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Abstract

In Caspian Sea basin, sturgeons spend the larval and juvenile stages in freshwaters of rivers and then, they migrate to
brackish waters of the sea where they grow and mature. With regard to the elevation of the metal concentrations in
coastal waters and sediments of the Caspian Sea and its adjacent rivers, it is likely that juvenile sturgeon are exposed to
sub-lethal levels of metals during seawater entry process. We compared the biochemical responses of juvenile European
sturgeon, (Beluga, Huso huso) exposed to a sub-lethal level of copper (Cu, 20 μg/L) and cadmium (Cd, 300 μg/L) in
freshwater (FW, 0 ppt) and brackish water (BW, 11 ppt) for seven days. The results showed that the levels of plasma
glucose increased significantly in BW and in all metal exposed groups. Also, plasma cortisol concentrations showed
significant increases when juveniles were exposed to BW, Cu(FW/BW) and Cd(BW). The activity of liver superoxide
dismutase (SOD) decreased significantly in BW compared with FW. Moreover, Cu and Cd exposure enhanced the activity
of SOD in BW, while SOD did not show any changes in FW. The levels of tissue and plasma proteins as well as plasma
triiodothyronine (T3), thyroxine (T4) and liver Catalase (CAT) activity remained constant when animals were exposed to
Cu/Cd in both FW and BW environments. Our data indicate that exposure of juvenile beluga to BW stimulated the
general biochemical responses of stress such as cortisol and glucose, while sub-lethal exposure to Cu and Cd caused
oxidative stress in BW environment but not in FW.
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Background
Metals are important groups of non-degradable pollutants
of environment and different anthropogenic activities as
well as natural processes can lead to accumulation of these
cumulative pollutants in the aquatic bodies [1,2]. Chronic
contamination of freshwater and marine environments by
metals, like copper (Cu) and cadmium (Cd) is frequently
reported and it is considered as a severe and pervasive
concern [3-5].
Exposure of aquatic organisms even with sub-lethal

concentrations of metals may cause biochemical and
ionic disturbances or adaptive responses in blood and
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tissues [6,7]. In fact, various genetic, physiological and
biochemical factors and behavior of fish could change as
sensitive biomarkers when they are exposed to sub-lethal
concentrations of metals, like Cu and Cd [8-11]. Exposure
of aquatic organisms to metals may result in production
of reactive oxygen species (ROS) such as hydrogen pero-
xide, superoxide radicals and hydroxyl radicals leading to
impairment of normal oxidative metabolism and oxidative
stress [12,13]. In response to oxidative stress, the antioxidant
defense system of aquatic organisms is activated [14-17].
The antioxidant system include various enzymes such
as superoxide dismutases (SOD) which catalyze the
dismutation of superoxide radical to oxygen and hydrogen
peroxide as well as catalase (CAT) and glutathione pero-
xidase (GPx) which act to degrade hydrogen peroxide [13].
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Available data show that the toxic effects of metals depend
on a range of biotic and abiotic factors [18]. Among the
abiotic factors, salinity has a negative effect on metal
toxicity and accumulation, so that its increase reduces
the metal toxicity [13,18,19]. Salinity affects the metal
bioavailability and uptake and its subsequent toxicity
through competing with metal ions for binding to biological
molecules [1,20]. Moreover, water salinity increase is associ-
ated with the increased ROS generation in organism’s body
[21]. Thus, the antioxidant enzyme activity alterations have
been reported during water salinity changes [22,23]. This
is in particular important for juveniles of anadromous fish
when migrating from freshwater to seawater. Anadromous
fish must develop complex osmoregulatory mechanisms
to survive successfully in both the estuaries and the sea
during their seawater entry process [24,25]. In this regard,
it is important to examine more realistically the toxic
effects of metals in different environments in order to
estimate the consequences that fish face during downstream
migration.
In Caspian Sea basin, the juveniles of sturgeons migrate

