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Introduction

Nowadays, industrialization and globalization led to a skyrocket-
ing production capacity in many countries, which has propelled 
waste production to an alarming level. Subsequently, catastrophic 
consequences such as environmental pollution, global warming 
and rapid depletion of natural resources have emerged. In the 
midst of these, the silver lining has been governments’ introduc-
tion and enacting strict environmental legislation. For instance, 
we can mention the European Union waste electrical and elec-
tronic equipment (WEEE) and Japan electronic-waste (e-waste) 
regulation. The former enforces manufacturers to allocate proper 
resources to product recovery purposes, and the latter is a manda-
tory regulation tasking consumers to return their end-of-life 
(EOL) or used-product (UP) to specified collection centres 
(Anshassi et al., 2019). Furthermore, in recent years, there is a 
phenomenon of growing consciousness of environmental con-
cerns among consumers. This environmental awareness is creat-
ing a favourability and inclination around purchasing eco-friendly 
products.

Consequently, a combination of restrictions and consumer 
desires has encouraged manufacturers to produce commodi-
ties with higher quality and durability, which even led to the 

reduction of unnecessary expenses and eventually improved rev-
enues (Dowlatshahi, 2010). One primary stream of waste produc-
tion is e-waste. In 2016 a report estimated that the global e-waste 
production has surpassed 44.7 million tons and is on a trajectory 
of 52 million tons until 2021 (Baldé et al., 2017). At this time, 
each European citizen discarded roughly around 15 kg of e-waste 
every year, which indicates the severity of this issue (Wang et al., 
2016).

Moreover, the importance of e-waste management is contrib-
uted to two additional important characteristics. Firstly, it can be 
highly hazardous and detrimental to the environment (John et al., 
2018). Secondly, it contains a considerable amount of precious 
metal such as gold, silver and palladium. According to National 
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Institute for Material Science Japan [NIMS] (2015), a staggering 
amount of 6800 tons of gold and 60,000 tons of silver could be 
found in urban mines, which only a mere 20% of them adequately 
recycled. Hence, we argue that even if this issue is considered a 
distasteful burden by producers, it can herald an opportunity to 
restore a significant amount of resources with the proper 
perspective.

Krikke et al. (1999) defined reverse logistics (RL) as ‘collect-
ing, transportation, storage and process of EOL products’. 
Fleischmann et al. (2000) pointed out that a proper RL network 
bears responsibility for collecting UPs and sorting and process-
ing them based on their condition (e.g. recycling, repairing, 
remanufacturing, dissembling, reselling and scrapping). This 
specific representation of the RL model resonates closely with 
the requirements of an e-waste management problem. Moreover, 
ever since Jayaraman et al. (2003) paper introduced the basis of a 
RL network design, many researchers have published researches 
encompassing both the RL modelling and waste management 
scopes simultaneously. In general, these efforts have been mainly 
concerned with developing mathematical models to address 
upcoming and advanced problems such as considering limited 
capacity, uncertainty, a combination of different specialized pro-
cedures, multi-commodity and multi-objective ones (Baidya 
et al., 2020; Iacovidou et al., 2017; Kilic et al., 2015; Li et al., 
2015). An exhaustive review paper on the related area was pre-
sented by Islam and Huda (2018) for further information.

A significant challenge in developing the RL network design 
is its inherent uncertainty. This issue has been an unavoidable 
feature of any mathematical logistics model, which originates 
from sources such as an inaccurate estimation of the potential 
number of UPs due to the lack of historical data, fluctuation in 
operating facilities expenses, transportation costs and some oth-
ers (Aliahmadi et al., 2020; Kohneh et al., 2016; Luhandjula, 
2006). One of the less-investigated sources of uncertainty in the 
RL model arises from approximating UPs return rate. Currently, 
competition among producers globally is quite fierce and poten-
tially higher-value products (e.g. cell phones and laptops) are 
more present among consumers. This matter affects the RL pro-
cess of these specific UPs because often, product holders expect 
to receive some sort of incentive offer to return (i.e. their reserva-
tion). Hence, without loss of generality, suppose the collection 
effort involves e-waste (i.e. potentially high salvage value UPs); 
any estimation of return rate without the presence of an incentive 
offer could lead to an ill-defined and imprecise description of the 
reality.

This phenomenon encouraged Klausner and Hendrickson 
(2000) to introduce the RL network design with a buyback (BB) 
policy. The motivation behind this strategy was that both RL 
company and product holders are usually sensitive toward the 
amount of BB offer and proper consideration of this relationship 
could provide a reliable estimation of the return rate. Needless to 
say that without any reservation from consumers, the inclusion of 
BB offer is unnecessary. The drawback of this paper was that it 
only focused on allocating fixed BB offers, creating a likely sce-
nario that collected UPs would belong to the lowest-quality 

category, thus increasing the cost of the system. Therefore, Guide 
et al. (2003) studied a cellular phone company collection strategy 
and argued that allocating BB offers should be based on the qual-
ity of UPs at the time of return. This suggestion was quite reason-
able because it was cost-efficient and aligned neatly with reality, 
given that even collection companies without any BB offer pol-
icy tend to sort collected UPs into different categories. Likewise, 
Ray et al. (2005) have proposed a trade-in rebates offer depend-
ent on the age of UPs to encourage consumers to replace their 
UPs with new ones. In another approach, Wojanowski et al. 
(2007) attempted to utilize a probability function to approximate 
the return rate. They investigated a scenario where voluntary 
return flow was underwhelming; therefore, a deposit-refund 
strategy using uniform probability function (UPF) was imple-
mented to estimate the return rate of UPs.

