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were selected, and future land cover change (LCC) 
was modeled based on the evolution that occurred 
in the last decades. We simulated the impacts of cli-
mate change (CC) and LCC on sediment, nitrate, and 
phosphate for the 2035–2065 time slice. The annual 
loads of sediment, phosphate, and nitrate are pro-
jected to decrease under both CC scenarios based on 
the inter-model average, and generally follow a pat-
tern similar to the change in river discharge. Nitrate 
concentrations show an increase across all seasons, 
while the sediment and phosphate concentrations 
increase in winter and autumn under CC condi-
tions. Results indicate that pollutants are expected 
to increase under LCC alone, mainly due to the 
expansion of the cultivated areas. Overall, it seems 

Abstract The spatial and temporal dimensions 
of environmental impacts of climate and land cover 
changes are two significant factors altering hydrologi-
cal processes. Studying the effects of these factors on 
water quality, provides important insight for water 
resource management and optimizing land planning 
given increasing water scarcity and water pollu-
tion. The impact of land cover and climate changes 
on surface water quality was assessed for the Neka 
River basin in Northern Iran. The widely used Soil 
and Water Assessment Tool (SWAT) was applied 
for pollutant modeling, and was calibrated using 
the Sequential Uncertainty Fitting (SUFI-2) algo-
rithm. An ensemble of 17 CMIP5 climate models 
under two IPCC greenhouse gas emission scenarios 
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CC has a greater impact than LCC on the variation 
of water quality variables in the Neka River basin. 
With a combined change in climate and land cover, 
the annual nitrate concentrations are expected to 
increase by + 19.7% and + 17.9%, under RCP 4.5 and 
RCP 8.5, respectively. The combined impacts of the 
CC and LCC caused a decline in the annual sediment 
and phosphate concentrations by −10.1% and −2.2% 
under RCP 4.5 and −9%, and −3.2% under RCP 8.5, 
respectively.

Keywords Catchment modeling · SWAT  · 
Nutrients · Calibration · Neka River basin · Iran

Introduction

The hydrological impacts of climate and land cover 
changes on water quality are essential to understand the 
optimal land and water resource management (Tamm 
et  al., 2018). Climate change is a critical issue in the 
current century, because it causes a significant shift in 
the temperature and precipitation regimes on local and 
global scales. Changes in these parameters have con-
siderable impacts on the hydrology cycle (Deng et  al., 
2015). Warming may accelerate the evaporation rate, 
reducing runoff and soil moisture (Lin et al., 2007; Fan & 
Shibata, 2015), and it also causes shifts in the frequency 
and duration of hydrological droughts (Vicente-Serrano 
et  al., 2014). Higher temperature could also acceler-
ate the water cycle leading to changes in the precipita-
tion patterns. Changes in the precipitation will affect the 
future availability of water resources, streamflow magni-
tude, and the quantity of nutrient transport. In addition, 
increased air and water temperatures induce some nega-
tive changes in the nutrient cycle, eutrophication rate, 
and water quality (Fan & Shibata, 2015).

The hydrological response of watersheds could 
be affected by land cover changes due to urbaniza-
tion, influencing both water quantity and quality. 
One main threat to water quality and supply secu-
rity is intensive agricultural development, increas-
ing the agrochemical inputs to water bodies and cre-
ating eutrophication problems (Mehdi et  al., 2015; 
Serpa et  al., 2017). The impacts of increasing agri-
cultural lands and urban areas are often reflected 
in soil integrity, nutrient fluxes, and species com-
munities (Boix-Fayos  et al., 2008;  Baker & Miller, 
2013), and result in reduced base flow via changing  

ground water portion and pathways to water bod-
ies (Fan & Shibata, 2015). Changing land cover has 
apparent impacts on the hydrological cycle compo-
nents (Aboelnour et al., 2020; Kibii et al., 2021), and 
also on soil erosion (Lenhart et al., 2003; Serpa et al., 
2015; Zhang et al., 2021).

Land cover is another driving force that affects 
water quality (El-Khoury et al., 2015; Nguyen et al., 
2019). Earlier studies revealed climate change sen-
sitivity assessment on surface water quality (Glavan 
et  al., 2015; Verma et  al., 2015). Other studies have 
investigated the combined effects of future changes in 
land cover and climate (Mehdi et al., 2015; Molina-
Navarro et al., 2014; Serpa et al., 2017). For instance, 
Serpa et  al. (2017) analyzed the effects of climate 
and land cover change on water quality using SWAT 
in the São Lourenço watershed, Portugal. They used 
the outcome from ECHAM5 GCM driven by the B1 
and A1B scenarios for CC simulation and applied the 
same storylines as CC scenarios to generate land use 
change scenarios. The combined land cover and CC 
analysis indicated declining additive effects on the 
pollutants, rather than change from individual pollut-
ants alone. Mehdi et al. (2015) explored the effect of 
CC and LCC on nitrates and phosphorus in Bavaria, 
Germany, and found that the average annual  NO3

−-N 
and TP loads increased 3- and eightfold, respectively, 
under combined simulations.

In Iran, a few studies have explored the standalone 
potential hydrological impacts of climate change 
(Abbaspour et al., 2009; Ashraf Vaghefi et al., 2014) 
and land cover alterations (Hosseini et  al., 2012) 
on water quantity; however, only a few studies have 
focused on modeling the combined effects on dis-
charge and water balance components (Joorabian 
Shooshtari et al., 2017; Tayebzadeh Moghadam et al., 
2021). In a previous study (Joorabian Shooshtari et al., 
2017), we applied the SWAT model to study how 
changes in the future land cover and CC have impacted 
the hydrological processes. The future trend of spatial 
distributions of various land covers was modeled using 
the neural network and Markov chain implemented in 
the Land Change Modeler (LCM), and CMIP5 models 
were used to explore the effects of climate change on 
precipitation and temperature under RCP 4.5 and RCP 
8.5 scenarios. Till now, no research has addressed the 
combined impacts of these drivers on the quality of 
water modeling in Iran. Pirnia et  al. (2019) studied 
the impacts of climatic change and human activities 
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on stream flow in the Haraz River basin, Iran and 
found that these variables contributed to 34.78% and 
65.21%, respectively, of changes in annual stream flow 
based on the SWAT model simulations. Choubin et al. 
(2019) showed that the stream flow regionalization 
by the SWAT model has acceptable performance in 
ungauged basins of Iran’s Karkheh River watershed. 
Tayebzadeh Moghadam et al. (2021) used the SWAT 
model to simulate the impacts of climate and land 
use changes on the water balance components for the 
Taleghan Catchment in Iran. They reported that the 
CC has more severe impact on water yield than LCC, 
whereas LCC has a more essential effect on sediment 
yield. In the present study, we address the questions of 
the response of the surface water quality under vari-
ous climate emission scenarios and future land cover 
with the aim of evaluating the relative strength of 
their impacts and integrated approach of hydrologi-
cal modeling using SWAT to quantify the contribu-
tion of combined effects in the Neka River watershed 
in the north of Iran. In the current research, we used 
the previously satisfactory calibrated SWAT model for 
the river discharge in this area (Joorabian Shooshtari 
et al., 2017) to calibrate and validate the sediment and 
nutrient loads, including nitrate and phosphate. The 
simulation results of the LCC based on LCM and pro-
jected changes in the temperature and precipitation by 
the various CMIP5 models obtained from previous 

research were used to assess the effects of LCC and 
CC on the water quality parameters in the Neka River 
basin.

