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Abstract
Purpose – In this paper, the authors aim to investigate the relationship between buyback policy and the
potential number of used products that could be collected by developing a robust fuzzy reverse logistics
network.
Design/methodology/approach – In this approach, the authors seek to determine the amount of
buyback based on the condition of used products at the time of return. In this process, the authors also take
into account that apart from the condition of used products, other factors exist that the actual return rate could
be dependent on them. This matter propelled us to make a novel distinction between the probability of return
estimated from appropriate buybacks offered to consumers, and the actual return rate of used products using
fuzzy mathematical methods. Besides that, a compatible robust fuzzy optimization method has been
implemented on the model to deal with uncertain properties of it and simultaneously fortifying its responses
against any possible effect of return rate fluctuation.
Findings – To analyze and evaluate the model performance, the authors decided to apply a series of
exhaustive randomly generated experiments onto it. Also, the authors introduced a Lagrangian relaxation
solution methodology to facilitate and improve the solving process of the model. Then, the evaluation of the
results enabled us to demonstrate the model validity, and underscore its utility to deal with problems with
more sophisticated used product collection process that practitioners tend to encounter in the real-world
circumstances.
Originality/value – This study suggests a novel way to design the return rate of used products in a
reverse logistics network with buyback offers through a complete set of factors affecting it. Furthermore, the
procedure of developing the model encompasses several important aspects that significantly decrease its
complexity and improve its applicability.

Keywords Reverse logistics, Buyback offer, Robust optimization, Flexible constraint programming,
Lagrangian relaxation, Logistics, Optimization, Allocation, Mathematical programming, Fuzzy

Paper type Research paper

1. Introduction
Although, for many years, products have been discarded after reaching their end of cycles,
the idea of reverse logistics (RL) started to draw attention just from the beginning of the
1990s. In recent years, as the result of globalization and industrialization, worldwide
production capacity has increased enormously, leading to a surge in the potential number of
used products (Asees Awan and Ali, 2019). In this regard, a survey conducted by a
collaboration between the International Solid Waste Association (ISWA), United Nation
University (UNU) and International Telecommunication Union (ITU) showed that, in 2016,
across the world, a massive amount of 44.7 million metric tons of electronic waste were
generated (Baldé et al., 2017). This number is equivalent to 6.1 kg per inhabitant. Moreover,
from 2001 up to 2014, in the USA alone, roughly an average of 12.8 million automobiles
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annually had been scrapped, which almost equals 13 million tons of steel (National
Transportation Statistics, 2018). Therefore, product recovery has become extremely difficult
to ignore in the process of production. According to the Council of Logistics Management
(CLM), RL can be defined as follows:

The process of planning, implementing, and controlling the efficient, cost-effective flow of raw
materials, in-process inventory, finished goods, and related information from the point of
consumption to the point of origin to recapture value or proper disposal (Rogers and Tibben-
Lembke, 1998).

Under this description, every RL network encompasses several important stages.
Fleischmann et al. (2001) defined those as the collection of used products, sorting and
organizing them and processing them based on their conditions. These processes
specifically could be recycling, repairing, remanufacturing, dissembling of used products,
green strategies for disposing of them and, finally, their redistribution.

Furthermore, the standout purposes behind endeavors in the RL field could be identified
as the following three phenomena. The first one could be associated with environmental
turbulence and the high rate of waste generated as the result of mass production. This
problem has become so acute that in many countries, governments enacted laws to ensure
manufacturers and producers significantly reduce their products’ harmful impact on the
environment. A most renowned example of such legislation is the Waste Electrical and
Electronic Equipment (WEEE) set by European Nations in 2003, which enforces all
electronic manufactures that have a market in those countries to burden the responsibility of
recovery of their used products (Dowlatshahi, 2010). Second, it has been shown that an
efficient RL network could provide an opening for a cost-saving effort in many industries.
Based on numerous studies by scholars, it was discovered that an RL network
implementation could be an opportunity rather than an obligation for producers to decrease
their products’ cost through recovery and recycling of used products (Ravi Shankar, 2017).
Similarly, among some industries, the economic advantages of an RL network proved to be
so significant that they voluntarily have decided to integrate their direct and reverse
networks, which in turn leads to a closed-loop supply chain (CLSC) network (Östlin et al.,
2009; Farrokhi-Asl et al., 2019). This coordination of reverse and direct logistics network
yields to overall higher production efficiency. Finally, in recent years, there has been a
growing level of consumer awareness and public consciousness regarding the environment
(Tibben-Lembke and Rogers, 2002). This matter created an inclination from consumers
toward eco-friendly commodities, which encouraged companies to produce a type of product
accommodated to fulfill that particular demand (Chen et al., 2018).

Although the concept of RL network implementation is hugely advantageous, it also
inherently contains several challenging issues (Peidro et al., 2009). In this regard, an
important issue is how to deal with uncertainty in the process of collecting used products
(i.e. return flow). Uncertainty exists in both types of direct logistics and RL, but it could be
more critical in RL because of the unpredictable nature of return flow, the higher number of
external elements affecting it and the unavailability of solid databases in comparison to
direct flow (Guide et al., 2003). Besides that, in recent years, the share of valuable and
durable products (e.g. electronic devices) in the market has significantly increased, which
has spurred to an expectation from product holders to receive some type of compensation to
give up their ownerships (i.e. their reservation); together, they compounded the volatility
and difficulty of collection process (John et al., 2018). The importance of this issue becomes
more evident when we realize that the reliability of responses acquired from any RL
mathematical model highly hinges on the precision from which the return rate would be
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estimated (Wojanowski et al., 2007). Consequently, previous studies proposed various
methodologies such as deposit-refund, trade-in rebate, product exchange and buyback offer
polices to deal with this problem. They mainly concentrated on developing models that
enable the company to control the collection rate at an appropriate limit while optimizing its
expenses. This matter derives from the fact that whether the government legislation or
economic opportunities or even both would lead to a product recovery effort, the system
inevitably requires to collect a certain portion of total used products among consumers.