Furthermore, Aras and Aksen (2008) decided to integrate the 
RL network planning process with a BB offer mechanism. They 
developed a location–allocation mathematical model with BB 
offers dependent on the quality and distance of UPs. This suc-
cessful integration encouraged scholars to use this strategy to 
address more advanced problems. Consequently, Aksen et al. 
(2009) investigated an integrated bi-level RL mathematical pro-
gramming model. The two levels of objective function were con-
cerned with minimizing the number of subsidy payments by the 
government while maximizing the total profit of the collection 
network, respectively.

Similarly, Dutta et al. (2016) have proposed a closed-loop 
supply chain network with a three-way recovery method and a 
BB offer policy. The model allocated BB offers based on the 
quality and age of UPs at the time of return and approximated 
return rate using a concave piece-wise probability function 
(PWPF). Some other notable efforts in this area are (Amirdadi 
and Dehghanian, 2021; Fattahi and Govindan, 2017; Masoudipour 
et al., 2017).

Consequently, an essential question that comes to mind is how 
many factors affect the product holder’s decision to return? Or in 
other words, is it sufficient only to consider the condition of UPs 
in the process of estimating the return rate? Although the current 
body of work regarding RL network with BB offers is far more 
potent than those without it. However, the general proposition 
considering the UPs’ condition as the sole factor for approximat-
ing the return rate is not entirely justifiable. We acknowledge that 
it might be the most crucial factor, but in reality, a product hold-
er’s willingness to return could be dependent on series of other 
factors as well (see Table 1).

Studies by Thierry et al. (1995), Tibben-Lembke (2002), 
Östlin et al. (2009) and Tekin Temur et al. (2014) highlighted 
several other influential factors. From Table 1, it can be inferred 
that these factors are diversified, emanate from different sources 
and overwhelming present among e-waste types of UPs. For 
instance, two consumers with an identical UP receiving an exact 
BB offer while having different education status (i.e. macro fac-
tors) or warranty period (i.e. micro factors) or distance from the 
closest collection centre (i.e. product-based factors) can exhibit 
different chances of return. Therefore, even in the presence of a 
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BB offer policy, any approximation of UPs return rate would still 
contain a certain degree of ambiguity and vagueness. Besides 
that, we stated that an inherent part of a mathematical RL net-
work design is uncertainty. Therefore, a combination of possible 
inaccuracy in the estimation of RL model parameters and the 
fluctuating nature of consumers’ decisions regarding returning or 
not could cause a difficult prospect for developing a reliable RL 
network with BB offers.

This paper attempts to address this problem. To do so, we 
point out that in previous studies, researchers often correlated the 
parameters of return probability function (e.g. UF or PWPF) to 
the condition of UPs. Arguably, they suggested that both collec-
tion companies and consumers are attuned to the condition of 
UPs, while other remaining factors mainly affect consumers’ 
decisions, thus opting that the former is far more critical. Here, 
we decided to maintain this assumption but complement it by 
considering the parameters of the return probability function as 
fuzzy variables. The fuzzy description of the return probability 
function enables us to cope with consumers’ unpredictable and 
heterogeneous behaviour concerning BB offers. Therefore, we 
develop a RL mathematical model with BB offers under a fuzzy 
assumption regarding the approximation of the return rate and 
other parameters (e.g. potential number of UPs and transporta-
tion costs). Besides that, we adopted a fuzzy credibility-based 
(CB) method to deal with uncertainty in our approach. This 
method has been used effectively in similar studies concerning 
RL and waste management problems (Aliahmadi et al., 2021; 
Zhang and Huang, 2010). Additionally, the implementation of 
this technique contains solid compatibility with the fuzzy proper-
ties of the BB offer policy. Finally, to demonstrate our methodol-
ogy in this paper, we summarize it as the following steps:

•• In the next section, we initially present the PWPF intro-
duced by Dutta et al. (2016), which under a deterministic 

assumption provides a reliable approximation of the return 
rate based on the quality and age (i.e. condition) of UPs. 
Then, to address uncertainty related to the effect of other fac-
tors, a fuzzy description for its parameters is defined. Then, 
we conducted a series of adjustments on the fuzzy PWPF to 
modify it into its corresponding discrete function. These two 
steps would enable us to completely linearize the fuzzy 
PWPF, which ultimately enhances our approach tractability 
by significantly reducing its solving complexity.

•• Section 3 illustrates the proposed fuzzy RL model with BB 
offers. The model also addresses the uncertainty surrounding 
more customary parameters of the RL network. Therefore, 
plus the parameters of PWPF, the potential total number of 
existing UPs, transportation costs, the potential value of 
recovered UPs and the percentage of them that could be recy-
cled or remanufactured, or disposed of have been considered 
as fuzzy numbers.

•• Section 4 briefly introduces the CB chance constraint solu-
tion methodology and then implements it on the model to 
achieve its crisp counterpart. The overall goals are locating 
and allocating collection centres, finding optimal BB offers 
and the number of collected UPs while minimizing the sys-
tem’s total cost.