The objective of this study includes the develop-
ment of a land cover scenario for the year 2050 using 
LCM based on Markov chain matrix and MLP neural 
network for generating the likelihood of transition-
ing and projected climatic changes for the same time 
horizon through using the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) models and Rep-
resentative Concentration Pathway (RCP) scenarios 
from the Intergovernmental Panel on Climate Change 
Fifth Assessment Report (AR5).

Materials and methods

Study area

The study basin covers 1871  km2 encompassed within 
53° 17′ 30″–54° 44′ 22″E and 36° 27′ 46″–36° 41′ 
8″N. It is part of northern Iran’s Hyrcanian Forest, in 
the Neka River basin, Mazandaran and Golestan Prov-
inces (Fig.  1)  (Joorabian Shooshtari et  al., 2012). The 
area, located between the Caspian Sea on the north and 
the Alborz Mountains to the south, is the major source 
of irrigation water for the extensively cultivated area of 
Neka County, and it discharges into the Caspian Sea. The 

Fig. 1  Location of the 
study area in Iran
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mean annual temperature is 17  °C, with the minimum 
and maximum temperatures in January and August, 
respectively. The annual precipitation of the watershed 
is 600 mm (Ghanbarpour et al., 2014). The annual rain-
fall cycle is at the maximum in autumn and minimum 
in summer with a decreasing trend in high elevation. 
The land cover is primarily rangelands (44%), followed 
by Hyrcanian forest (36%), and cultivated land (18%) 
(Joorabian Shooshtari et al., 2018). The use of fertilizer 
for agriculture is one of the main nonpoint sources of 
water quality reduction in this watershed. For instance, 
the mean annual use of fertilizers for Mazandaran 
Province exceeds 170 tons (Rajaei et  al., 2017). The 
Neka River is the most important source of water for 
domestic, industrial, and agricultural use in the region. 
Neka County is ranked second in wheat production in 
Mazandaran Province which is associated with heavy use 
of nitrogen and phosphate fertilizers in agricultural areas. 
Therefore, this basin, near the Caspian Sea, was chosen 
for this research to obtain deeper insight for determining 
the amount of nutrients exported from this catchment 
under future conditions.

Climate change

In the current study, monthly temperature and pre-
cipitation were extracted for the 1980–2010 period 
as a control, and from 2035–2065 as the future time 
horizon, from a total of 17-member ensembles of 
CMIP5 models. These models include BNU-ESM, 
CanESM2, CCSM4, CESM1-CAM5, CNRM-CM5, 
CSIRO-Mk3-6–0, EC-EARTH, FGOALS-g2, GFDL-
ESM2G, GISS-E2-H, GISS-E2-R, HadGEM2-AO, 
IPSL-CM5A-LR, MIROC5, MPIESM-LR, MRI-
CGCM3, and NorESM1-M. We used new moderate 
(RCP 4.5) and intensive (RCP 8.5) emission scenar-
ios published by the AR5 IPCC (2013). RCP 4.5 and 
RCP 8.5 are characterized by radiative force of 4.5 and 
8.5  W/m2, respectively;  CO2-equivalent concentra-
tions are 650 and 1370 ppmv, respectively, by the year 
2100. To obtain the inter-model seasonal variability in 
temperature and precipitation of several climate mod-
els, multi-model delta averages in the  10th and  90th 
percentiles were calculated. Delta change approach is 
a relatively simple method for constructing regional 
CC scenarios, which have been implemented for rapid 
assessment of CC effects (Wilby & Harris, 2006).

The differences between the observed (1980–2010) 
and GCM outputs (2035–2065) were applied to daily 
observed historical time series data (2003–2014) 
obtained from meteorological stations of this watershed 
(Fowler et al., 2007). Then, the new run in SWAT simu-
lations was applied using the modified climate series for 
each GCM, to investigate the impacts of CC on the water 
quality parameters. This stage was applied to reduce the 
uncertainty in the calculations. Therefore, the SWAT 
model was run for each GCM model, and then the aver-
age,  10th, and  90th percentiles for output values of all 
SWAT runs; values such as sediment and water quality 
were calculated. The SWAT model was run 34 times (17 
CMIP5 models and two RCPs) for each water quality 
parameters under climate change alone (102 times for 
three parameters (sediment, nitrate, and phosphate) in 
total), and it, the same number of runs, was used under a 
combined change of climate and land cover.

We computed the R10mm index (yearly count 
of days with precipitation of at least 10 mm) for the 
selected climate models of 2035–2065 relative to the 
reference period (1980–2010) in order to investigate 
future precipitation frequency changes. Changes in 
precipitation extremes can lead to significant impacts 
on sediment yields and nutrient exports.

Land cover change

LCM was applied to identify the trends in future LCCs 
in the Neka River basin. LCM models future land 
cover using the historical trend of change and transi-
tion potential map for each land cover class (Anand 
et  al., 2018). The land cover maps for the years 1984 
and 2001 were used to develop the land cover for 2010. 
The model’s performance was evaluated comparing the 
observed and predicted land cover in 2010 (presented 
in Joorabian Shooshtari et  al., 2017). After achieving 
reasonable accuracy, the projected land cover for 2050 
was modeled using data from 2001 to 2010, based on 
multi-objective land allocation. Topographic variables 
(slope, elevation), proximity factors (distance to resi-
dential areas, forest, agricultural land, rangelands, major 
roads, fluvial streams), and the empirical likelihood 
of change between 1984 and 2001 were considered 
influential variables determining land cover changes. 
Cramer’s V coefficient was executed to test the strength 
of the association between variables and land cover 
categories (Joorabian Shooshtari & Gholamalifard, 
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2015). We observed slope factor with lowest (Cram-
er’s = 0.0971) and empirical likelihood to change with 
highest (Cramer’s = 0.5742) overall V predictive power 
(Joorabian Shooshtari et al., 2018). A total of six sub-
models were used to produce transition potential using 
extensively enhanced multi-layer perceptron (MLP). In 
subsequent research (Joorabian Shooshtari et al., 2018), 
a similarity-weighted instance-based machine learning 
algorithm in LCM was successfully applied to predict 
multiple transitions among land cover classes. In the 
current work, MLP neural network in LCM, known to 
be more robust than other algorithms, was used to gen-
erate a transition potential surface for each land cover 
transition (Eastman et  al., 2005; Sangermano et  al., 
2012). Validation of the MLP after 10,000 iterations 
showed the accuracy rate to be above 88% in all sub-
models, and the lowest and highest values were 88.10 
and 95.78%, respectively. Then, the 2050 land cover 
was predicted by applying results obtained from tran-
sition susceptibility maps and calculation of transition 
matrix using Markov chain (Mas et  al., 2014). Land 
cover change analysis between 2010 and 2050 illus-
trates the reduction of the forest area by 12.1%, while 
the increase in an agricultural area (12.2% of the agri-
cultural area), residential (41% of the residential area), 
and rangelands (4.8% of the rangeland area) could be 
expected (Fig. 2). Figure 3 shows the results of changes 
for each land cover class among three study periods.