Without loss of generality, they suggested the process of collection of used products; companies
strive to reduce their cost whereas the product holders seek more appealing incentives. This
correlation has made the buyback offer policy the most prevalent and effective strategy in the
related papers. Consequently, researchers have considered this correlation as themodule to estimate
the probability of return of used products (Guide et al., 2003). Now, an important questionmay arise
that “why not allocate a fixed offer to all of the used products?” However, in this way, the lowest
quality level of used products would be collected more than other levels of quality, which creates
unnecessary expenses for a company (Aras et al., 2008). Thus, we understand that to develop a
functioning RL network, it is necessary to use a proper procedure to allocate buyback offers to
consumers. Thus far, the majority of related researches suggested that factors such as quality of
used products or distance of consumers from the closest collection center should be considered to
estimate the return rate (Aras and Aksen, 2008; Dutta et al., 2016). Although we acknowledge that
for the collection of used products, their condition at the time of return plays the highest meaningful
role in determining appropriate buyback offers. However, we argue that, in reality, there are other
factors, such as seasonality of the product or easiness of product transportation or warranty
services, whose impact on the product holder’s willingness to return cannot be ignored. This is a
critical shortfall among the relevant literature. Hence, our main motivation in this paper is to
address this issue. Here, we seek to develop an RL model in which the return rate would be
approximated based on amore comprehensive set of factors. Hence, we decided to divide the factors
into two groups on product-based ones (i.e. quality and age) and externally originated ones (e.g.
warranty period). Then, we use a combination of a fuzzy flexible constraint method and a specific
linearization procedure to implement this configuration onto our proposedRLmodel. Afterward, we
opted to use a specific robust optimization in the model development process to simultaneously
fortify its responses against the return rate fluctuation, and calculate the confidence levels of fuzzy
constraints more effectively. Finally, a Lagrangian relaxation method has been introduced to help
us solving larger scale problems for themodel.

In the next section, we conduct a review of the literature concerning product recovery
with emphasis on RL networks with buyback offer. In Section 3, we present the problem
description. In Section 4, we demonstrate the mechanism for allocating buyback offer to
product holders. Section 5 details the schema of the proposed RL model. In Section 6, we
explain the process of incorporating the effect of externally originated factors into the model,
using the fuzzy flexible constraint technique. In Section 7, we discuss the robust
optimization role in model development and its procedural implementation. Section 8
encompasses the Lagrangian relaxation solution methodology. In Section 9, we evaluate the
model validity and effectiveness by running several exhaustive experiments. Finally,
Section 10 includes our conclusion about the proposed model, and our recommendation
regarding some possible directions for future researches.

2. Literature review
To date, the mainstream of endeavors in the RL field mostly concentrated on determining
the location of collection centers, their optimal numbers and their capacity, allocating flow
between specialized facilities (e.g. recycling centers, disposal centers, etc.) using
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mixed-integer/continuous linear/non-linear mathematical modeling. The range of these
efforts started from simple locating collection centers with unlimited capacity and continues
to more advanced stochastic multi-stage models with limited capacity or multi-commodity
ones. Furthermore, the prevalent methods to solve NP-hard and non-linear models were
heuristic algorithms, metaheuristic algorithms and strong combinational optimization
(Pishvaee and Torabi, 2010). Some exhaustive RL review papers are presented in Govindan
and Soleimani (2017) and Prajapati et al. (2018).

The idea of buyback offer inclusion in an RL network was introduced for the first time by
Klausner and Hendrickson (2000). They developed a framework to obtain the optimal amount
of buyback and each unit cost of the RL process. This model only focused on the cost of the RL
network and did not consider the product holder’s willingness to return. Guide and Van
Wassenhove (2001) were the first researchers who emphasized the importance of an incentive
role in recovering used products. Guide et al. (2003) developed a model to obtain the optimal
amount of buyback and the selling price of the recovered components for a phone company.
Mukhopadhyay and Setoputro (2004) studied an e-business market, where customers, because
of the condition of sale, might be alert toward the manufacturer return policy. They developed a
model to determine optimal prices and the return policy with setting parameters heeding to the
market details. Ray et al. (2005) decided to find an optimal price for durable and remanufacture-
able products. They suggested that a trade-in rebate policy implemented by the company could
persuade customers to replace their old products with new ones. They developed three
scenarios in which incentive offers could be dependent on the age of products or independent of
them or entirely considered as an uniform offer for all of the customers. Aras and Aksen (2008)
proposed non-linear mixed-integer programming with a drop-off policy to locate collection
centers, simultaneously determining the optimal amount of buyback offer. They used a
uniform probability function to approximate the rate of return.

Aras et al. (2008) continued their exploration in this area. They proposed a continuous
right triangular probability function to approximate the attitude of product holders toward
incentive offers. They designed a mathematical model for locating collection centers and
collecting used products using a pick-up policy with capacitated vehicles. Vadde et al. (2010)
proposed a method to calculate the optimal price for reusable and recoverable parts of used
products. They also addressed the uncertainty nature of the product recovery process by
considering several scenarios in which product recovery facilities passively accept return
products or passively collect them. In 2016, Dutta et al. studied a CLSC with three-way
recovery methods. The goal of this model was to find optimal manufacturing,
remanufacturing and recycling quantities. The most notable innovation of this paper was a
piece-wise concave function, which was used to approximate the probability of return
products based on their quality and age. Fattahi and Govindan (2017) developed an
integrated direct/RL network with a buyback policy over a planning period. They
considered demand in both reverse and forward flow to be stochastic.

However, a 2014 paper by Tekin Temur et al. highlighted an important fact that in the
collection process of used products rate of return not only depends on traditionally more
investigated factors (e.g. quality, age, and distance), but also a host of other less examined
ones. A complete list of these factors is shown in Table 1. As we can see, these factors are
diverse and have different sources. Several are associated with the promotion policies of
companies themselves, some are contributed to government legislations and others are
related to used products condition and features. Here, we argue that previous studies in RL
networks with buyback policy are not consistent enough. Thus far, researchers either solely
investigated a buyback offer mechanism without incorporating it with an RL network, or
they explored this integration while considering only a limited number of factors in their
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approach for estimating the return rate. Notably, they were mostly concerned with the
convenience and net value of companies rather than a more realistic description of product
holders’ willingness to return. Therefore, we admit that the inclusion of buyback offer
concept in RL networks has improved the resultant models compared to those without it, but
a lack of broader perspective still restricted their efforts.