•• In Section 5, the model has been applied to a case study 
related to an e-waste RL company in Mashhad, Iran, to evalu-
ate its performance and draw insight.

•• Finally, Section 6 encompasses the conclusion and some rec-
ommended directions for future directions on this topic.

Materials and methods

As we mentioned, the main concentration in this paper is to 
approximate the return rate of UPs while planning the RL net-
work under an uncertain environment. Regarding this matter, 

Table 1. List of factors influencing return rate of UPs.

Micro factors (Firm based) Firm strategy
Advertisements
Giving information to customers
The ability of the company to repair products
Warranty period

Product-based Condition (i.e. Quality and age) Life cycle point of product
The economic life of the product
Rate of defects
e-waste quantity

Features The complexity of product modularity
Seasonality of product
Product initial price
Sales amount
Easiness of product returns

Macro factors (Government and socioeconomic) Legal enforcement
Investment in the environment
Customer segment
Education status
Population and population density
Income
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studies introduced several different methods, from offering a 
fixed offer to all of the UPs to dividing the potential number of 
them into several predefined categories of qualities and allocat-
ing BB offers to consumers, to even more flexible approaches 
such as using UPF to approximate the return rate and some oth-
ers. Here, we decided to employ a concave PWPF first adopted 
by Dutta et al. (2016). This particular probability function 
approximates the return rate of UPs for a specific BB offer based 
on their quality and age at the time of return. In light of related 
papers, these two criteria can be stressed as the most important 
ones determining UPs’ chance of return; therefore, we categorize 
UPs into Q , distinct levels of quality and E  levels of age. We 
can write the PWPF as follows:
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Where y yqe qe1 2 0, ≥  and P qe( )BB  demonstrates the probability 
of return for an offer BBqe  and depends on the quality and age 
of UP at the time of return. Also, for a specific type of UP α α1 2,  
are constant and ( )α α1 2≤ . The parameters of y yqe qe1 2,  are the 
higher and lower bounds of BB offers and the decision-maker 
determines their values. Therefore, the superior quality or lower 
age levels of UPs would demand higher BB offers to reach a 
specific rate of return compared to inferior quality or higher age 
ones (see Figure 1). The y qe2  is the point that consumer willing-
ness to return does not improve anymore. Thus, any increase 
above that limit would only add to the cost of the system. 
Additionally, the PWPF breakpoints indicate a change of atti-
tude among consumers toward BB offers, and there is a capabil-
ity to add more breakpoints to it as long as the slope of them 
would decrease. This specific characteristic of the PWPF pro-
vides an opportunity to estimate the complex behaviour of con-
sumers with higher accuracy. Here, we can write the slopes of 
PWPF as:
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Where β β1 2qe qe,  denote the first and second interval slopes of the 
PWPF, respectively.

In the related studies, the most popular mechanism to approxi-
mate return rate has been the implementation of UPF. However, 
the PWPF is an extension of UPF and in terms of performance, 
dominates it without adding much complexity. Therefore, in this 
paper, we opted to utilize it instead. Now, to address the effect of 
other remaining factors on the product holder’s willingness to 
return, we can write the fuzzy PWPF as:
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Equation (3) shows that the chance of a return for each UP with a 
certain quality and age receiving a specific BB offer would not be 
a definite measure. This leeway adds flexibility to the model and 
reduces its predisposition to strictly predict the actual UPs’ return 
rate, which eventually mitigates its inaccuracy and unreliability.

The corresponding fuzzy discrete 
probability function

Before incorporating the fuzzy PWPF with the RL network, we 
point out a significant drawback in this process: the nonlinearity 
and complexity of the resultant model. Aras et al. (2008) pro-
posed a right triangular probability function (RTPF) instead of 
UPF to approximate the return rate of UPs. Although theoreti-
cally, RTPF proved to be more precise in the process of estimat-
ing the UPs’ return than UPF. Nonetheless, the intricacy of the 
outcome model forced the researchers to suffice to a restricted 
application and analysis of it. The reader should bear in mind that 
the whole idea of the RL network with BB offers is an integration 
of strategic and tactical decision-making processes, and the for-
mer is far more costly and critical. Therefore, we argue that if the 
process causes a high degree of complexity in the model, it could 
be very discouraging for practitioners to use it. Also, this paper 
seeks to develop a fuzzy RL model that could even further aggra-
vate the severity of this issue.

That is why here, we have decided to tackle this problem by 
implementing several adjustments onto the fuzzy PWPF to 
improve its implementation practicability by reducing its intrica-
cies. To achieve that, we take advantage of a linearization method 
introduced by Keyvanshokooh et al. (2013). This method con-
verts the PWPF into its fuzzy discrete probability function (DPF) 
with a reasonable degree of accuracy. Here, we initially modified 
the deterministic PWPF into its discrete counterpart for conveni-
ence in explanation and then addressed its fuzzy properties. 

P(BBqe)

BBqe

Y1qe Y2qe

β1qe(Y1qe)+ β2qe(BBqe-Y1qe)

β1qe(y1qe)

Inferior quality UP

Superior quality UP

Figure 1. The concave pieces-wise probability function.
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Therefore, we divide the predefined set of BB offer ( , ]0 2y qe  (i.e. 
the denominator of the PWPF), which under a deterministic 
assumption for each UP with a certain quality and age is a fixed 
measure into L  disjointed parts. Therefore, for each UP only 
several predetermined and a finite number of price levels can be 
allocated. Then, we allocate M  numbers of these levels to the 
first interval, which is ( , ]0 1y qe  and N  parts of it to the second 
interval, which is ( , ]y yqe qe1 2 . As mentioned, the slope of PWPF 
decreases after each breakpoint, so we have (N ≤ M) and 
{ }M N L+ = . These relationships mean the first interval of the 
DPF always would contain a higher number of offers than the 
others (see Figure 2).

