) in the active site of 15SLO enzyme (A). Solvent Coated
Model of Compounds (10a), (10b) and (10e) (B).

Figure 5. Placement of the rod model of the most stable conformer of structures (10e) (green) and (11) (red) in the active site
of 15SLO enzyme.
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Characterization methods

Melting points were taken on an Electrothermal type 9200 melting point apparatus. The IR spec-
tra were obtained in KBr disks on an Avatar 370 FT-IR Thermo Nicolet spectrometer. The 1H
NMR (300MHz) and the 13C NMR (75MHz) spectra were recorded on a Bruker Avance DRX-
300 Fourier transform spectrometer. Chemical shifts were reported in parts per million (ppm)
downfield from TMS as an internal standard. The mass spectra were obtained on a Varian Mat
CH-7 and Agilent 5973 instruments at 70 eV. Elemental analysis was performed on a Thermo
Finnigan Flash EA microanalyzer.

Molecular docking

The ligand of soybean 15-lipoxygenase 3D structure was omitted. Then the Fe was modified to
FeIII-OH, geometrically optimized by MMþmethod in HyperChem8.0, and outputted in pdb
format for docking process.54 Docking of the minimized structures into the active site of 1IK3
was done by AutoDock 4.2.55 The torsion angles of the ligands were identified, bond distances
were edited, hydrogens and solvent parameters were added to the enzyme 3D structure. Partial
atomic charges were then assigned to the macromolecule and ligands (Gasteiger for the ligands
and Kollman for the protein). The docking regions of the enzyme were defined by considering
Cartesian chart 18.3, 4.8, and 19.2 as the center of a grid size with 44, 56, and 62 points in the X,
Y, and Z-axis. The docking parameter files were generated using Lamarckian genetic algorithm
Parameters (GALS), while the number of generations and the maximum number of energy evalu-
ations were set to 100 and 2,500,000, respectively. The 100 docked complexes were clustered with
a root-mean-square deviation tolerance (RMSD) of 2.5 Å. Docking results were submitted to
Accelrys Discovery Studio v4.5 for further simulation.

Synthesis of 4-(7-chloro-4,9-dimethyl-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4]thiazepin-2-
yl)morpholine & 7-Chloro-4,9-dimethyl-2-(pyrrolidin-1-yl)-5,10-dihydrodipyrimido[4,5-b:4’,5’-
e][1,4] thiazepine (9a, 9b); general procedure
A solution of 2-substituted-5-amino-6-methyl-pyrimidine-4-thiol (8a, 8b) (1mmol, 0.22 g) in
acetonitrile (2mL) was added dropwise to a vigorous stirred solution of 2,4-dichloro-5-(chloro-
methyl)-6-methylpyrimidine (3) (1mmol, 0.211 g) and Et3N (3mmol, 0.3 g) in acetonitrile (3mL)
at �15 �C for 30minutes. After the completion of the reaction, distilled water (10mL) was added,
and the mixture was extracted with chloroform (3� 10mL). Organic layers were combined, dried
over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting white solid was
purified by column chromatography (silica gel, n-hexane: ethyl acetate 4:1).

7-Chloro-4,9-dimethyl-2-(pyrrolidin-1-yl)-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4] thiazepine
(9a). Yield ¼ 74%; white powder; mp ¼ 220–222 �C; IR (KBr, cm�1) � 3392, 2994, 2925, 2855,
2790; 1H NMR (300MHz, CDCl3, ppm) d: 2.00 (q, J¼ 3.8Hz, 4H, CH2), 2.47 (s, 3H, CH3), 2.51
(s, 3H, CH3), 3.58 (t, J¼ 6.7Hz, 4H, CH2N), 3.97 (s, 2H, CH2S), 6.92 (br s, 1H, NH); 13C NMR
(75MHz, CDCl3, ppm) d: 21.7, 21.8, 25.5, 30.8, 46.8, 112.5, 122.2, 155.0, 157.6, 159.1, 159.3,
160.3, 165.0; MS (m/z): 348 (Mþ), 313 (Mþ - Cl), 283 (Mþ - Cl and 2CH3). Anal. Calcd. For
C15H17ClN6S: C, 51.64; H, 4.91; N, 24.09; S, 9.19. Found: C, 51.55; H, 4.86; N, 24.03; S, 9.01.