Here, we once again stress the importance of addressing uncertainty in an RL
mathematical model design. As Luhandjula (2006) pointed out, a deterministic approach in
the process of RL mathematical modeling could lead to an ill-defined and incorrect
description of the real-world event. Now, the reader should bear in mind that the
aforementioned problem contains a high number of factors with different degrees of effect
on the product holders’ willingness to return or not. Therefore, it is very difficult to exactly
define and predict such vague and ambiguous behavior. In such circumstances where a
specific parameter behavior exhibits a completely unpredictable trend, the fuzzy
mathematical programming method has often proved to be an effective resolution
(Mula et al., 2006; Simangunsong et al., 2012; Sadjadi et al., 2019).

Hence, in this paper, we decided to address the intricacies of considering various factors
affecting the return rate in an RL model by implementing a fuzzy flexible constraint
programming method. This approach enables us to control the collection process by
allocating buyback offers dependent on the condition of used products at the time of return
while considering the effect of other externally originated factors. To do so, we define the
correlation between the approximate amount of return and the actual rate of return with a
certain degree of leeway. Additionally, we attempt to determine the extent of externally
originated factors’ effect onto the model using a specific robust optimization methodology.
In the next section, the details of this process are discussed.

3. Problem description
In this paper, we follow two main objectives to develop our model. First, we maintain the
solid assumption of approximating the probability of return using buyback offers

Table 1.
Factors affecting the
return rate of used

products

Micro factors (firm based) Firm strategy (Mukhopadhyay and Setoputro, 2004; Klausner and
Hendrickson, 2000)
Advertisements (Klausner and Hendrickson, 2000)
Giving information to customers (Hess and Mayhew, 1997)
Ability of the company to repair products (Thierry et al., 1995)
Warranty period (Thierry et al., 1995)

Product-
based

Condition (i.e. quality
and age)

Life cycle point of product (Tibben-Lembke, 2002)
Economic life of the product (Östlin et al., 2009)
Rate of defects (Gomez et al., 2002)
e-Waste quantity (Managers)

Features Complexity of product modularity (Östlin et al., 2009)
Seasonality of product (Tibben-Lembke, 2002)
Product initial price (Hess and Mayhew, 1997)
Sales amount (Gomez et al., 2002; Tibben-Lembke, 2002)
Easiness of product returns (Klausner and Hendrickson, 2000)

Macro factors (government and
socioeconomic)

Legal enforcement (Koster et al., 2002)
Investment on the environment (Managers)
Customer segment (De Brito, 2004)
Education status (WEEE, 2003)
Population and population density (WEEE, 2003; Hanafi et al., 2007)
Income (WEEE, 2003)
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dependent on the condition of used products at the time of return; however, unlike other
researches, we do not assume the resultant estimation as the actual return rate in the model.
Here, we decide to distinguish between the chance of the return for buyback offers and the
actual return rate of used products. With the help of this distinction, we attempt to address
the effect of other factors onto the collection process.

Second, in the procedure of developing the model, we propose a series of particular
techniques such as modification of the return probability function and implementing a
robust fuzzy optimization that not only provides us an accurate description of the real-world
problem circumstances, but also would be highly compatible with each other to significantly
reduce the complexity of the outcome model. Here, we highlight our methodology and each
step attribution to develop an RL network with buyback offers accommodated to resolve the
aforementioned problem:

� Initially, we introduce a piece-wise probability function that provides us the
platform to determine the return rate for each buyback offer based on two factors of
quality and age of used products. Then, we modify it to its corresponding discrete
function. This adjustment makes it more compatible with the following integration
with the RL network.

� In the next step, we present a fuzzy mixed-integer programming model for an RL
network design with three stages and a drop-off policy. The model’s overall goals
are to find the location and number of collection centers, flow between specialized
facilities, the optimal amount of buyback offers and the number of used products
that should be collected.

� In the next step, the fuzzy relation between the actual return rate and the
approximated chance of return has been discussed. Using the fuzzy flexible
programming method, we managed to define two possible conditions of shortage
and surplus, and convert the model into its crisp counterpart.

� Then, we use a compatible robust fuzzy optimization approach for enhancing the
performance and solving capability of the model. This procedure enables us to find
the optimal amount of membership function of fuzzy parameters of the model by
adding two penalties of risk and deficiency to the objective function.

� Afterward, a Lagrangian relaxation method has been implemented on the model to
deal with solving the difficulty of large-scale problems that a commercial solver
might not be able to handle.

� Finally, we applied the model onto several extensive numerical experiments. The
evaluation and analysis of the results proved the model validity and effectiveness.

4. Rate of return in the presence of buyback offers
In our approach, we decided to separate the effect of influential factors on the return rate into
two categories of product-based and externally originated ones. The first category factors
encompass quality and age levels (i.e. product-based factors) of used products, and have
been approximated by a piece-wise concave probability function (Dutta et al., 2016). Based
on related papers, we point out the quality and age of used products as the two factors with
the highest degree of importance and practicability. Additionally, as we mentioned, RL
networks often collect used products and sort them based on their condition. Thus, the
assumption of classifying the collected used products into different predefined levels of
quality and age is highly justifiable.
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Moreover, if we assume that a collecting company uses a buyback policy to prevent
unnecessary expenses, it requires to offer consumers a reasonable price. With the help of
this relationship between the amount of buyback offer and the condition of the used product
at the time of return, we would be able to somewhat anticipate consumers’ behavior and
make a preliminary estimation of the probability of return. However, the actual amount of
returned used products could vary from that initial estimation because of the effect of the
second category factors (i.e. externally originated factors). That is why, we initially
approximate the probability of return for each used product with certain quality and age,
and then incorporate the effect of second category factors onto the model using the flexible
constraint method. Here, we consider the effect of second category factors as an uncertain
value, which would be determined by the opinion of experts causing two possible states of
shortage or surplus in themodel.