Now, we can write the deterministic corresponding DPF as 
follows:

 P
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Where ρ τmqe nqe,  are two auxiliary binary variables associat-
ing with BB offers for the first and second intervals, respectively. 
Hence, if a price level receives 1 as its value, it would be the 
optimal BB offer and 0, otherwise. For each UP with a certain 
quality and age, only one offer can be allocated. To ensure this, 
we add the following constraint:

 ρmqe
m

q e= ∀∑ 1 ,  (5)

Furthermore, according to the PWPF attitudes, the second 
expression of equation (4) only can be activated when the first 
expression receives its highest value, and in other circum-
stances, it must be 0. Therefore, we also require the following 
constraint:

 τ ρnqe
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With a traceable transformation, we also can calculate the opti-
mal BB offers as follows:
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Under the fuzzy assumption, we acknowledge that the denomina-
tor of probability function, unlike the previous scenario, does not 
have a definite value. However, we point out that the value of it 
continuously alternates between two minimum and maximum 
limits. This characteristic enables us to find two possible upper 
and lower bounds for the UPs’ chance of return. Now, if we con-
sider α1  as a fuzzy number with trapezoidal fuzzy properties, we 
can write its four prominent crisp values as:

 α α α α α1 1
1
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1
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1
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Based on Liu and Liu (2002), the expected value (EV) of this 
fuzzy number can be written as follows:
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Consequently, Equation (10) helps us to calculate two extreme 
limits of the fuzzy DPF denominator and write them as follows:
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As mentioned in this paper, we decided to use the fuzzy CB 
methodology to cope with uncertainty. Our primary motivation 
for this decision is that the CB technique is based on the EV of 
fuzzy parameters, which firmly guarantees computational relia-
bility. Thus, the denominator EV is divided into M N+ , which 
gives us a specific distance between each feasible BB offer, and 
we call it υ .

EV EV EV EV EV( ) ( ) ( )( ( ) ( ))α α
υ1 1 2 2 1y y y

M N
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This measure enables us to calculate two consecutive BB offer 
levels for any crisp realization of the fuzzy denominator with the 
same increment as its EV denominator. Consequently, we dem-
onstrate that by dividing two maximum and minimum measures 
of the denominator onto υ , we can calculate two possible lower 
and upper bounds for M N+ , and write them as:
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Figure 2. The corresponding discrete probability function.
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Then, because BB offer levels cannot be a decimal number, we 
have to calculate the absolute values. Finally, we can formulate 
the ultimate corresponding fuzzy DPF as follows:
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It can be proven that equation (16) would have a higher or at least 
equal chance of the return for the same BB offer level in compari-
son to equation (17). Thus, the former demonstrates the possible 
upper chance of a return, and the latter illustrates the lower 
chance of it. Similarly, the fuzzy BB offers can be formulated as:
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Equation (20) indicates that the possible price cannot exceed 
its highest prominent crisp value for any specific BB offer. 
Therefore, equation (20) dominates equation (18) and render-
ing it redundant.

The proposed fuzzy RL network with 
BB offers

Here, we formulate an fuzzy mixed-integer non-linear program-
ming (FMINLP) model for the RL network with BB offers. The 

general framework of the model is shown in Figure 3. The RL 
network is based on a drop-off strategy and encompasses three 
stages: customer zones, collection centres and specialized facili-
ties (i.e. recycling centres, remanufacturing facilities and dis-
posal centres). The first step is to collect UPs from consumers in 
each collection centre. Then, UPs are sorted into different groups 
based on their condition. Then, they are shipped to recycling cen-
tres or remanufacturing facilities, or disposal centres. Besides 
that, the model assumes that the government pays a predeter-
mined subsidy to each collected UP and expects a minimum limit 
of the total existing UPs to be gathered. Finally, the proposed 
model goals are to determine the optimal number and location of 
collection centres, flow between specialized facilities while find-
ing the optimal amount of UPs that should be collected and BB 
prices.

Before presenting the model, several other essential assump-
tions in the model are listed in the below paragraph:

•• The potential locations of collection centres are known.
•• The number and location of specialized facilities are known.
•• Customer zones demand is dividable among different collec-

tion centres.
•• Each collection centre has a predetermined capacity for UPs 

with a certain quality and age.
•• Each quality level has a fuzzy predetermined portion of UPs 

that could be recycled or remanufactured or disposed of.

Indices

BB offer received Paid BB offer

Collection centers Shipping UPsInspection processCustomer zones

Recycling 
centers

Disposal
centers

Remanufacturing
facilities

Figure 3. The framework of the reverse logistics network.