SWAT hydrologic model

The ArcGIS interface for SWAT, ArcSWAT, v. 2012 
was applied to simulate hydrology and surface water 
quality (sediment, nitrate, and phosphate) in the Neka 

River basin. The eco-hydrological model SWAT is a 
high-performance tool for achieving in-depth insight 
into water quality dynamics under future environ-
mental conditions from catchments of various sizes. 
In the SWAT, the catchment is divided into multiple 
sub-basins, and subsequently into smaller units called 
hydrologic response units (HRUs) as the basic calcula-
tion elements that possess homogeneous soil type, land 
use, and slope characteristics (Fan & Shibata, 2015; 
Neitsch et  al., 2011). The water balance is calculated 
at an HRU and stored in four storage volumes. In the 
current study, surface runoff in each HRU is estimated 
with a modified Soil Conservation Service Curve 
Number method using daily rainfall data. Potential 
evapotranspiration is computed using the Hargreaves 
method (a temperature-based model) due to the readily 
available data.

The sediment yield and soil erosion for each HRU in 
SWAT are based on the modified soil loss equation (Wil-
liams and Berndt, 1977) (Eq. (1)):

In Eq. (1) sed is the sediment yield for a day (met-
ric tons), Qsurf is the volume of surface runoff (mm 
 ha−1), qpeak is the peak runoff rate  (m3  s−1), areaHRU 
is the area of HRU (ha), KUSLE is the USLE soil erod-
ibility factor, CUSLE is the USLE cover and manage-
ment factor, PUSLE is the USLE support practice fac-
tor,  LUSLE is the USLE topographic factor, and CFRG 
is the coarse fragment factor (Neitsch et al., 2011).

The nutrient cycle sub-model is similar to those of 
the Environmental Policy Integrated Climate (EPIC) 
model (Abbaspour et al., 2007).

(1)
sed = 11.8

(

Qsurf .qpeak .areaHRU
)0.56

.KUSLE .CUSLE .PUSLE .LSUSLE .CFRG

Fig. 2  Scenery of land cover simulated by 2050 and forest conversion to agriculture between 2010 and 2050
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SWAT inputs were the elevation data (DEM) from 
the Aster Global DEM (30-m resolution), and soil 
data from the world SOIL of FAO (Food and Agri-
culture Organization) database (10-km resolution). 
Daily temperature and rainfall data are available from 
2003 to 2014 at 10 and 19 stations, respectively, in 
the study area. A threshold value of 10% for soil and 
slope and 0% for land cover were selected to produce 
the HRUs. Five classes of slope (0–5, 5–12, 12–30, 
30–60, and > 60) were utilized in the HRU definition. 
Thirty-five sub-watersheds were delineated using a 
threshold value of 3000 ha.

Table  1 provides agriculture operations adapted 
for simulation of winter wheat and winter barley. The 
management operation scheme applied in SWAT is 
based on the average long-term data from the Min-
istry of Agriculture of Mazandaran and Golestan 
Provinces. The amount of fertilizer application with 
urea and with 18–46-00 fertilizer was 90 kg  ha−1 and 
50 kg  ha−1, respectively, in the study watershed.

In the current study, the Sequential Uncertainty 
Fitting algorithm in SWAT-CUP software was used 
for calibration, validation, and uncertainty assess-
ment. It is able to analyze the parallel processing of 

Fig. 3  Net change, gains, and losses 1984–2001, 2001–2010, and 2010–2050 (percentage of the study area)
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multi-site calibration and ascertains uncertainties 
through the sequential and fitting processes (Wu & 
Chen, 2015). To compare monthly measured and sim-
ulated data, the Nash–Sutcliffe efficiency parameter 
(ENS), PBIAS, and the coefficient of determination 
 (R2) were used (Ficklin et al., 2013) (Eqs. (2)–(3)).

where  Oi and  Pi are the observed and predicted val-
ues, Oi is the mean value of the observed data, and 
n is the number of data. Two uncertainty indices 
are used to evaluate the goodness of model perfor-
mance in terms of calibration and uncertainty level: 
the p-factor and the r-factor. We used the calibrated 
and validated SWAT model for discharge, as devel-
oped by Joorabian Shooshtari et al. (2017) in the cur-
rent research, and the detailed SWAT model setup 
and validation procedure can be obtained there. The 
observed sediment data from 2003 to 2010 were 
used as calibration for the outlet catchment, while a 
4-year sediment dataset (2011–2014) was used for 

(2)ENS = 1 −
∑n

i=1

�

Oi − Pi

�2
∕
∑n

i=1

�

Oi − Oi

��2

(3)PBIAS =
�
∑n

i=1

�

Oi − Pi

�

∕
∑n

i=1
Oi

�

× 100

(4)R2 =

�

∑n

i=1

�

Oi − Oi

��

Pi − Pi

�

∕

�

∑n

i=1

�

Oi − Oi

�2
�0.5�

∑n

i−1

�

Pi − Pi

�2
�0.5

�2

validation, and the first 3 years were also dedicated as 
a warm-up.

The measured nutrient data were available only 
once or twice per month in the Neka River basin, 
while the daily time series water quality data were 
used to calculate monthly average needs for SWAT 
nutrient calibration. Therefore, the regression 
model Load Estimator (LOADEST), a FORTRAN-
based load estimation software (Runkel et al., 2004) 
developed by USGS, was used in order to generate 
a complete monthly time series of nitrate and phos-
phate from instantaneous discharge and nutrient 

data (Niraula et al., 2013). SWAT parameters were 
calibrated using  NO3

− and  PO4
3− data for the period 

2013–2014 and validated using data from 2012.

Results

Model performance

The comparison of simulated and observed river 
discharge on monthly data values during the calibra-
tion and validation periods revealed satisfactorily 
simulated by the evaluation statistics of ENS and  R2 

Table 1  Properties of 
management operations for 
winter wheat and winter 
barley in the Neka River 
basin

Crop type Year Operation type Date Operation attributes

Winter wheat 1 Tillage 27 September Mouldboard plough
1 Planting 11 November -
1 Fertilizer 11 November Urea, 30 kg/ha
1 Fertilizer 11 November 18–46-00, 50 kg/ha
1 Fertilizer 26 December Urea, 30 kg/ha
1 Fertilizer 25 April Urea, 30 kg/ha
1 Harvest 17 June -