4.1 Piece-wise probability return function
We stated that the product holder’s decision regarding the returning of a used product
depends on the amount of buyback they would be offered. Then, if we assume Wqk is the
amount of buyback, which is going to be offered to a used product with the quality of q and
age of k at the time of return, Dutta et al. (2016) suggested that a consumer decision pattern
regarding his/her chance of accepting that offer could be approximated by the following
piece-wise probability function:

Pqk ¼

a1Wqk

a1x1qk þ a2 x2qk � x1qkð Þ if 0#Wqk < x1qk

a1x1qk þ a2 Wqk � x1qk
� �

a1x1qk þ a2 x2qk � x1qkð Þ if x1qk#Wqk < x2qk

1 if Wqk � x2qk

8>>>>><>>>>>:
(1)

Pqk is the probability of return when a buyback price Wqk offered to a used product with q
quality and k age. x1qk and x2qk are two breakpoints demonstrating product holders’ change
of attitude toward buyback prices (see Figure 1). This function can also receive more than
two breakpoints as long as the slope of it is decreasing. a1 and a2 are two fixed coefficients,
and (a1# a2). If we assume:

a1

a1x1qk þ a2 x2qk � x1qkð Þ ¼ p 1qk

a2

a1x1qk þ a2 x2qk � x1qkð Þ ¼ p 2qk

8>><>>: (2)

where p1qk and p 2qk denote the marginal probabilities of acceptance. This means for the
first interval (0, p 1qk), marginal probability of return is p 1qk, and for the second interval
(x1qk, x2qk), this measure is equal to p 2qk. The quantity of p 1qk, p 2qk depends on the quality
and age level of used products. It should be noted that the amount of a1, a2 is associated
with the type of used products. In Figure 1, the two graphs of the probability function are
associated with two different quality levels of a used product. The parameter x2qk
demonstrates the minimum price that the chance of return is about 100%. Therefore, we
should not offer buyback prices higher than x2qk, because it would not improve the
probability of return, and only increases expenses of the collection.
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It also can be seen that for a fixed buyback offer, the used product with higher quality would
have a lower probability of return in comparison to a lower quality product, which is
completely aligned with real-world circumstances.

Concerning related papers, the uniform probability function had been the most popular
function to approximate the return rate of used products. However, the aforementioned
piece-wise concave probability function has some significant strength compared to it. The
capacity to add more breakpoints to the probability function makes it far stronger to
anticipate product holders’ heterogeneous behavior. Additionally, for companies that collect
more than one type of product, especially third-party RL ones, setting proper values to (a1,
a2) corresponding to each type of used product could be very advantageous. Therefore, we
suggest the piece-wise probability function performance dominates the uniform probability
function without necessarily increasing the intricacies of the resultant model.

4.2 Corresponding discrete probability function
A major challenge in the process of integrating an RL network with a buyback offer
mechanism has been the complexity of the outcomemodel.

Even though we indicated that considering buyback offers would improve the product
recovery process, we have to remember that the whole idea of buyback offer implementation
is a tactical decision-making process that would be incorporated with higher level strategic
decisions of an RL planning. Thus, we argue if this procedure would restrict the model
applicability, the entire endeavor could be discouraging for practitioners to use it.

Here, we seek to deal with this issue by modifying the piece-wise concave probability
function into a discrete function. This approach, for the first time, was introduced by
Keyvanshokooh et al. (2013). They suggested several disjointed levels of buyback for a
uniform probability function to approximate the percentage of returned used products. Here,

Figure 1.
Piece-wise concave
probability function

Higher quality 
used product

Lower quality 
used product

Pqk

1

0

WqkX1qk X2qk

Source: Dutta et al. (2016)
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to modify the piece-wise probability function, we need to implement the following steps.
Initially, we suggest that for any used product, the possible buyback offers should be
divided onto OþE separated levels (see Figure 2). It means that for each used product with
a particular quality and age, only a finite number of buyback offers can be allocated. To do
so, we divide the interval of (0, x2qk) or the denominator of the probability function a1x1qk þ
a2 (x2qk � x1qk), which is a fixed number for each used product with a certain quality and
age onto OþE disjointed levels. Then, we assume that O number of disjointed levels are
allocated to the first part of the probability function, and E number of levels are assigned to
the second part of it.

Now, for each used product with specific quality and age, just one buyback offer should
be allowed to ensure about this matter the following constraint is required:X

o

m oqk ¼ 1 8q; k (3)

Also, under the piece-wise probability function configuration, the second interval only
activates when the optimal amount buyback offer surpasses the quantity of x1qk to ascertain
about it, and hence we add the following constraint:X

e

w eqk# mOqk 8q; k (4)

where m oqk and w eqk are two auxiliary binary variables associated with first and second
intervals of the piece-wise probability function, respectively. Afterward, we can use the
summation of buyback offer levels to calculate the probability of return for each used
product, and write it as follows:

Figure 2.
Modified discrete

probability function

1

0

Pqk

e = 1 o =   O
(μOqk =  1)

WOqk WOqk+WEqk

e   = E
(φEqk = 1)

Wqk
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Pqk ¼ a1

XO
o¼1

m oqk
o� 1
O� 1

� �
þ a2

XE
e¼1

w eqk
e
E

� �
(5)

As the result of Constraints (3) and (4), only one of the buyback offer levels could receive a
value other than zero, which would indicate the optimal offer. With a simple transformation,
we can also calculate the optimal amount of buyback offers as follows:

Wqk ¼ a1

p 1qk

XO
o¼1

m oqk
o� 1
O� 1

� �
þ a2

p 2qk

XE
e¼1

w eqk
e
E

� �
(6)

It also should be mentioned that by increasing the number of OþE, the discrete probability
function could provide a closer estimation of its corresponding continuous function.

5. Model formulation of fuzzy reverse logistics network with buyback offer
Here, we formulate a fuzzy mixed-integer non-linear programming model for an RL network
with buyback offers. The network structure consists of three stages: customer zones,
collection centers and specialized facilities with a drop-off policy (see Figure 3). The used
products are picked up by the company from customer zones, and delivered to collection
centers where operations of inspection and sorting are going to be implemented on them.
Then, based on the adequate process selected in the collection centers, used products are
shipped to specialized facilities for operations of remanufacturing or recycling or scrapping.

Similar to related papers, we assumed that the government had set a mandatory
minimum threshold for the company to achieve. In return, it would compensate the company
by paying a predetermined subsidy for each collected used product (Dutta et al., 2016). Each
used product with a certain quality and age level has a specific processing cost and a
potential value besides its buyback price. In the model, we decided to write these two
measures as the overall value of each used product, which can be calculated by reducing its
potential value from its processing cost.