≤

Set of customer zones I
Set of potential locations for 
establishing collection centres

J

Set of remanufacturing facilities R
Set of recycling centres O
Set of disposal centres U



Amirdadi et al. 7

Parameters

Fuzzy opening and operation cost of each collection centre Fj
Fuzzy unit transportation cost for each unit of UP from customer zones to collection centres C
Fuzzy unit transportation cost for each unit of UP from collection centres to remanufacturing facilities CR�

Fuzzy unit transportation cost for each unit of UP from collection centres to recycling centres CO�

Fuzzy unit transportation cost for each unit of UP from collection centres to disposal centres CU�

Distance between customer zone i and collection centre j dij
Distance between collection centre j and remanufacturing facility r djr
Distance between collection centre j and recycling centre o djo
Distance between collection centre j and disposal centre u dju
Fuzzy potential number of product holders in customer zone i with quality q and age e Tiqe
Capacity of collection centre j for UPs with quality q and age e Sjqe
Fuzzy portion of UPs with quality q which could be remanufactured PRq�

Fuzzy portion of UPs with quality q which could be recycled PO� q

Fuzzy portion of UPs with quality q which should be disposed of PU� q

Fuzzy value of remanufactured UP with quality q and age e MV� qe

Fuzzy value of recycled UP with quality q and age e RV� qe

Government subsidy allocated to each collected UP SB
A minimum rate for collecting UPs set by the government γ
A large number M

Decision variables

1, if collection centre j is opened and 0, otherwise X j
The number of collected UPs in collection centre j with quality q and age e from customer zone i Rijqe
The number of UPs shipped from collection centre j to remanufacturing facility r ZAjr
The number of UPs shipped from collection centre j to recycling centre o ZBjo
The number of UPs shipped from collection centre j to disposal centre u ZC ju

With the help of the above notations, the proposed model can be 
formulated as follows:

 

Min

R P F X

Cd R d Z

ijqe qe qe

eqji

j j
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ij ijqe
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( )BB BB
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+ +
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d ZB d
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jo jo ju ju
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CO CU ZC

PR( qq qe q qe

i

  MV PO RV SB+ +∑ )

 (21)

Subject to:

 R jijqe

eqi

j∑∑∑ ≤ ∀MX  (22)

 R P T i q eijqe

j

qe iqe∑ ≤ ∀( ) , ,BB 
 (23)

 ZA Rjr

rj

q ijqe

eqji

=∑∑ ∑∑∑∑ PR  (24)

 ZB Rjo q ijqe

eqjioj

= ∑∑∑∑∑∑ PO  (25)

 ZC PUju q ijqe

eqjiuj

R= ∑∑∑∑∑∑   (26)

 R X S j q eijqe

i

j jqe∑ ≤ ∀ , ,  (27)

 R Tijqe

eqji

iqe

eqi
∑∑∑∑ ∑∑∑≥ γ   (28)

 P q eqe( ) ,BB ≤ ∀1  (29)

 X jj ={ } ∀1 0,  (30)

R ZA ZB P i j q e r o uijqe jr jo ju qe qe, , , , ( ), , , , , , ,ZC BB BB ≥ ∀0  (31)

and constraints (5), (6), (16), (17), (19) and (20).
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Equation (21) denotes the objective function that contains 
two main parts: the system costs and revenues. The initial six 
expressions calculate the total cost of BB offers, the setup and 
operation cost of collection centres and transportation costs 
from customer zones to collection centres and specialized facili-
ties, respectively. The last expression is related to the system’s 
revenues, which come from government subsidies and a salvage 
value of recycled and remanufactured UPs. Afterward, con-
straint (22) warrants that each customer zone only is allocated to 
an already established collection centre. Constraint (23) ensures 
that the total amount of collected UPs would not exceed the 
whole potential number of them. Constraints (24)–(26) control 
the flow in the system from collection centres to specialized 
facilities. Constraint (27) controls the capacity of collection cen-
tres. Constraint (28) is related to the government threshold for 
the minimum acceptable collection rate for the system. 
Constraint (29) verifies that the chance of a return for any BB 
offer would not exceed 100%. Constraints (30) and (31) indicate 
the model variables type and their non-negativity. The rest of the 
constraints are related to the BB offer policy that previously 
discussed.

Now, for simplification of the objective function; we can 
rewrite the first expression of it, which was associated with the 
total cost of BB offers as follows:
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Equation (35) shows the traceable equivalent of equation (32). 
From equations (33) and (34), we can discover that for all of 
( )m L N< −  the τnqe  would be zero, which nullifies its whole expres-
sion. Therefore, this expression is operative when ( )m L N≥ − . 
Also, in the first and second expressions of equation (35), two 
bounded integer variables are multiplied. This condition also can 
be linearized using the method mentioned earlier (Keyvanshokooh 
et al., 2013). Undeniably, this process would expand the compu-
tational size of the model but still creates fewer intricacies analo-
gous to alternative nonlinear options. Finally, in section 5, we 
examine this aspect of the model by applying it to the case study.