Winter barley 1 Tillage 12 September Mouldboard plough
1 Planting 9 October -
1 Fertilizer 9 October Urea, 30 kg/ha
1 Fertilizer 9 October 18–46-00, 50 kg/ha
1 Fertilizer 23 November Urea, 30 kg/ha
1 Fertilizer 22 March Urea, 30 kg/ha
1 Harvest 10 May -
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(Joorabian Shooshtari et al., 2017). Table 2 shows the 
fitted values of the most sensitive parameters used 
for simulating water quality in the Neka River basin. 
Results for performance metrics of surface water 
quality modeling for the simulation period are shown 
in Table 3. Comparing monthly observed and simu-
lated values of water quality showed that the trend 
of their values matched well (Fig. 4). Similar to the 
discharge, the sediment simulation using SWAT is 
also acceptable in terms of the 96% and 80% of data 
being bracketed by 95PPU for calibration and valida-
tion periods, respectively (Fig.  4). Sediment simula-
tion performance for the calibration period was better 
than that of the validation period, in terms of NSE, 
 R2, and PBIAS (Fig. 4). The dynamics of sediments 
and nutrients were adequately represented by the 
model, although the simulated phosphate was over-
all higher during the calibration and validation peri-
ods (Fig. 4). Statistically (according to values of NSE 
and  R2), the model showed better performance for the 

sediment rather than for nutrients. Nitrate calibration 
with r-factor less than 1 generally shows good cali-
bration results (Table 3), while 29% of the measured 
data were bracketed by the 95PPU, which indicates 
that the actual uncertainty is larger than that shown 
(Fig. 4).

ENS for sediment was 0.83 and 0.73 for the cali-
bration and validation periods, respectively, pre-
senting the acceptable model performance. Further-
more,  R2 coefficient values were 0.83 and 0.74 for 
both periods, indicating a relatively high correla-
tion between the monthly observed and predicted 
sediment data. The ENS performance rating for the 
monthly calibration of nitrate and phosphate was 
0.69 and 0.56 for the calibration period, and 0.52 
and 0.63 for the validation period. The  R2 values for 
nitrate and phosphate were 0.74 and 0.57 for the cal-
ibration period and 0.56 and 0.66 for the validation 
period.  R2 values for all nutrient loads’ calibration 
and validation runs were higher than 0.5 (Table 3).

Table 2  List of SWAT’s parameters and their best values used for SUFI-2

Variable Parameter name Definition Best value

Sediment v__FILTERW.mgt Width of edge of field filter strip 26.418
v__HRU_SLP.hru Average slope steepness 0.070
v__SLSUBBSN.hru Average slope length 10
v__LAT_SED.hru Sediment concentration in lateral flow and groundwater flow 1995.26
r__USLE_K().sol USLE equation soil erodibility (K) factor 0.159
v__SPEXP.bsn Channel re-entrained exponent parameter 1.314
v__SPCON.bsn Channel re-entrained linear parameter 0.006

Nitrate v__CMN.bsn Rate factor for humus mineralization of active organic nitrogen 0.0023
v__ANION_EXCL.sol Fraction of porosity from which anions are excluded 0.9005
v__RCN.bsn Concentration of nitrogen in rainfall 1.075

Phosphate v__RS5.swq Organic phosphorus settling rate in the reach at 20 °C 0.089
v__RS2.swq Benthic (sediment) source rate for dissolved phosphorus in the reach at 20 °C 0.091
v__LAT_ORGP.gw Organic P in baseflow 0.795
v__GWSOLP.gw Concentration of soluble phosphorus in groundwater contribution to streamflow 

from subbasin
0.00083

v__BC4.swq Rate constant for mineralization of organic P to dissolved P in the reach at 20 °C 0.1405

Table 3  Goodness-of-fit 
indicator scores for monthly 
water quality simulation 
results

Variable Calibration Validation

NSE R2 p-factor r-factor PBIAS NSE R2 p-factor r-factor PBIAS

Sediment 0.83 0.83 0.96 1.20 + 4.7 0.73 0.74 0.80 1.20 −8.0
Nitrate 0.69 0.74 0.29 0.45 −16.9 0.52 0.56 0.83 0.44 15.1
Phosphate 0.56 0.57 0.62 0.81 −5.9 0.63 0.66 0.92 2.61 −12.7
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For river discharge, a p-factor higher than 70% 
or 75% and an r-factor of around 1 have been rec-
ommended. For the sediment parameter, the lower 
p-factor and higher r-factor values could also be 
adequate (Abbaspour, 2015). The p-factor of nitrate 
for the validation period was higher than that of 
the calibration period, representing that the actual 

uncertainty was higher in the calibration (Fig.  4). 
The model indicated great uncertainty for phos-
phate for the validation period given its high r-fac-
tor (2.61). The 62% and 92% of the observed data 
were bracketed by the 95PPU for the phosphate 
simulation results during the calibration and valida-
tion periods, respectively (Fig. 4).

Fig. 4  Comparison of 
monthly averaged simulated 
and observed values of sedi-
ment, phosphate, and nitrate 
of Neka River basin for 
calibration, validation, and 
95% prediction uncertainty 
(95PPU)



 Environ Monit Assess         (2021) 193:411 

1 3

  411  Page 10 of 21

PBIAS suggests that the model tends to under-
estimate sediment load for the calibration and over-
estimate for the validation period (Table  3). The 
observed and simulated nitrate values showed over/
underestimation for the calibration/validation, while 
phosphate simulation revealed overestimation for 
both periods (Fig.  4). A noticeable uncertainty is 
associated with simultaneous calibration for various 
variables.

Climate change

Figure  5 shows the seasonal temperature and pre-
cipitation changes from various climate models 
for the period 2035–2065 relative to the reference 
period (1980–2010) under RCP 4.5 and RCP 8.5 
scenarios in the Neka River basin. The projections 
revealed a mean 1.7  °C and 2.3  °C increase in the 

annual temperature under RCP 4.5 and RCP 8.5, 
respectively. Future CC simulations showed that the 
highest and lowest warming in temperature would 
occur in summer (June, July, August) and winter 
(December, January, February), respectively, under 
both scenarios. Simulations’ results indicated mean 
annual precipitation change of + 0.7% but with a 
large inter-model variability (ranges from −13.3% 
to + 19%) and + 3.4% (ranges from −11.2% 
to + 17.4%) for RCP 4.5 and RCP 8.5, together with 
greatest decrease and increase in summer (RCP 
4.5 scenario: −13%; RCP 8.5 scenario: −21%) and 
winter (RCP 4.5 scenario: 4%; RCP 8.5 scenario: 
9%), respectively. It can be seen that precipitation 
indicated a high degree of uncertainty among vari-
ous climate models. The multi-model precipitation 
simulations suggest a change in summer, in the 
range of −168% to + 38% for RCP 4.5 and −123% 

Fig. 5  Box plot showing seasonal changes among the various 
climate models in temperature and precipitation under RCP 4.5 
and RCP 8.5 (red line indicates average). The range indicated 

by the box plots shows the 75th and 25th percentiles, and the 
dots denote the extremes
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to + 36% for RCP 8.5 (Fig.  5). The variability of 
precipitation simulations from the 17 CMIP5 mod-
els was larger than those of the temperature projec-
tions, especially in summer (Fig. 5).

The R10mm index shows different results 
among various selected climate models for the 
period 2035–2065 relative to the 1980–2010 period 
(Table  4). For instance, the CSIRO-Mk3-6–0 and 
NorESM1-M models represented + 112% and −9% 
changes, respectively, for the RCP 8.5 scenario. 
These results indicate a high degree of uncertainty 
among various models in simulation of trends of 
precipitation extremes in the study region.