4-(7-Chloro-4,9-dimethyl-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4]thiazepin-2-yl) morpholine
(9b). Yield ¼ 91%; white powder; mp ¼ 233–235 �C; IR (KBr, cm�1) � 3393, 3321, 2994, 2935,
2859, 2790, 1578, 1401; 1H NMR (300MHz, CDCl3, ppm) d: 2.37 (s, Hz, 3H, CH3), 2.41 (s, 3H,
CH3), 3.10 (s, 8H, morpholine), 3.86 (s, 2H, CH2S), 6.81 (br s,1H, NH); 13C NMR (75MHz,
CDCl3, ppm) d: 21.7, 21.8, 25.5, 46.8, 66.4, 112.5, 122.2, 155.0, 157.6, 159.1, 159.3, 160.3, 165.0;
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MS (m/z): 364 (Mþ), 363 (Mþ �1), 320 (Mþ -CH2OCH2). Anal. Calcd. For C15H17ClN6OS: C,
49.38; H, 4.70; N, 23.03; S, 8.79. Found: C, 49.30; H, 4.67; N, 23.01; S, 8.72.

Synthesis of 7-substituted dipyrimido[4,5-b:4’,5’-e][1,4]thiazepines (10a-j); general procedure
To separate mixtures of 7-Chloro-4,9-dimethyl-2-(pyrrolidin-1-yl)-5,10-dihydrodipyrimido[4,5-
b:40,50-e][1,4] thiazepine (9a) and 4-(7-chloro-4,9-dimethyl-5,10-dihydrodipyrimido[4,5-b:40,50-
e][1,4]thiazepin-2-yl)morpholine (9b) (1mmol, 0.36 g) in EtOH (5mL), appropriate amines
(3mmol) was added and the reaction mixture was heated for 3 h. After completion, the solvent
was removed under vacuum, and the crude was purified using silica gel column chromatography
(eluent: n-hexane/ethyl acetate 4:1).

4,9-Dimethyl-2,7-di(pyrrolidin-1-yl)-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4]thiazepine (10a).
Yield ¼ 85%; yellow powder; mp ¼ 221–223 �C; IR (KBr, cm�1) � 3404, 2953, 2928, 2864, 2789,
1591, 1552, 1515, 1476, 1401; 1H NMR (300MHz, CDCl3, ppm) d: 1.86 (m, 8H, CH2), 2.25 (s,
3H, CH3), 2.42 (s, 3H, CH3), 3.45 (m, 8H, CH2N), 3.85 (s, 2H, CH2S), 6.36 (br s, 1H, NH); 13C
NMR (75MHz, CDCl3, ppm) d: 21.7, 22.1, 25.5, 31.0, 46.5, 103.2, 124.0, 155.2, 156.3, 157.7,
158.8, 159.5, 163.2; MS (m/z): 383 (Mþ), 381 (Mþ �2), 354 (Mþ -2CH3). Anal. Calcd. For
C19H25N7S: C, 59.50; H, 6.57; N, 25.57; S, 8.36 Found: C, 59.45; H, 6.54; N, 25.54; S, 8.30.