The fuzzy CB chance constraint 
solution

The fuzzy linear mathematical modelling method was initially 
introduced by Zimmermann (1978). In the problem at hand, the 
state of uncertainty originates from two epistemic sources of cus-
tomary parameters (e.g. the potential number of UPs in customer 
zones) and the mechanism of estimating UPs’ return rate. Hence, 
we opted to employed fuzzy CB chance constraints programming 
in this paper. The renowned pioneers in this field were Liu and 
Liu (2002). They highlighted four main reasons to demonstrate 
this approach superiority compared to the other possibility 
and necessity techniques. Firstly, as touched upon, CB is founded 
on the EV concept, making it firmly reliable. Secondly, this 
approach, unlike the other two necessity and possibility methods, 
is self-dual. This feature means that if an event under the CB 
approach receives 1 as its confidence level, it assures that the 
event would happen, which is not the case in other methods. 
Thirdly, it can cope with both triangular and trapezoidal fuzzy 
numbers. Lastly, this method ensures that a certain level of fuzzy 
constraints confidence levels would be met in any scenario for a 
mathematical model. Over the years, the fuzzy credibility chance 
constraint method has been applied and improved by many schol-
ars in similar areas (Li et al., 2013; Xu et al., 2017). However, in 
this paper, we adopted a specific fuzzy CB approach developed 
by Zhu and Zhang (2009), which its implementation process does 
not add additional auxiliary constraints to the model. Together, 
we suggest this methodology would be hugely beneficial, given 
the nature of the proposed model that involves a combination of 
strategic and tactical decision-making.

Now, if we assume ψ  as a fuzzy variable. Then, we can 
write it trapezoidal fuzzy crisp equivalent as ( , , , )ψ ψ ψ ψ1 2 3 4

. 
According to Liu and Liu (2002), its membership function can 
be written as:
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 (36)
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In equation (36) k ≥ 0  and represents an event confidence level. 
To calculate the credibility value of this event, Liu and Liu (2002) 
proven the following formula:

 Cr   ψ ψ ψ≥{ } = ≥{ }+ ≥{ }k Possibilty k Necessity k
1

2
( )  (37)

In the next step, we can write the credibility measure of 
ψ ≥ k , ψ ≤ k  as follows:

 Cr ψ

ψ

ψ
ψ ψ

ψ ψ

ψ ψ

ψ ψ
ψ

≤{ } =

−∞ < ≤

−
−

< ≤

< ≤

− +
−

k

k

k
k

k

k

0

2

1

2

2

2

1

1

2 1
1 2

2 3

3 4

4

( )

( ψψ
ψ ψ

ψ

3
3 4

41

)
< ≤

< < +∞



















k

k

 (38)

 Cr ψ

ψ

ψ ψ
ψ ψ

ψ ψ

ψ ψ

ψ
ψ

≥{ } =

−∞ < ≤

− −
−

< ≤

< ≤

−
−

k

k

k
k

k

k

1

2

2

1

2

2

1

2 1

2 1
1 2

2 3

4

4

( )

( ψψ
ψ ψ

ψ

3
3 4

40

)
< ≤

< < +∞



















k

k

 (39)

Consequently, Zhu and Zhang (2009) demonstrated that if ψ  is 
a fuzzy trapezoidal variable and ( . )λ ≥ 0 5  then, we can write its 
credibility measure as follows:

 Cr ψ λ λ ψ λ ψ≤{ } ≥ ⇔ ≥ − + −k k ( ) ( )2 2 2 13 4  (40)

 Cr ψ λ λ ψ λ ψ≥{ } ≥ ⇔ ≤ − + −k k ( ) ( )2 1 2 21 2  (41)

Finally, with the help of equations (10), (40) and (41), and 
the α-critical cuts method explored by Liu (2004), the linear 
crisp traceable counterpart of the FMINLP model could be for-
mulated as:
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 ρ τmqe nqe m n q e, , , , ,={ } ∀1 0  (52)

 λ δ σi q qe i q e, , . , ,≥ ∀0 5  (53)

And constraints (5), (6), (22), (27) and (29)–(31).
The three variables λ δ σi q qe. .  denote the credibility level of 

constraints. The decision-maker determines their values. In some 
of the papers for simplicity of work, their values are assumed to 
be identical (Hatefi et al., 2015; Pishvaee et al., 2012).

Case study results

In order to test our model validity and utility, we decided to apply 
it to a comprehensive case study and analyse responses from it. 
We took advantage of the software GAMS 24.0.1 and its CLPEX 
solver application and a computer with a configuration of Core i7 
processor, Ram 16 GB and Windows 10 operator for computa-
tional purposes. The case that we investigate here is related to a 
waste management company in the Iran city of Mashhad. The 
city municipal governing body has recently adopted a long-term 
plan to increase its capacity to recover and recycle or adequately 
scarp e-waste generated by its citizens. To achieve this goal, they 
have decided to employ RL companies to embark on this task on 
their behalf. Furthermore, to encourage competition apart from 
subsidies paid for each collected UPs, annually substantial 
bonuses would be granted to the most successful RL companies.

Here, we have decided to investigate a RL company eager to 
grasp this opportunity. The current framework of this RL com-
pany is a drop-off system; therefore, it requires multiple collec-
tion centres spread across the city for consumers to deliver UPs. 
The company currently collects all types of waste but plans to 
focus on e-waste, and if necessary, accommodate its system (e.g. 
expand its network and bring new equipment). Additionally, it 
intends to categorize collected UPs into three groups of cell 
phones, computers (e.g. monitors and laptops) and household 
appliances (e.g. refrigerators and television). Besides that, it con-
siders several predetermined weight groups to classify the UPs; 
for example, most of the top freezer refrigerators are assumed to 
have a similar weight range.