Impacts of CC and LCC on sediment yield

The mean simulated annual sediment yield in the 
main outlet was 207.1 tons during 2006−2014 
(Table  5). The projected annual sediment yield 
showed a decline under both the RCP 4.5 (8.1%) and 
RCP 8.5 (1.6%) scenarios, and the same land cover 
based on the inter-model average. CC scenarios 
showed their highest decrease in June for RCP 4.5 
(39%, from 90.4 to 55.1 tons) and RCP 8.5 (57.6%, 
from 90.4 to 38.3 tons) scenarios, and the highest 

increase in December for RCP 4.5 (12%, from 198 
to 221.8 tons) and January for RCP 8.5 (25.4%, from 
255.2 to 320.1 tons) (Fig.  6). The inter-model aver-
age for CC alone showed a significant reduction in 
the sediment yield concerning the baseline condi-
tions [observed (2003–2014)] climate data, with land 
cover for 2010, which ranged from 11.8% [autumn 
(September, October, November)] to 31.9% (summer) 
for RCP 4.5 and 6.5% [spring (March, April, May)] 
to 43% (summer) for RCP 8.5, which is observed for 
all seasons except winter. Sediment yield is projected 
to increase in winter under two RCPs (RCP 4.5 sce-
nario: 1.4%; RCP 8.5 scenario: 15.4%) based on the 
inter-model average. For the sediment yield, annual 
decreases of 48%, and 44.4%, and an annual increase 
of 30.7%, and 47.7%, respectively, are projected for 
the 10th and 90th percentiles of the multi-model 
under RCP 4.5 and RCP 8.5 with 2010 land cover. 
These values marked variability among the various 
CMIP5 models in the forecasting of sediment loads. 
The model results showed that the ranges of change 
in mean annual sediment yield were 115.2 and 305.9 
tons in the 10th and 90th percentiles of the climate 
models under RCP 8.5 (207.1 tons in the baseline).

When CC was combined with LCC, mean 
annual sediment yields showed a −6.3% and + 1.6% 
change under both scenarios, based on the inter-
model average with change of −46.3%  (10th per-
centiles) and + 34.2%  (90th percentiles) for RCP 
4.5 and −41.9%  (10th percentiles) and + 52.1%  (90th 
percentiles) for RCP 8.5. Results of simulating sedi-
ment load under RCP 4.5 with 2050 land cover dem-
onstrated the greatest reduction, 45.7% (from 90.4 to 
49.1 tons) in June, and the greatest increase, 17.1% 
(from 198 to 231.9 tons) in December (Fig.  7). 
Results indicated an annual sediment load of 111.1 
tons for the 10th percentile and 278 tons for the 90th 
percentile under RCP 4.5 and future land cover.

Table 4  Percent change for R10mm index in RCP 4.5 and 
RCP 8.5 scenarios for selected climate models in the Neka 
River basin

Model RCP 4.5 RCP 8.5

CNRM-C5 20.6 2.3
CSIRO-Mk3-6–0 20 112.9
MIROC5 4.1 6.2
MRI-CGCM3 22.4 27.6
NorESM1-M 0  −8.8
Can-ESM2 67.3 41.3
CCSM4 10.2 14.9

Table 5  Results of annual 
mean water quantity and 
quality parameters under 
LCC alone, CC alone, and 
combined impacts of CC 
and LCC based on the inter-
model average

Scenario Simulation Streamflow 
 (m3/s)

Sediment (tons) Nitrate (kg N) Phosphate (kg P)

Reference Baseline 3.30 207.09 727.78 28.09
2050 LCC LCC 3.41 215.14 751.13 28.70
RCP 4.5 CC 3.02 190.23 713.89 25.51

CC + LCC 3.07 193.99 732.00 25.62
RCP 8.5 CC 3.19 203.78 725.61 26.34

CC + LCC 3.29 210.55 750.02 26.87
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The average annual sediment concentration was 
25.1  mg   l−1 under baseline climate conditions with 
2010 land cover. (SWAT output gives sediment yields 
in tons and flow in  m3/s. With these two, the concen-
tration in mg  l−1 can be calculated). The simulated 
results of future sediment concentrations show a 
decrease in the annual change by 8.6% (22.9 mg  l−1) 
and 8.5% (23.0 mg  l−1) under both scenarios, respec-
tively. RCP 4.5 and RCP 8.5 showed an increase in 
the sediment concentration for winter and autumn 
and a decrease for spring and summer. The predicted 
sediment concentrations for spring and summer under 
RCP 4.5 (RCP 8.5) scenario alone were 21.8 mg  l−1 
(21.6 mg  l−1) and 17.3 mg  l−1 (16.1 mg  l−1), respec-
tively, while the average concentrations of sediment 
were 22.8 mg   l−1 in spring and 26.1 mg   l−1 in sum-
mer under the baseline conditions. When the LCC 

scenario was combined with RCP 4.5, simulated sedi-
ment concentration for the summer season displayed a 
significant reduction from 26.1 mg  l−1 to 16.5 mg  l−1, 
whereas in combination with the RCP 8.5 simulations 
showed a reduction by −38.8% (from 26.1 mg   l−1 to 
15.9 mg  l−1).

The simulated mean sediment concentrations 
were significantly lower in June compared with the 
baseline conditions for CC alone and CC combined 
with LCC scenarios. Relative to baseline condi-
tions, when including the climate change simu-
lations for the RCP 8.5 scenario combined with 
land cover for 2050, the results revealed a −64.5% 
reduction of the concentration of sediment in June 
(from 45  mg   l−1 in baseline to 16  mg   l−1 in the 
predicted scenario) (Fig.  8). The highest increase 
in the exhibited sediment concentrations occurred 

Fig. 6  SWAT simula-
tion for A sediment load, 
B phosphate load, and C 
nitrate load under RCP 4.5 
and RCP 8.5 scenarios and 
2010 land cover. The grey 
band represents the  90th 
and  10th percentiles for 
various CMIP5 models. The 
numbers show the average 
change (in percent) among 
the various models (in 
bold), and the 90th (upper) 
and  10th (lower) percentiles
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in August under RCP 4.5 alone (from 18.1 mg   l−1 
in baseline to 20  mg   l−1), RCP 8.5 alone (from 
18.1 to 21.5 mg   l−1), and the combination of RCP 
8.5 climate scenario and future land cover (up to 
21.2  mg   l−1) with respect to the current condition 
based on the average of various CMIP5 model del-
tas, whereas December showed the highest increase 
in RCP 4.5 simulations combined with land cover 
for 2050 (from 24.1 to 26.3 mg  l−1) (Fig. 8).

The average annual predicted sediment yield 
increased by 3.9% under simulated land cover for 
the year 2050 as compared with land cover for 
the year 2010; with climatic variables kept con-
stant, monthly sediment yield is simulated to range 
from + 0.34% to + 9.3%. The sediment concentra-
tion was 21.9 mg  l−1 in May for the 2010 land cover 
but decreased to 21.0 mg  l−1 for the 2050 land cover 
with observed climate data (the highest decrease is 

projected to occur in May). The concentration of 
sediment showed its largest increase in December 
from 24.1 mg  l−1 in baseline to 24.3 mg  l−1 in 2050 
land cover.