4,9-Dimethyl-7-(4-methylpiperidin-1-yl)-2-(pyrrolidin-1-yl)-5,10-dihydrodi pyrimido[4,5-b:4’,5’-
e][1,4]thiazepine (10b). Yield ¼ 85%; yellow powder; mp ¼ 183–185 �C; IR (KBr) �: 3404, 2945,
2923, 2867, 1593, 1509, 1459, 1407, 1245, 1182, 1039, 828, 569 cm�1; 1H NMR (300MHz, CDCl3)
d: 0.89 (d, J¼ 6.1Hz, 3H, CH3), 1.55–1.62 (m, 6H, CH, CH2), 1.87 (t, J¼ 6.6Hz, 4H, CH2), 2.23
(s, 3H, CH3), 2.42 (s, 3H, CH3), 2.65 (t, J¼ 11.2Hz, 4H, CH2N), 3.47 (t, J¼ 6.53Hz, 4H, CH2N),
3.83 (s, 2H, CH2S), 6.33 (br s,1H, NH); 13C NMR (75MHz, CDCl3, ppm) d: 21.7, 22.0, 22.2, 25.6,
29.7, 34.2, 41.8, 44.1, 46.7, 114.0, 127.8, 143.7, 156.3, 157.7, 159.5, 159.8, 163.3; MS (m/z): 411
(Mþ), 341 (Mþ- pyrrolidin), 313 (Mþ- 4-methylpiperidin). Anal. Calcd. For C21H29N7S: C, 61.28;
H, 7.10; N, 23.82; S, 7.79 Found: C, 61.22; H, 7.07; N, 23.78; S, 7.72.

4-(4,9-Dimethyl-7-(pyrrolidin-1-yl)-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4] thiazepin-2-yl)mor-
pholine (10c). Yield ¼ 78%; yellow powder; mp 190–192 �C; IR (KBr, cm�1) �: 3405, 2952, 2929,
2864, 2790, 1591, 1517, 1477 cm�1; 1H NMR (300MHz, CDCl3, ppm) d: 1.97 (t, J¼ 6.7Hz, 4H,
CH2), 2.36 (s, 3H, CH3), 2.52 (s, 3H, CH3), 3.18 (s, 8H, morpholine), 3.56 (t, J¼ 6.5Hz, 4H,
CH2N), 3.96 (s, 2H, CH2S), 6.48 (br s, 1H, NH); 13C NMR (75MHz, CDCl3, ppm) d: 21.7, 22.0,
25.5, 37.3, 44.6, 46.5, 66.9, 107.9, 125.2, 155.3, 157.3, 159.6, 162.2, 163.3, 168.4 ppm; MS (m/z):
399 (Mþ).397 (Mþ�2), 353 (Mþ-CH2S). Anal. Calcd. For C19H25N7OS: C, 57.12; H, 6.31; N,
24.54; S, 8.02 Found: C, 57.01; H, 6.26; N, 24.50; S, 7.98.

4,4’-(4,9-Dimethyl-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4]thiazepine-2,7-diyl) dimorpholine
(10d). Yield ¼ 70%; yellow powder; mp ¼ 205–206 �C; IR (KBr, cm�1) �: 3398, 2957, 2921, 2857,
2784, 2720, 2606, 2491, 2467, 1723, 1576, 1506; 1H NMR (300MHz, CDCl3, ppm) d: 2.25 (S, 3H,
CH3), 2.41 (S, 3H, CH3), 3.67 (S, 16H, morpholine), 3.85 (S, 2H, CH2-S), 6.38 (br s, 1H, NH);
13C NMR (75MHz, CDCl3, ppm) d: 21.7, 22.1, 66.9, 67.0, 76.6, 77.1, 77.5, 113.9, 127.8, 155.4,
157.5, 158.3, 159.5, 159.8, 163.6; MS (m/z): 415 (Mþ), 371 (Mþ-CH2OCH2), 313 (Mþ-CH3 and
morpholine). Anal. Calcd. For C19H25N7O2S: C, 54.92; H, 6.06; N, 23.60; S, 7.72 Found: C, 54.89;
H, 6.03; N, 23.57; S, 7.69.