Furthermore, to calculate the actual amount of used products return in the presence of
the second category factors influence, we define the relation between the estimated numbers
of collected used products and the actual return rate as a flexible constraint. This matter

Figure 3.
Framework of the
reverse logistics
network

Customer zones

Collection
center

Inspection
process

Recycling 
centers

Landfills

Remanufacturing 
facilities
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adds a certain degree of leeway to the model. This capability of the model to achieve a
different rate of return (i.e. higher or lower) than the approximated one indicates the effect of
second category factors. As we assumed, the model allocates an appropriate buyback to
each used product based on its quality and age. Thus, the sole scenario that the return rate
would surpass the approximated rate is when consumers would freely return and not
receive any compensation. On the other hand, when the return rate falls short of the
approximated rate, we associate it with the negative effect of second category factors. This
translates to higher reservation levels among product holders. Finally, the model goals are
locating collection centers; determining the optimal number of them; and allocating flow
between collection centers and specialized facilities, while finding optimal buyback prices
for used products and the number of used products that should be gathered.

Furthermore, there are several other essential assumptions in the model that are
presented in the below paragraph:

� Potential locations of collection centers are determined.
� The location of remanufacturing, recycling facilities and landfills are determined.
� For each type of used product, several quality and age levels are defined.
� Portions of used products that could be remanufactured or recycled or should be

scrapped based on their quality are known.
� The potential number of used products in each customer zone is known and

dividable between collection centers.
� Each collection center has a predetermined capacity for used products based on

their quality and age at the time of return.

5.1 Indices
J= Set of customer zones;
I= Set of potential collection centers;

M= Set of remanufacturing centers;
R= Set of recycling centers;
L= Set of landfills;
Q= Set of the quality levels of used products; and
K= Set of age levels of used products.

5.2 Parameters description
Fi=Opening and operation cost of each collection center;
C = Unit transportation cost for each unit of used product between customer zones and

collection centers;
Cm = Unit transportation cost for each unit of used product between collection centers and

remanufacture centers;
Cr = Unit transportation cost for each unit of used product between collection centers and

recycling centers;
Cl = Unit transportation cost for each unit of used product between collection centers and

landfills;
dij=Distance between customer zone i and collection center j;
dim=Distance between collection center i and remanufacture facilitym;
dir=Distance between collection center i and recycling facility r;
dil=Distance between collection center i and landfill l;
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Sjqk= Potential number of product holders in customer zone jwith quality q and age k;
Hiqk=The capacity of collection center i for used products with quality q and age k;
ϴq=The portion of used products with quality qwhich could be remanufactured;
d q=The portion of used products with quality qwhich could be recycled;
«q=The portion of used products with quality qwhich should be scrapped;
vqk=The overall value of a remanufactured, used product with quality q and age k;
reqk=The overall value of a recycled used product with quality q and age k;

t=Government subsidy for each collected, used product;
l =Theminimum rate for collecting used products set by the government; and
M=A large number.

5.3 Decision variables
Yi= 1, if collection center i set to be established and 0, otherwise;

Zijqk = Quantity of used products in collection center i with quality q and age k collected
from customer zone j;

Umim = Quantity of used products transported from collection center i to remanufacture
centerm;

Urir=Quantity of used products transported from collection center i to recycling center r;
Ulil=Quantity of used products transported from collection center i to landfill l;
WqkAmount of buyback price for a used product with quality q and age k; and
Pqk= Percentage of used products with quality q and age kwhich are collected.

5.4 Objective function
MinX
i

X
j

X
q

X
k
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X
i
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X
j

X
i

X
q
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(7)
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X
j

Zijqk#YiHiqk 8i; q; k (13)

X
i

X
j

X
q

X
k

Zijqk � l
X
j

X
q

X
k

Sjqk (14)

Pqk# 1 8 q; k (15)

Yi; m oqk; w eqk ¼ 1; 0f g 8i; q; k; o; e (16)

Zijqk;Urir;Umim;Ulil ;Pqk � 0 8i; j; q; k; r;m; l (17)

And Constraints (3)–(6).
The objective function (7) is to minimize the total cost of the system. It consists of the cost of

buyback offers, cost of transportations (from customer zones to collection centers, and then to
specialized facilities), setup and operation cost of collection centers. The revenues come from
government subsidies for collected used products, and their recycling or remanufacturing salvage
values. Constraint (8) demonstrates the fuzzy relationship between the estimated number of
collected used products and the actual number of returns. Constraint (9) ensures that only when a
collection center is established, it could be assigned. Constraints (10)–(12) control the balance of flow
between customer zones, collection centers and specialized facilities. Constraint (13) warrants that
each collection center must not collect more than its capacity. Constraint (14) shows the minimum
government rate of return, which has to bemet by the company. Constraint (15) guarantees that the
chance of return does not surpass one, because it would be meaningless if it happens. Constraints
(16) and (17) denote the variable types and their non-negativity.We also note that Constraints (3)–(6)
were related to the optimal amount of buyback offers and the probability of return. Finally, we can
calculate the total cost collected used products from buyback offers in the objective function as
follows:X
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Under Constraint (4), when the optimal buyback offer is lower than the amount of x1qk (i.e. first
breakpoint), then w eqk is nullified. Equation (18) could gain this condition, therefore the only time
that its value would be anything than zero is when mOqk = 1 Vq, k (i.e. when the chance of return
surpasses the maximum amount of the first interval of the piece-wise probability function). The
simplified traceable equivalent of equation (18) is written in equation (21). Finally, equation (21)
consists ofmultiply two binary and two bounded integer variables. This issue also can be linearized
with the aforementioned technique byKeyvanshokooh et al. (2013).

6. Fuzzy flexible constraints programming
In the model development process, we assumed that the company allocates buyback offers based
on the quality and age of used products. Then, we attempted to address the effect of second
category factors by defining the relation between the actual and approximated return rates as a
flexible constraint. Now, we point out that the return rate could exceed the approximated chance of
return only when some product holders would return without receiving any buyback offer. This
means that consumers are less sensitive toward buyback offers, and the used product is less
valuable. On the other hand, in circumstances that consumers are attuned toward buyback offers,
the actual return rate could be less than the approximated chance of return.

Consequently, the actual return rate could fluctuate between two possible upper and lower
limits. As we mentioned, because of multiple factors influencing product holder expectations
toward a buyback offer and their different extent, it would be very difficult to determine their exact
measures. However, the specific attitude among product holders’ returning pattern could be a solid
insight for the experts to determine the values of those two thresholds. Also, we expect the experts
to express their opinions linguistically and imprecisely, so we assume the shortage and surplus
measures as two fuzzy parameters. In the below section, we briefly introduce the fuzzy flexible
constraintmethod, and thenwe used it to address the uncertain properties of themodel.