Impacts of isolated CC and LCC on nutrient loads

The annual loads of  NO3
− and  PO4

3− were 728 kg N 
and 28  kg P in the outlet of the basin for the 
period 2006−2014 (Table  5). Monthly change in 
nutrient loads is presented graphically in Fig.  6. 
RCP 4.5 and RCP 8.5 indicated a 1.9% (from 
727.8 to 713.89  kg  N) and a 0.3% (from 727.8 to 
725.6 kg N) reduction of the annual  NO3

− load. The 
seasonal projections suggest increases in  NO3

− and 
 PO4

3− loads during winter under both scenarios; 
the rest of the seasons showed a decrease in these 
loads based on the inter-model average. Under both 

Fig. 7  SWAT simula-
tion for A sediment load, 
B phosphate load, and 
C nitrate load under the 
combined effect of land 
cover change and the RCP 
4.5 and RCP 8.5 scenarios. 
The grey band represents 
the  90th and  10th percentiles 
for various CMIP5 models. 
See Fig. 6 for details
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scenarios, the annual concentration of  NO3
− was 

found to increase by 17.3% and 15.3%, respec-
tively, based on the inter-model average. The larg-
est increase is forecast to occur in July by 58.2% 
(RCP 4.5) and in August by 64.4% (RCP 8.5) 
(Fig.  8). The change in annual simulated concen-
tration of  NO3

− ranged from − 13.5% (from 0.084 
to 0.073  mg  N   l−1) (10th percentiles) to + 49.6% 
(from 0.084 to 0.127  mg  N   l−1) (90th percentiles) 
for the RCP 4.5 scenario and from −16.9% (10th 

percentiles) to + 46.3% (90th percentiles) for the 
RCP 8.5 scenario, based on the averages of the 
multi-model. Seasonal variation in the projected 
concentration of  NO3

− was found to increase in 
all seasons, with the highest increase in autumn 
under RCP 4.5 (22.4%; from 0.1 to 0.124 mg N  l−1) 
and RCP 8.5 (30%; from 0.1 to 0.132  mg  N   l−1). 
Monthly average  NO3

− concentration increased for 
all months except December (−4.3%; from 0.16 to 
0.153  mg  N   l−1) under RCP 4.5 and increased for 

Fig. 8  Monthly changes 
(%) (percentile 10, average, 
and percentile 90 of various 
CMIP5 models’ deltas) 
in nitrate, phosphate, and 
sediment concentrations 
under CC (climate change), 
LCC (land cover change), 
and CC + LCC (climate 
change + land cover change) 
for RCP 4.5 (A) and RCP 
8.5 (B) scenarios. Lines 
indicate the position of no 
change
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all months except March (−1%), April (−3.8%), and 
December (−1.1%) under RCP 8.5 (Fig. 8). Nitrate 
concentration showed a maximum value in Novem-
ber in baseline condition (0.17 mg N  l−1), RCP 4.5 
(0.21 mg N  l−1), and RCP 8.5 (0.22 mg N  l−1) sce-
narios with 2010 land cover.

The annual changes of  PO4
3− load for the 10th and 

90th percentiles are −37.5% and + 17.6%, and −36.1% 
and + 27.1%, for the RCP 4.5 and RCP 8.5 sce-
narios, respectively, showing decreases in annual 
 PO4

3− of 9.2% and 6.2%; the largest increase would 
occur in January for RCP 4.5 (4.1%) and RCP 8.5 
(16.8%) (Fig.  6). The seasonal concentration of 
 PO4

3− predicted by SWAT would increase by 4.8% in 
spring (from 5.02 to 5.27 µg P  l−1), 6.7% in autumn 
(from 6.6 to 7.03 µg P  l−1), and 8.7% in winter (from 
3.78 to 4.1  µg P  l−1), decreasing by 16% in sum-
mer (from 7.34 to 6.17 µg P  l−1) under RCP 4.5 and 
increasing in autumn (11.1%) and winter (5.1%), and 
decreasing in spring (0.03%) and summer (17.9%) 
under RCP 8.5, based on the average of the multi-
model. For both climate change scenarios,  PO4

3− con-
centrations decreased from May to August (Fig.  8) 
based on the ensemble average, with the greatest 
reduction in June from 9.04 µg P  l−1 to 6.33 µg P  l−1 
under RCP 4.5 and from 9.04 µg P  l−1 to 6.32 µg P  l−1 
under RCP 8.5.  PO4

3− concentrations had the largest 
increase in March of + 15% (from 3.33 to 3.83 µg P 
 l−1) for RCP 4.5 and + 13.4% (3.33 to 3.77 µg P  l−1) 
for the RCP 8.5. For the 10th percentile of various 
GCM outputs under RCP 4.5 (RCP 8.5) with 2010 
land cover, a 20.6% (19.6%) reduction from 5.68 µg 
P  l−1 to 4.51 (4.57) µg P  l−1 in annual phosphate con-
centration was obtained, while there was an incre-
ment to 20.6% (17.4%) from 5.68  µg P  l−1 to 6.85 
(6.67) µg P  l−1 for the 90th percentile deltas (Fig. 8). 
The results of nutrient modeling under CC highlight 
the high degree of uncertainty among various climate 
models.

Under the LCC scenario alone, an increase of 3.2% 
and 2.1%, respectively, in annual  NO3

− and  PO4
3− loads 

was observed, while an increase of 1.3% and a reduc-
tion of 1.9%, respectively, was revealed in both nutrient 
concentrations. Summer (+ 3.7%) and autumn (+ 4.2%) 
seasons showed an increase in change of nitrate con-
centration due to change in land cover alone and spring 
(−1%) and winter (−0.05%) recorded a decrease for this 
nutrient. All seasons exhibited a decrease in the con-
centration of phosphate, showing the largest decrease in 

winter by −3.1%. Under a reduction in annual nutrient 
loads based on the mean of multi-CMIP5 models, while 
LCC led to an annual increment in pollutants (Table 5). 
However, the results obtained from 10 and 90th percen-
tile of GCM’s simulations based on the multi-model 
revealed a marked variability of change in the nutri-
ent loads. The RCP 4.5 scenario resulted in a 25.1% 
increase from 727.8 kg N to 910.5 kg N for  NO3

− loads 
in the 90th percentiles for various CMIP5 models, and 
a 26.5% reduction from 727.8 to 534.6 kg N in the 10th 
percentiles for the multi-model.