Moreover, the company entertains the idea of allocating BB 
offers based on their UPs type, condition and weight. Its network 
has been established in the city of Mashhad and assumes each 
district as a customer zone. The detail of the city’s geography is 

depicted in Figure 4. Currently, 13 customer zones and five col-
lection centres are in service. The company can afford to estab-
lish four additional collection centres. In the city of Mashhad, 
two remanufacturing facilities, one recycling centre and four dis-
posal centres providing services for e-waste purposes. Now, with 
the help of masked data available to us, we aim to evaluate the 
performance of the RL company under the application of the pro-
posed model.

Notably, to employ the BB policy due to three different types 
of UPs, we need to approximate the return rate using three dis-
tinct DPF (in terms of a coefficient related to the type of UPs). 
Also, we associate the UPs’ condition and weight category to the 
two factors of quality and age, respectively. This process means 
that for determining the marginal probability of acceptance 
instead of UPs’ age, their weight range has been considered. 
Additionally, the effect of other less influential factors is 
addressed through the fuzzy return rate assumption. For instance, 
often, the process of returning cell phones in comparison to tele-
vision sets seems more convenient. Here, for each type of UPs, 
three quality and weight levels are considered. Without loss of 
generality, we assumed that for both quality and weight, the 
higher-levels have superior salvage value than lower-level ones.

Afterward, the model has been solved (all the costs are based 
on Iran’s official currency Toman). For the sake of convenience, 
the same confidence level has been considered for all of the fuzzy 
constraints. Results of the total cost of the system and the total 
number of collection centres are shown in Figure 5. We can see 
that each time the minimum satisfaction level of fuzzy constraints 
has gone up, the system’s total cost has risen, but the number of 
collection centres fluctuated. Furthermore, we mentioned three 
distinct return functions in the model for three types of UP. 
Notably, Type 3 UPs (i.e. household appliances) are expected to 
comprise more than 72% of return flow in this investigated RL 
company. Here, we focus on the results of Type 3 and precisely 
its total collected number and the optimal rate of the collection 
(see Figures 6 and 7).

In all of the scenarios for the confidence levels, the total 
amount of collected UPs has been half of the existing ones due to 
an obligation related to the government’s minimum acceptable 
collection rate. From the charts, it can be inferred that the whole 
collection process is costly for the company (mainly due to inef-
ficient performance of recycling and remanufacturing centres 
leading to low salvage value for even higher-quality UPs and also 
a limited available number of them). In these circumstances, the 

 ZB Rjo q q q q ijqe

eqjioj

≤ − + −∑∑∑∑∑∑ (( ) ( ) )2 1 2 21 2δ δPO PO  (49)

  ZC PU PUju q q q q ijqe

eqjiuj
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eqi
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importance of the appropriate BB offer policy to reduce unneces-
sary costs becomes more crucial because the municipal officials 
must recognize the RL company to receive extra bonuses to cover 
its expenses.

Moreover, we point out that increasing the system confidence 
levels causes a gradual prioritization in collecting cheaper UPs 

that demand lower BB offers. This matter is less noticeable in the 
graph of return rate given that, in reality, the potential numbers of 
different quality and weight levels of UPs do not exactly match 
each other. However, this trend is more discernible in the graph 
of the total number of collected UPs where we find out that the 
number of UPs with quality 3 and age 3 (i.e. the highest value 

Figure 4. The map of the city of Mashhad districts.
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category) gathered when all confidence levels were 0.5 is 968. 
On the other hand, in the worst-case scenario where confidence 
levels are 1, the measure of the same variable is 843. Furthermore, 
the model solving process time took 137 minutes and 48 seconds 
and considered a year-long planning period; it does sound viable 
and practicable. Finally, it is safe to say that the proposed model 
greatly empowers the RL company by enhancing its capability to 
collect more efficiently.

Computational experiment

To better understand the model behaviour, we decided to apply it 
to an experiment with the same parameters from the previous 
case study, except eliminating the obligation to collect a mini-
mum 50% rate of existing UPs. However, we still assume that the 
subsidy for each collected would be given to the company. 
Notably, if we do not include the subsidy, no collection would be 
made by the system. The results are shown in Figures 8 and 9. As 

can be seen, in such circumstances, it requires transforming the 
model into a maximizing profits problem, which enables the 
company to freely collect as many UPs that would be profitable 
for it. From Figure 9, we can deduce that even with the presence 
of subsidy, the potential profit levels are low compared to the 
scale of actual case study total costs.

Besides that, the inefficiency in the collection process causes 
the model to significantly lower the overall optimal collection rate 
and focus more on inferior quality UPs (e.g. for the confidence 
level of 1, the optimal collection rate has downgraded from 50% 
in the actual case to less than 14% in the experiment). The rea-
son behind this outcome derives from the lack of infrastructure 
and advanced recycling facilities, which renders the difference 
between superior quality and inferior quality salvage values 
(recycling or remanufacturing) so low that it does not eclipse the 
difference between their optimal BB offer demands, creating a 
situation where the collection of lowest quality UPs as the best 
strategy. This experiment also demonstrates the proposed model’s 
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capability to deal with problems in which the RL network might 
be a profitable endeavour. Apart from that, both the actual case 
study and the subsequent experiment highlight that the product 
recovery in Mashhad is very costly in current circumstances and 
can only be viable for any company if they receive substantial 
financial support. Therefore, this matter draws attention to more 
investment in new and advanced infrastructure for product recov-
ery purposes in the city.