Based on Cadenas and Verdegay (1997), we assume that we have a linear programming
model as follows:

min xð Þ
subject to
gi xð Þ# bi; i ¼ 1; . . . ;m
x 2 X ¼ x 2 <n; x � 0f g

(22)

We can modify its constraints into flexible ones by implementing specific a tolerance
allowance for them. Therefore, we use fuzzy sets of membership functions as follows:
y i � 0 8i ¼ 1; 2; . . . ;m

y i xð Þ ¼
1 gi xð Þ# bi

1� gi xð Þ � bi
s i

bi < gi xð Þ# bi þ s i

0 gi xð Þ > bi þ s i

8>><>>: (23)

Additionally, if we assume ~s as a fuzzy measure with a triangular distribution function.
Then, the triangular prominence points of it can be written as ~s ¼ s p: sm: s oð Þ.
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Ultimately, with the help of Yager (1981) method of classification, we can convert this fuzzy
number into a crisp equivalent as:

sm þ s p � 2sm þ s o

3

� �
(24)

Now, using the abovementioned relations, the crisp counterpart of fuzzy Constraint (8) could
be written as:

Rijqk#SjqkPqk þ 1� b 1ð Þ~s 1 � 1� b 2ð Þ~s 2 (25)

Rijqk#SjqkPqk þ 1� b 1ð Þ sm
1 þ s p

1 � 2sm
1 þ s o

1

3

� �
� 1� b 2ð Þ sm

2 þ s p
2 � 2sm

2 þ s o
2

3

� �
(26)

b 1; b 2 2 0; 1½ � (27)

where es 1; �s 2 denote the tolerances of the return rate in two optimistic and realistic
scenarios, respectively. Also, b 1, b 2 are indicating the minimum satisfaction levels of fuzzy
constraints. It can be seen that because of the effect of second category factors, the actual
amount of returned used products could exceed or fall short of the estimated amount.

7. Robust optimization
We pointed out that values of ~s 1; ~s 2 are determined by the opinion of experts, and they account
for the effect of second category factors on the return rate of used products. Therefore, their values
are signaling their importance on the product holder return decision. Thus, when a product holder’s
willingness to return is at his/hermost favorable case, the highest rate of return could occur, and the
membership function of ~s 1 would be zero (i.e. b 1 = 0). In contrast, in the worst-case scenario, for a
product holder to receive a buyback offer, the membership function ~s 2 would be zero (i.e. b 2 = 0),
and the lowest probability of returnwould happen.

Now, there is a question of “how can we calculate the optimal amounts of fuzzy minimum
satisfaction level (i.e. b 1, b 2)?” Regarding this matter, one way could be setting those values
subjectively through decision-maker judgment. However, this route has a couple of big
disadvantages. First, regardless of how many scenarios that we would consider, the
responses could not be verified as the optimal result of the model. Furthermore, because we
are forced to test multiple values for the minimum satisfaction levels, an excessive number
of experiments would be required to achieve a reliable conclusion. This ultimately succumbs
to more time-demanding solution process and analysis (Pishvaee and Fazli Khalaf, 2016).

Consequently, in this paper, we have decided to find a way to calculate minimum
satisfaction levels simultaneously with the process of solving the model, and not setting
their values subjectively. For this purpose, we took advantage of a robust fuzzy optimization
method proposed by Pishvaee and Fazli Khalaf (2016). According to this approach, we need
to define two new parameters as g 1 and g 2, and then two new penalties should be added to
the objective function as follows:

g 1 1� b 1ð Þ sm
1 þ s p

1 � 2sm
1 þ s o

1

3

� �� �
(28)
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g 2 b 2 sm
2 þ s p

2 � 2sm
2 þ s o

2

3

� �� �
(29)

Expressions (28) and (29) denote the total penalty of violation of flexible constraint into
higher and lower quantities, respectively. They called this method, robust controlling of the
fuzzy constraint feasibility. Consequently, we can apply this methodology onto the model,
and transform it into a robust linear integer programming problem. This strategy enables us
to find the optimal values of b 1, b 2 in the solving process of the model itself. This process
also strengthens the model response attitude toward possible fluctuation of the return rate.
Notably, we point out that this method would not create two meaningless parameters of g 1,
g 2, which were added to help us with the solving process of the model. Conversely, the
decision-maker can determine the values of g 1, g 2 to indicate two penalties of risk and
deficiency, respectively. This way, if we assume the return rate optimistically, g 1 adds a
penalty to the cost of the system. This penalty is the risk of expecting willingness among
product holders to return optimistically, and the effect of second category factors in our
favor. On the other hand, if we set the return rate more realistically, g 2 would increase the
objective function total cost, which could be counted as the penalty of deficiency in the
collection process. This shortage is the difference between the actual number of used
products collected and the approximated number of them.

8. Solution methodology
In the process of integrating the buyback offer mechanism with the RL network, a critical
point is the complexity of the outcome model. In many studies, the researchers had to either
suffice to a limited analysis of their model or develop a heuristic algorithm to solve it. For
instance, Fattahi and Govindan (2017) proposed a simulated annealing algorithm to solve
larger size problems. That is why we decided to implement a Lagrangian relaxation
technique onto the model to improve its capability to cope with larger scale problems.
Lagrangian relaxation has proven to be an effective way to address NP-Hard network
problems. Fisher (2004) has conducted a complete survey on this method, and explained the
computational aspect of it. Scholars such as Fahimnia et al. (2017) and Diabat et al. (2018)
have used this method for the solving process of mixed-integer programming models with a
great success.

Similarly, the proposed model in this paper is a mixed-integer programming problem
that the difficulty of solving it derives from circumstances where increasing the scale of
model parameters leads to an exponential increase in the processing time of it by a
commercial solver. Moreover, we also have to take into account the extra binary variables
added to the model for modification of buyback offers, which could compound the solving
difficulty of it. This matter prompted us to use the Lagrangian relaxation solution
methodology. The specific Lagrangian relaxation adopted in the model is based on Fisher’s
(2004) research, and contains three main steps. Initially, we need to calculate the optimal
amount of lower bound, then with the help of it, the optimal amount of upper bound could be
obtained. Next, we examine these two measures differences, and if it would be close enough,
the solution methodology is completed. Otherwise, we need to repeat this process by
updating the values of lower and upper bounds until reaching a sufficiently close result.