Combined effects of climate and land cover changes 
on nutrients

The largest decrease for phosphate load is projected 
to occur in June (32.7%; from 19.2 to 12.95  kg P) 
and the largest increase in December (5.4%; from 
27.7 to 29.2 kg P) for RCP 4.5 combined with LCC 
scenario, with an annual reduction of 8.8% (Fig.  7). 
The annual nitrate load increased by 0.6%, with 
the largest increase in August (25.7%) for RCP 4.5. 
Under RCP 4.5, the results indicated 19.7% increase 
in annual nitrate concentration, and 2.2% decreases 
in the concentration of phosphate, based on the 
inter-model average. Monthly nitrate concentration 
was found to increase for all (ranged from + 0.21% 
in March to + 58.77% in August) except for the June 
and December under RCP 4.5 and to increase for 
all (ranged from + 0.05% in December to + 69.2% in 
August) except for the March and April under RCP 
8.5 (Fig. 8). The highest seasonality average change 
in  NO3

− concentration was seen in autumn under both 
climate scenarios for which similar results were found 
for isolated CC scenarios. In summer, the simulated 
 PO4

3− concentration was lower under RCP 4.5 (from 
7.34 to 6.12 µg P  l−1) than in the baseline condition, 
while other seasons showed increases for this nutrient 
(ranged from + 3.2% to + 6.8%).

Simulation of combined changes resulted in a 
3% increase in  NO3

− load, and a 4.3% decrease in 
 PO4

3− load under RCP 8.5 (Table 5). The  10th percen-
tiles for annual  NO3

− and  PO4
3− load showed a reduc-

tion of 26.3% and 34.5%, respectively, and increases 
of 31.5% and 29.4% for the two contaminants for the 
 90th percentiles under RCP 8.5. The analyses of com-
bined LCC and CC (RCP 8.5 scenario) showed that 
the annual change of the  NO3

− and  PO4
3− concentra-

tions were + 17.8% and −3.2%, respectively, based 
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on the mean of various CMIP5 models. The effects 
of LCC and RCP 8.5 scenario estimates were a 1.2% 
decrease of phosphate concentration in spring and 
a 19% decrease in summer, while they increased by 
2.4% in winter and 9.4% in autumn.

Table 5 shows the mean annual simulated variation 
(scenarios vs. baseline) of water quantity and qual-
ity parameters based on the inter-model average. The 
average annual nitrate load showed a slight change 
in all scenarios, while showing marked variability in 
the 10th and 90th percentiles for the multi-model of 
GCM. Average simulated  NO3

− load was 957 (536) 
kg N for the 90th (10th) percentile of various GCM 
outputs under combination of LCC, and RCP 8.5, 
relative to the historical annual average of 727.8 kg N 
in the baseline condition. For the joint change in land 
cover and RCPv8.5, phosphate load ranged from 18.4 
to 36.3 kg P for the 10th and 90th percentiles.

Discussion

In this study, we ran the SWAT model for simulating 
water quality under future climate change induced in 
land cover, which was previously calibrated for dis-
charge to assess the potential effects on the water 
balance components of the Neka River basin. The 
increase in agricultural, rangeland, and residential 
areas and the decrease in forest area projected for the 
land cover in 2050 with the observed climate data 
indicates that the annual sediment yield, nitrate, and 
phosphate loads in the Neka River basin will increase 
compared with those under the 2010 land cover con-
ditions. LCC appears to have minimal effect on sur-
face water quality relative to CC and pollutant loads 
for the land cover of 2050, which were higher than 
those for the land cover of 2010. This suggests that 
the agricultural intensification (mainly conversion 
of forest to agriculture) and excessive fertilization 
are the main sources of soil erosion and incremental 
nutrient loads in the Neka River basin. However, the 
relative reduction in the land areas affected by LCC 
(Joorabian Shooshtari et  al., 2018) may explain the 
relatively less impact of LCC on both the sediment 
and nutrients loads. Since the changes in water qual-
ity parameters under LCC were small, CC scenarios 
are the main controlling factor of change in the future 
loads of nutrients in the Neka River basin. This may 
be due to the fact that sediment carries a large portion 

of the contaminants which is highly sensitive to pre-
cipitation and discharge and its relationship with the 
discharge is usually as a power function (Azari et al., 
2016). Under CC, increased precipitation especially 
extreme rainfall can lead to an increase in sediment 
yield as well as water contaminants (Abbaspour et al., 
2009). Thus, the effects of climate changes on water 
quality chemistry are greater than those of LCCs. The 
annual predicted discharge in land cover for the year 
2050 was higher than that simulated under land cover 
observed in 2010 in the Neka River basin (Joorabian 
Shooshtari et al., 2017). This might be related to the 
decrease in the evapotranspiration, and infiltration 
rates, and an increase in surface runoff and river dis-
charge volume as consequences of the degradation 
of natural ecosystems, residential development, and 
agricultural expansion. Therefore, increased discharge 
under LCC led to a small increase in average annual 
sediment yield. Conversion from forest to agricultural 
land led to an increased amount and velocity of sur-
face runoff and, as a result, an increase in sediment 
loadings (García-Ruiz et al., 2010). Phosphate mostly 
moves attached to sediment; consequently, the aver-
age annual  PO4

3− yield increased in the watershed. 
Simulated  PO4

3− yield by SWAT is expected to fol-
low a pattern similar to sediment yield. The increase 
of nitrate and phosphate as a reaction of the basin is 
correlated with agricultural expansion, residential 
development, and deforestation. Nutrients can be 
lost from deforested areas by increased mobilization 
of soil nutrients and leaching, especially when little 
vegetation is available to take up nutrients (Hajabbasi 
et  al., 1997). Some essential sources of nutrients in 
the river include fertilizers used in agricultural activi-
ties, detergents from residential sewage due to popu-
lation growth. Future LCC scenarios exhibit a higher 
impact on nitrate loads than the sediment and phos-
phate loads in the Neka River basin. This is proba-
bly due more to greater urea fertilizers’ consumption 
with high leaching in intensive agricultural areas than 
to phosphorus fertilizer locations in which the urea 
manure is out of reach of the roots, leading to leach-
ing into groundwater and an increased in the load of 
nitrate on the surface waters.

The average annual sediment is expected to change 
from 207.1 to 190.2 tons for the RCP 4.5 scenario 
and based on the ensemble mean. We have projected 
annual decreases in sediment yield of 8.1% for RCP 
4.5 and 1.6% for RCP 8.5 scenarios, mostly due to 
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the decline in predicted annual river discharge for 
this basin (see Joorabian Shooshtari et  al., 2017). A 
strong relationship between discharge and sediment 
 (R2: 0.98 under baseline condition) was evident in the 
Neka River basin. Predicted precipitation is the main 
factor affecting the reduction in simulated river dis-
charge (Joorabian Shooshtari et  al., 2017), which in 
turn is also the main driver of reduced sediment load 
in the Neka River basin. These results are in agree-
ment with the findings of previous studies. Perazzoli 
et  al. (2012) used SWAT to assess the hydrological 
response under climate changes in southern Brazil 
and reported that sediment yield follows the same 
pattern as discharge. The same results were reported 
by Serpa et  al. (2015) in the São Lourenço catch-
ment, Spain, reporting that the decreases in simulated 
annual precipitation would lead to a decrease in the 
annual discharge and sediment export. Under the CC-
only scenarios, reduction in  NO3

− was linked with a 
decreased magnitude of the discharge in the present 
study, except that some months showed different 
behaviors. Nitrate correlation with discharge is 0.70 
under the baseline conditions. These results agree 
with the findings of Molina-Navarro et  al. (2014) in 
the Ompólveda River basin, Spain. Varanou et  al. 
(2002) also reported that decreasing surface and lat-
eral flows diminished nitrate losses in the Ali Efenti 
Basin, central Greece. Our analysis illustrated that 
the highest increase in temperature is projected for 
summer under the two RCPs, and the large decrease 
in nitrate estimates occurs in the summer months 
because of the increase in temperature, which could 
also lead to more losses of nitrate due to the increase 
of mineralization (Molina-Navarro et al., 2018).