4-(4,9-Dimethyl-7-(piperidin-1-yl)-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4] thiazepin-2-yl)mor-
pholine (10e). Yield ¼ 90%; yellow powder; mp ¼ 172–175 �C; IR (KBr, cm�1) �: 3407, 2949,
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2843, 2806, 2765, 2744, 2639, 2526, 2428, 1594; 1H NMR (300MHz, CDCl3, ppm) d: 1.51 (S, 6H,
CH2), 2.24 (s, 3H, CH3), 2.41 (s, 3H, CH3), 3.07 (s, 8H, morpholine), 3.65 (t, J¼ 3.3Hz, CH2N),
3.83 (s, 2H, CH2S), 6.32 (br s, 1H, NH); 13C NMR (75MHz, CDCl3, ppm) d: 21.7, 21.8, 25.0,
25.9, 30.7, 37.1, 44.7, 66.9, 113.7, 127.8, 151.9, 156.4, 158.0, 159.4, 159.9, 168.9; MS (m/z): 413
(Mþ), 369 (Mþ-CH2OCH2). Anal. Calcd. For C20H27N7OS: C, 58.09; H, 6.58; N, 23.71; S, 7.75
Found: C, 58.03; H, 6.55; N, 23.68; S, 7.70.

4-(4,9-Dimethyl-7-(4-methylpiperazin-1-yl)-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4]thiazepin-2-
yl)morpholine (10f). Yield ¼ 89%; yellow powder; mp ¼ 207–209 �C; IR (KBr, cm�1) �: 3392,
2925, 2855, 2798, 1728, 1580, 1537, 1503; 1H NMR (300MHz, CDCl3, ppm) d: 2.24 (s, 3H, CH3),
2.29 (s, 3H, CH3), 2.41 (S, 7H, CH3N, CH2N), 3.07 (s,8H, morpholine), 3.74 (t, J¼ 4.6Hz, 4H,
CH2N), 3.83 (s, 2H, CH2S), 6.35 (br s, 1H, NH); 13C NMR (75MHz, CDCl3, ppm) d: 22.9, 22.9,
37.4, 43.7, 45.1, 46.2,54.8, 113.7, 126.5, 152.0, 155.2, 157.0, 159.5, 161.6, 168.9; MS (m/z): 428
(Mþ), 384 (Mþ-CH2OCH2). Anal. Calcd. For C20H28N8OS: C, 56.05; H, 6.59; N, 26.15; S, 7.48
Found: C, 56.01; H, 6.55; N, 26.10; S, 7.41.

4-(4,9-Dimethyl-7-(4-phenylpiperazin-1-yl)-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4]thiazepin
-2-yl) morpholine (10 g). Yield ¼ 73%; yellow powder; mp ¼ 234–236 �C; IR (KBr, cm�1) �:
3383.66, 3060, 2922, 2852, 2815, 2696; 1H-NMR(300MHz, CDCl3, ppm) d: 2.32 (s, 3H, CH3),
2.51 (s, 3H, CH3), 3.19 (m, 4H, CH2N), 3.26 (m, 4H, CH2N), 3.97 (m,8H, morpholine), 4.59 (s,
2H, CH2S), 6.49 (br s, 1H, NH),6.93 (t, J¼ 7.0Hz, 1H, Ar), 7.02 (d, J¼ 8.1Hz, 2H, Ar), 7.30–7.33
(m, 2H, Ar); 13C-NMR (75MHz, CDCl3, ppm) d: 22.1, 22.9, 37.4, 43.8, 49.4, 66.9, 107.9, 116.6,
120.3, 129.2, 151.3, 157.0, 159.5, 163.2, 165.2, 169.1, 175.3; MS (m/z): 490 (Mþ), 314 (Mþ-CH3

and 4-phenylpiperazin). Anal. Calcd. For C25H30N8OS: C, 61.20; H, 6.16; N, 22.84; S, 6.53 Found:
C, 61.17; H, 6.14; N, 22.80; S, 6.51.