8.1 Optimal amount of lower and upper bounds
The lower bound could be found through relaxing one or several constraints of the model. It
might cause the model to be infeasible, but still significantly reduces the complexity of
solving it. Here, after several examinations, we have decided to relax Constraint (9), which
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specifically deals with the allocation of consumer zones to collection centers (Diabat et al.,
2018). After relaxing it, we can formulate the Lagrangian dual problem as follows:

MinL gijqkð Þ ¼ OF þ g 1 1� b 1ð Þ sm
1 þ s p

1 � 2sm
1 þ s o
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3
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(30)

Subject to: Constraints (3)–(6), (10)–(17), (26) and (27).
gijqk indicates the non-negative Lagrange coefficient. The initial value of it is determined

by the decision-maker. To obtain the amount of lower bound, we need to optimize the
Lagrangian dual problem subjected to Constraints (3)–(6), (10)–(17), (26) and (27), and
the rest of the necessary constraints related to the linearization process. However, often the
relaxation procedure causes the lower bound to be infeasible. To deal with this problem, we
could use the value of variables computed from the Lagrangian dual problem to solve the
main objective function. Now, we can obtain a feasible solution that demonstrates the
possible amount of upper bound.

8.2 Updating the upper and lower bound values
If the upper and lower bound values are close enough to each other, we can consider it as a
desirable result. However, similar to other hybrid solution methodologies, to achieve a more
accurate solution, repeating the aforementioned process is necessary. Thus, the Lagrangian
coefficient should be updated to achieve new values for upper and lower bounds. According
to Fisher (2004), for determining the measure of Lagrangian coefficient at nþ 1 iteration, we
could use the sub-gradient optimizationmethod as follows:

gnþ1
ijqk ¼ max 0; gnþ1

ijqk � changen
X
j

X
q

X
k

Zijqk �MYi
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(31)

In equation (31), n denotes the number of iteration, and changen is defined as:

changen ¼ c n Upper bound � Lower boundnð ÞX
j

X
q

X
k

Zijqk �MYi

� �2 (32)

where the value of the upper bound is the best-achieved result of equation (32), and the lower
bound is the value of its number n iteration. Besides, the value of parameter c n is specified
by the decision-maker concerning to each particular problem. Notably, after conducting
several iterations, if no improvements were achieved, then the value of c n parameter should
be altered. In this paper, at the start, we set c n = 2, and after four successive runs if
required, reduce it to half. This process needs to be continued in sequence until the
satisfactory results are obtained.

9. Computational results
In this section, we apply the proposed model onto several exhaustive numerical
experiments. In doing so, we aim to examine two important aspects of it. First, we want to
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ensure the model validity and response timing, which, if acceptable, would underscore the
effectiveness of linearization and Lagrangian relaxation procedures. Second, by running
several specific experiments encompassing different types of used product, we attempt to
analyze the model behavior, and demonstrate its utility and capability to address the effect
of externally originated factors in an RL network. Together, if we achieve a desirable
evaluation, we could argue the proposed model empowers practitioners to deal with real-
world problemsmore effectively.

Here, we generated the value of parameters randomly using a uniform distribution, and
their scales according to recent related studies (Dutta et al., 2016; Sadjadi et al., 2019).
Notably, in this study, for computational purposes, we used commercial GAMS 24.0.1
software and its CPLEX solver application. Also, all tests were carried on a computer with a
configuration of Core i7 CPU processor, 8 GB RAM andWindows 10 operator.

9.1 Result of numerical experiment with different scales
Now, we seek to evaluate the model practicability concerning the scale of problems. Thus,
we have randomly generated a numerical experiment with six different sets of scales (see
Table 2). We attempted to design the scales based on similar researches (Pishvaee et al.,
2011; Keyvanshokooh et al., 2013; Fattahi and Govindan, 2017). Without loss of generality,
we assume used products that belong to the quality level with the higher label are in better
condition than the lower label ones. The same assumption for categorizing used products
with different age levels has been considered.

The result of six tests is demonstrated in Table 3. The column “Gap” shows the positive
percentage difference between optimal responses from CPLEX and the Lagrangian
relaxation method. As can be seen in Table 3, for both CPLEX and the Lagrangian
relaxation method, there is a direct connection between the size of a test and its run-time.
However, after the experiment with a scale of 4, the time required by the CPLEX solver to
produce a result becomes troublesome.

For example, for the experiment with a scale of 5, the solver is unable to give any
response even after 10 h of running. On the other hand, the Lagrangian relaxation method
has managed to produce a result in a more acceptable time-frame. This matter, in
conjunction with the negligible gap between CPLEX and Lagrangian relaxation results,
demonstrates the superiority of the latter method in the process of dealing with the
intricacies of larger scale problems.

Table 2.
Scale of parameters
for six experiments

Data
set no.

Collection
centers

Customer
zones

Predefined
levels of quality

Predefined
levels of age

Remanufacturing
facilities

Recycling
centers Landfills

Alternative
levels of the
buyback
offer

jIj jJj jQj jKj jMj jRj jLj jOj jEj
1 3 5 3 3 2 2 2 10 8
2 6 10 3 3 3 3 3 10 8
3 10 15 4 4 4 4 4 16 12
4 15 20 5 5 6 6 6 16 12
5 18 25 6 6 6 6 6 20 16
6 22 30 7 7 8 8 8 20 16

JM2



9.2 Buyback offer method analysis
Here, we aim to evaluate the impact of the buyback policy mechanism. Therefore, we
decided to assess the model using an experiment for three distinct types of used products.
To do so, we assume all the parameters are identical except three parameters of the marginal
probability of acceptance, the potential values of recycling and remanufacturing. The scale
of parameters is based on Data set 2. The results are depicted in Figure 4. The average
buyback for each scenario is illustrated as W11þW12þW13

3

� 	
. If we consider the used product

on the right-hand side of the graph as Type 1 and the following two as Types 2 and 3,
respectively, we can point out that Type 1 used products have a lower salvage revenue
(recycling plus remanufacturing value) in comparison to the other ones. Consequently, Type
1 used products have the highest total cost between themselves. Furthermore, the model
responses for Type 1 used products indicate that the system is more inclined to collect
inferior quality level used products because it is virtually allocating the same amount of
buyback offer to different levels of quality. Noteworthy, this matter is related to Constraint
(14) in the model, which enforces the system to collect a minimum threshold assigned by the
government.