The annual  PO4
3− load of the basin is expected to 

decrease under both CC scenarios. Generally, similar 
trends of discharge variation were observed for the 
 PO4

3− load. Additionally, a positive correlation was 
found between sediment yield and phosphate load 
 (R2 = 0.85), which indicated that  PO4

3− transport is 
mostly controlled by sediment in the catchment and this 
nutrient mainly came from soil erosion and fertilizer 
input from the area covered by cultivated land. The 
differences in the annual pollutant loss reductions can 
be attributed to different transport pathways of these 
compounds into surface waters. Despite the decrease 
in annual loads of water quality parameters, the con-
centration of nitrate in the two RCPs showed a sig-
nificant increase based on the ensemble mean, which 

is due to the reduction of the water dilution rate with 
a decrease in river discharge (Serpa et al., 2017). The 
amount of sediment yield showed less change (from 
207.1 to 194.0 tons) in joint CC and LCC as compared 
to the existing scenario (Table  5). The change in the 
average annual load of nitrate is simulated to decrease 
only from 727.8 to 713.9 kg N under RCP 4.5 alone 
(a change of around 14 kg N), but increased only from 
727.8 to 732 kg N (change of 4 kg N) for the combined 
CC and LCC simulations. Changes in the response of 
annual water quality parameters to impacts of CC and 
LCC are less than that of CC alone, especially for the 
RCP 4.5 scenario, reflecting LCC highlights of the role 
of compensation in the annual loads under future CC 
relative to the baseline climate.

Figure 6 depicts the monthly sediment yield, nitrate, 
and phosphate load estimations that tend to be quite vari-
able under CC scenarios. The inter-model variability for 
future precipitation and R10mm index is very big, and 
this is a constraint to project properly the magnitude of 
monthly runoff and flood events that tightly control sedi-
ment and nutrient loads. There are several sources of 
uncertainty in the water quality models, including model 
structural uncertainty and state uncertainty, input data 
uncertainty (changes in the natural conditions, limitations 
in instrument such as detection limit, and insufficient 
and short length of observed data), and parameter uncer-
tainty (Shen et al., 2010). The sources of uncertainty in 
hydrological modeling stem from applying future CC 
projections that are mostly linked to climate change sce-
nario uncertainty, structural uncertainty of GCM, GCM 
initial conditions (ensemble runs), and a choice of down-
scaling methods from GCMs (Prudhomme and Davies, 
2009; Chen et al., 2011b; Mehdi et al., 2015). In the cur-
rent study, to increase the range of future projections, 
an ensemble of 17 future GCM simulations was run to 
investigate hydrological effects on a watershed that led 
to a different range with high variability of outcomes. 
As suggested by some researches, an effective way to 
obtain the variability change in water quality under CC 
conditions and improve results of the model, it is more 
robust to analyze several GCMs (Shrestha et al., 2017) 
and downscaling methods (Chen et al., 2011a), instead of 
focusing on a single model, in order to interpret results 
with more caution and to cover a wider range of vari-
ability. Another source of uncertainty in this research is 
using a delta change factor because the temporal length 
of wet or dry days and variances of temperatures are not 
taken into account, which influences the reliability of our 
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results (Chen et al., 2011a). One of the main inputs for 
hydrological modeling in SWAT is soil characteristics. 
The main limitation in input data is related to the lack of 
high-resolution soil map and daily measured nutrient data 
in the Neka River basin; therefore we used a low-resolu-
tion FAO’s global soil map as input to the hydrological 
model. This global map was applied in watersheds where 
the local map was unavailable at a finer scale. Accessibil-
ity to the detailed soil data was the main limitation of this 
research, which should be addressed in follow-up stud-
ies. Bouslihim et al. (2019) concluded that an insignifi-
cant variation has been observed in stream flow simula-
tion between a refined database with eleven soil classes 
and FAO soil map, but these two soil databases mainly 
affected the SWAT model predictions of soil water con-
tent and water yield in Tamedroust watershed, Morocco. 
The findings of the Chaplot (2005) concluded that the 
more time, effort, and extra cost to produce more detailed 
soil data with the highest accuracy is not justified to 
obtain more accurate simulation in the Lower Walnut 
Creek. Given the precautions taken from those results, 
when applied to other models or case studies, only a lim-
ited amount of water quality data (1 or 2 days of data per 
month) was available in the study zone; consequently, 
LOADEST (LOAD ESTimator) software, developed by 
USGS, was utilized to reconstruct time series of nutri-
ent data and to fill in missing data. LOADEST has been 
previously applied to estimate daily values of nutrient 
loads over a time period in several studies, such as that 
of Yen et al. (2015) and Niraula et al. (2013). Another 
limitation to this study’s approach was the uncertainty 
of the observed data, due to scarcity in the water qual-
ity observation data and estimated by LOADEST, which 
impact model output integrity (Hoque et al., 2012). Land 
cover impact assessments on hydrological modeling are 
plagued with several source uncertainties, such as deci-
sion makers’ behavior in the future, which may change 
the position of new settlements and agricultural devel-
opment in the future, according to changes in national 
and regional policy. These limitations may have had an 
impact on modeling, but this was inevitable.

Conclusions

SWAT model, a quasi-distributed hydrological model, 
was used to evaluate the effects of future LCC and 
CC on the surface water quality in the Neka River 

basin, Iran. Reasonable agreement between observed 
and projected data of sediment, phosphate, and 
nitrate loads suggests that the SWAT model can be 
recognized as a valuable tool for the impact analy-
sis of water quality parameters under combined CC 
and LCC. Future climate emission scenarios showed 
a trend of warmer climate conditions with large 
inter-model variability in the basin’s precipitation 
for the period 2035−2065. Climate and land cover 
change impact analyses revealed that both annual 
sediment and phosphate concentrations are likely to 
decrease and nitrate concentration to increase in the 
future under the inter-model average. An increase is 
observed in the sediment, phosphate, and nitrate for 
all of the months under LCC, because of the expan-
sion of cultivated lands, increased erosion rate, and 
higher fertilizer application. Our analysis indicated 
that the impacts of LCC would be less than those 
caused by the projected CC. Simulations of water 
quality parameters are subject to high uncertain-
ties under CC due to the model’s large uncertainties 
in the predicting of precipitation. Change in rainfall 
has a pronounced impact on pollutants because of 
the change in discharge and sediment yield. Several 
sources of uncertainty suggest that model results 
should be interpreted with great care. However, this 
study may be beneficial to land managers of the Neka 
River basin, as it clearly illustrates how water qual-
ity can deteriorate in response to changes in CC and 
LCC.
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