N-butyl-4,9-dimethyl-2-morpholino-5,10-dihydrodipyrimido[4,5-b:4’,5’-e] [1,4] thiazepin-7-amine
(10h). Yield ¼ 84%; yellow powder; mp ¼ 163–165 �C; IR (KBr, cm�1) �: 3405, 3313, 3223, 3150,
2956, 2928, 2862, 2782, 1594, 1576; 1H-NMR(300MHz, CDCl3, ppm) d: 0.97 (t, J¼ 7.2Hz, 3H,
CH3), 1.41 (m, J¼ 8.0Hz, 2H, CH3), 1.59 (m, J¼ 7.3Hz, 2H, CH2), 2.32 (s, 3H, CH3), 2.47 (s,
3H, CH3), 3.12 (m, 8H, morpholine), 3.44 (t, J¼ 6.3Hz, 2H, CH2N), 4.57 (s, 2H, CH2S), 5.16 (br
s, 1H, NH), 6.96 (br s, 1H, NH); 13C-NMR (75MHz, CDCl3, ppm) d:13.8, 20.0, 21.1, 28.2, 31.6,
37.1, 37.4, 41.2, 69.2, 114.3, 124.8, 152.0, 155.2, 159.0, 160.5, 165.0, 169.2 ppm; MS (m/z): 401
(Mþ), 400 (Mþ-1), 355 (Mþ- CH2S). Anal. Calcd. For C19H27N7OS: C, 56.83; H, 6.78; N, 24.42;
S, 7.98 Found: C, 56.79; H, 6.75; N, 24.38; S, 7.94.

N-Isobutyl-4,9-dimethyl-2-morpholino-5,10-dihydrodipyrimido[4,5-b:4’,5’-e] [1,4] thiazepin-7-
amine (10i). Yield ¼ 80%; yellow powder; mp ¼ 172–174 �C; IR (KBr, cm�1) �: 3366, 3303, 3215,
2972, 2929, 2864, 2782, 1728, 1596, 1539; 1H-NMR(300MHz, CDCl3, ppm) d: 0.71, 0.73 (d, J¼ 6.7Hz,
6H, CH3), 1.73 (m, 1H, CH), 2.34 (s, 3H, CH3), 2.45 (s, 3H, CH3), 3.20 (m, 8H, morpholine), 3.27,
3.28 (d, J¼ 6.4Hz, 2H, CH2N), 4.47 (s, 2H, CH2S), 5.19 (br s, 1H, NH), 6.59 (br s, 1H, NH); 13C-
NMR(75MHz, CDCl3, ppm) d:19.9, 20.3, 21.5, 24.5, 27.9, 37.4, 48.9, 66.9, 109.8, 125.1, 153.5, 153.6,
156.8, 158.7, 161.8, 163.7ppm; MS (m/z): 400 (Mþ), 399 (Mþ-1), 355 (Mþ-CH2S), Anal. Calcd. For
C19H27N7OS: C, 56.83; H, 6.78; N, 24.42; S, 7.98 Found: C, 56.80; H, 6.75; N, 24.41; S, 7.95.

N,N-Diethyl-4,9-dimethyl-2-morpholino-5,10-dihydrodipyrimido[4,5-b:4’,5’-e][1,4]thiazepin-7-
amine (10j). Yield ¼ 76%; yellow powder; mp ¼ 172–174 �C; IR (KBr, cm�1) �: 3391, 2925,
2855, 2794, 1728, 1580, 1505, 1403; 1H-NMR (300MHz, CDCl3, ppm) d: 1.20 (t, J¼ 7.1Hz, 6H,
CH3), 2.32 (s, 3H, CH3), 2.47 (s, 3H, CH3), 3.19 (m, 8H, morpholine), 3.61 (q, J¼ 7.0Hz, 4H,
CH2N), 4.58 (s, 2H, CH2S), 6.68 (br s, 1H, NH); 13C-NMR (75MHz, CDCl3, ppm) d:13.0, 20.1,
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22.9, 28.5, 37.4, 41.8, 66.7, 112.2, 124.8, 151.8, 155.5, 157.0, 159.2, 161.4, 168.5; MS (m/z): 401
(Mþ), 355 (Mþ-CH2S). Anal. Calcd. For C19H27N7OS: C, 56.83; H, 6.78; N, 24.42; S, 7.98 Found:
C, 56.79; H, 6.77; N, 24.39; S, 7.95.
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