Sensitivity analysis

This section analyses the model’s two critical parameters and 
examines its attitude further. Hence, we evaluate the two effects 
of the number of BB offer levels (i.e. L ) and the first slope of 
fuzzy DPF (i.e. β1qe ) on the model responses, respectively. The 
graph in Figure 10 indicates that if we increase BB offer levels 
(i.e. softening the BB offer restriction in the model), the 

system’s total cost decreases. However, we should notice that 
increasing BB levels from 12 to 30 results in less than 2% 
improvement, demonstrating the linearization method relative 
precision. Afterward, Figure 11 displays an increase from 0.57 
to 0.73 in the EV of the first slope of fuzzy DPF, leading to a 
roughly 10% boost in the system’s total cost. This connection 
proves the model validity because if we elevate the slope of 
fuzzy DPF, the overall chance of acceptance will go up, and ulti-
mately the collection process would be less costly and demon-
strates the significant impact of the inclusion of BB policy in the 
model.

Comparative analysis: The proposed 
model versus a deterministic approach

Finally, to evaluate the efficiency of the fuzzy CB approach in the 
model, we use a technique introduced by Pishvaee et al. (2012). 
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This way, we attempt to run an analogy between the proposed 
model and its corresponding deterministic scenario. Hence, sev-
eral random-realizations (RR) for the fuzzy parameters of the 
model are generated. If we consider χ

^

 as a fuzzy trapezoidal 
number with four prominent values of ( . . . )χ χ χ χ1 2 3 4

. Any RR 
of χ  must be between its two upper and lower bounds 
χ χ χRR = [ , ]1 4

. Furthermore, an essential element in this tech-
nique is that in each tests all the variables would receive new 
values except those associated with the strategic decisions in 
each iteration. Therefore, we assume the locations of collection 
centres to be fixed in all of the RR iterations.

The procedure above is carried out on the model by generat-
ing 10 RRs. The results are shown in Table 2. The average and 
standard deviation of the system’s total cost in the deterministic 
approach are considerably higher than the proposed fuzzy CB 
model. Additionally, from Figure 12, it can be discovered that the 
cost of the fuzzy CB model dominates its deterministic approach 
affirming its superiority in process.
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Conclusions

This paper investigated an effective way to handle e-waste gener-

ated in urban areas by introducing the RL network with BB offers 

under uncertain conditions. We argued that e-waste generally 

might not have an acceptable return rate without the presence of 

an incentive offer. That is why including a fair offer in the RL 

network seemed necessary to convince product holders to return. 

On top of that, we discussed that a possible approach for allocat-

ing BB offers is to associate those offers with UPs’ conditions at 

the time of return. However, we found out that this matter could 

lead to a false prediction of consumers’ behaviour patterns and 

imprecise estimation of the return rate in reality. That is why we 

attempted to address other factors on product holder decisions 

regarding returning UP. Thus, we proposed an FMINLP model to 

deal with epistemic uncertainty in both parameters of the RL 

model and UPs’ chance of return. Afterward, we described how 
by using fuzzy PWPF for a specific BB offer, an estimation of the 
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return rate of UP assuming the quality, age and other influential 
criteria could be obtained.

Moreover, a linearization method is conducted on the PWPF, 
transforming it into a DPF. Then, with the help of the fuzzy CB 
method and the EV concept, the fuzzy DPF has been converted 
to its crisp correspondence. Finally, an extensive case study 
related to the RL company in Mashhad, Iran, was applied to the 
model in which the results and analysis underscored its utility 
and advantages.

For future efforts, we acknowledge that the concept of the RL 
network integration with BB offers has been explored relatively 
well in recent years; however, we also point out that due to the 
growing stream of waste production, there are still many cases 
that might have been less scrutinized or wholly ignored. Similar 
to this study, one could investigate the RL network with incentive 
offers, which established its collection centres. Nevertheless, a 
significant difference could be that the producer wants to collect 
UPs by merging several of its sale stores with collection sites 

(e.g. mobile companies). Here, there is an opportunity to be less 
occupied with network planning and explore incentive offer pol-
icy in greater detail. Furthermore, we suggest that adding more 
dimensions to the development of an e-waste RL model could be 
promising and even necessary in the collection process of spe-
cific UPs. We remark that the RL company could control its col-
lection rate more purposefully through a dynamic time period 
planning strategy. For instance, consumers often substantially 
increase their spending on replacing their UPs with new com-
modities around holidays (e.g. New Year); thus, a lower BB offer 
might be enough to satisfy their reservation in this particular 
period. Lastly, we note that the application of this approach is 
extensive in current circumstances, and simply many parts of it 
yet to be thoroughly comprehended.
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Table 2. Results of comparative analysis.

RR number The objective function (in million tons)

Deterministic 
model

Proposed model with 
0.5 confidence levels

Proposed model with 
0.7 confidence levels

1 6284.55 5398.41 6083.41
2 6351.52 5408.72 6041.93
3 6199.64 5434.96 6095.61
4 6403.72 5460.33 6104.66
5 6512.85 5498.76 6127.58
6 6217.73 5471.79 6039.14
7 6513.90 5470.26 6074.19
8 6570.52 5447.35 6051.37
9 6603.27 5482.83 6100.72
10 6393.25 5470.19 6062.85
Average 6405.01 5460.77 6078.15
Standard deviation 143.35 29.42 32.09
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