In this experiment, we considered it to be 50% of the total number of used products.
Therefore, the model attempts to ensure meeting this regulated limit at the lowest possible
cost. In contrast, Type 3 used product has a higher potential salvage value, which caused the

Table 3.
Results of six

experiments with
different data set

Data
set no.

Lagrangian relaxation
method results (in $)

CPLEX solver
results (in $) Gap

Lagrangian relaxation
method delivery time (s)

CPLEX solver
delivery time (s)

1 1,902.51 1,854.95 %2.5 162 151
2 3,066.73 2,940.10 %4.1 986 903
3 4,852.19 4,696.92 %3.2 2,072 4,406
4 7,743.06 7,448.82 %3.8 2,833 15,194
5 12,385.52 N/A – 3,705 >36,000
6 17,433.68 N/A – 5,268 >36,000

Figure 4.
Performance of the
model for different

types of used
products
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lowest total cost compared to the other two types of used product. On top of that, the graph
trend shows superior quality levels of the used products have received higher buyback
offers than lower quality ones. This attitude suggests that unlike Type 1 used products, the
system seeks to facilitate the return of better condition Type 3 used products. Finally, Type
2 used products behavior can be described as somewhat between the other two. All in all,
this analogy enabled us to highlight the proposed model capability to deal with different
types of used product collection processes.

9.3 Sensitivity analysis
In this section, we carried out a sensitivity analysis of several important parameters of the
model. By analyzing their behavior, we attempt to draw some important insights from
crucial parameters of it. The rest of the analysis is based on an experiment with the
configuration of Type 1 used product from the previous section with the Data set 2 scale.
Also, for convenience in presentation, we used the average amount of buyback offers, which

is

X
q

X
k
Wqk

QþK .

9.3.1 Effect of the marginal probability of acceptance.
In the model, we used a discrete probability function to approximate the probability of
return.

Thus, we expect changing the amount of marginal probability of return would alter the
amount of optimal buyback offers. For this purpose, we assume that the first interval
marginal probability of acceptance p1qk is fixed, and alter the second one p2qk (see
Figure 5). We can deduce from the graph that by increasing the marginal probability of
acceptance, the system requires lower buyback offers to convince consumers to return. This
matter eventually decreases the total cost of system.

9.3.2 Effect of the penalty of deficiency.
In the process of developing a robust objective function, we defined two penalties of risk and
deficiency. Here, we attempt to analyze the model attitude toward a change in the amount of
penalty of deficiency. Therefore, if we increase this penalty, we would expect the return rate
to become more restricted, succumbing to additional inclination in the model to accept
shortage. In Figure 6, the result achieved from this procedure is demonstrated. From the

Figure 5.
Effect of the marginal
probability of
acceptance on the
total cost and
buyback offers
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graph, we can discover that the total cost of the network has gone up, and the minimum
satisfaction level has been reduced. Thus, the overall amount of shortage of return has
increased.

9.3.3 Analysis of the robust fuzzy optimization strategy.
In our approach, to find the optimal membership function of the fuzzy parameters of the model, we
sought to take advantage of a robust fuzzy optimization method. Consequently, we defined two
additional parameters of risk and deficiency in the model. Here, we investigate the performance of
thismethodology. To do so, we randomly generate six different amounts of penalties for themodel.

Then, we attempt to solve the fuzzy model with these penalties while using
predetermined values for the membership function of fuzzy constraints at the levels of {0.5,
0.7 and 0.9}. Finally, for the sake of creating a comparative analysis, we use the measure of
variables computed from the fuzzy method to calculate the total cost of the original robust
fuzzy model without the predetermined fuzzy constraints levels (Pishvaee and Fazli Khalaf,
2016). The results of this process are presented in Figure 7, and as we can see, the robust
optimization method responses dominate the scenario-based approach solutions, proving its
superiority in the process.

Figure 6.
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10. Conclusion and remarks
Nowadays, product recovery is an inseparable part of the production. This matter
arises from three major reasons: environmental concerns, economic opportunities of
product recovery concept itself and consumers’ consciousness. Additionally, because
of the inherent uncertainty of any RL network, and growing level of reservation
among product holders to receive an incentive offer to return their used products, the
inclusion of a buyback offer has become an efficient way to control and estimate the
return rate. In this paper, we set out to address this problem by developing a robust
fuzzy RL network with buyback offers. We initially made a preliminary
approximation of return rate using buyback offers dependent on the quality and age
of used products at the time of return. Then, we extend our approach by incorporating
the effect of other factors on the return rate of used products in the model using a
fuzzy mathematical method, and, in particular, flexible constraint programming.
Additionally, a robust fuzzy optimization method has been implemented on the model
to define two scenarios of risk and deficiency. These two scenarios demonstrate the
positive and negative impact of externally originated factors on the actual return rate.
The effect of these factors has been considered a fuzzy parameter that could be
determined by the opinion of experts. During the aforementioned efforts, we also
modify the piece-wise probability function that was used to approximate the chance
of return into its corresponding discrete function. Then, using the robust fuzzy
optimization method, we managed to linearize the model completely. Moreover, the
Lagrangian relaxation method has been introduced to improve the model capability to
solve larger scale problems. Finally, we ran several extensive numerical experiments
on the model. Results have shown the model validity and effectiveness for different
types of used products as well as relatively large-scale problems.

Even though, in recent years, the concept of RL with incentive offer policy has
drawn more attention to itself, we argue that given the broad and complex nature of
this topic, there are still many aspects of it that should be addressed. This matter
creates a requirement to add more dimensions to an incentivized product recovery
system. For future studies, we could suggest a dynamic approach, in which a
collection company might be able to alter its buyback setting levels according to each
particular month or season. This could prove to be quite advantageous because
consumers do not have a steady pattern of spending, and usually tend to increase
their expenditure around holidays. Therefore, even a less appealing offer in that
specific time period is likely to satisfy their reservation.

We also suggest that a CLSC network with buyback offers could be a promising
step forward because, today, in many industries, product recovery is the
responsibility of the producers and manufacturers themselves. Such a model could
provide an opportunity to determine buyback offer considering the important factor
of the initial product sale price, which, to our knowledge, is yet to be adequately
realized.
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