from freshwaters of rivers to brackish waters of the sea
where they spend most of their life cycle there. European
sturgeon, (Beluga, Huso huso), is one of the most important
sturgeon species in Caspian Sea that its generation is criti-
cally endangered [26]. Increasing pollution of the Caspian
Sea is one of the major threats to the survival of fish. Since,
elevation of the metal concentrations in coastal waters
and sediments of the Caspian Sea and its adjacent rivers
forming a significant part of the Caspian Sea pollution
[4,27-31], so heavy metals can be a potential threat to
health of the fish in both freshwater and seawater. In such
environments, beluga juveniles may experience transient
fluctuations in metal concentrations during downstream
migration and seawater entry process. Therefore, the aim
of this study is to compare the biochemical responses of
juvenile beluga exposed to sub-lethal concentrations of
Cu and Cd in both freshwater (FW) and the brackish
water (BW).
Methods
Fish
The juveniles of beluga used in the present study were
obtained from Shahid Marjani Sturgeon Center (Golestan
province, Iran), and transferred to the laboratory of Shahid
Rajaee Sturgeon Hatchery Center (Mazandaran province,
Iran) in May, 2008. Fish were stocked in 2000 L freshwater
tanks before start of the experiment. 108 fish (55.4 ± 6.8 g
in weight, +4 months in age) were randomly selected and
transferred from the stock tanks to experimental ones in
June. The weights of the fish used in the experiments were
not significantly different. The fish were fed 3% of body
weight once a day in the morning (at 9:00–9:30 AM).
Laboratory exposure
Stock solutions of Cd (2000 mg/L) and Cu (1000 mg/L)
were prepared using CdCl2.2.5H2O (China) and CuSO4 ·
5H2O (Merck, Darmstadt, Germany) in 1 liter of double-
deionized water. All stock solutions were stored at 4°C.
Before commencing the experiments, the stock solutions
were diluted to the desired concentrations with FW (0 ppt)
and BW (11 ppt). 18 fish for each treatment (3 replicates)
were directly introduced to new tanks containing 300 L
of FW and BW. In metal exposure treatments, fish were
exposed to nominal Cu and Cd concentrations of 20
and 300 μg/L, respectively in FW and BW for 7 days. During
the experiments, the physicochemical characteristics of
water were measured daily: temperature, 21.2 ± 0.3°C;
pH, 7.9 ± 0.2; hardness, 295 ± 15.8 mg CaCO3/L; salinity:
11 ± 0.2 ppt. Aeration of tanks was done by means of air
stones attached to an air compressor. Every two days, 90%
of water was replaced with fresh medium which stored in
supplementary stock tanks to minimize metal loss [15].
During exposure, fish were fed daily at 3% of body weight
and they were starved for 24 h prior to sampling.

Sampling and analysis
Salinity levels of the experimental solutions were measured
daily by salinimeter (Tanaka, Japan). Cu/Cd was monitored
by inductively coupled plasma optical emission spectrom-
etry (ICP-OES) on daily basis. At the sampling time,
fish were removed from each treatment and quickly
anaesthetized in clove-essence solution (at 9:00–9:30 AM).
After anesthesia, their weight was measured. Blood was
drawn from the caudal vein, just behind the anal fin and
collected into heparinized syringes and transferred to
heparinized tubes held on ice until centrifugation. Imme-
diately after blood collection, liver tissue was taken using
clean equipment, rinsed by physiological serum, weighed,
frozen in liquid nitrogen and stored at −80°C until further
analysis. To obtain plasma, blood samples were centrifuged
at 10000 rpm for 3 min (+4°C), aliquoted and were stored
in −20°C. The liver was homogenized by homogenizer
(TRI-I instrument, England) in 100 mM phosphate buffer
(pH 7.4, 1:10, w/v) containing 2 mM EDTA and 150 KIU/
mL aprotinin as a protease inhibitor. Homogenates were
centrifuged at 10,000 rpm (Beckman, Avanti™ 30, USA)
for 45 min (+4°C) and supernatant was used as enzyme
source. The glucose and total protein levels were measured
using enzymatic colorimetric assay and chemical colori-
metric assay kits, respectively (Pars Azmoon, Tehran, Iran).
Plasma cortisol, triiodothyronine (T3) and thyroxine (T4)
were assayed with commercial ELISA kits (Diagnostics
Biochem Canada Inc, Ontario, Canada). CAT (EC.1.11.1.6)
and SOD (EC.1.15.1.1) activities were measured using
colorimetric assay kits (Nanjing Jiancheng Bioengineering
Institute, Nanjing City, P.R China) in microtiter plate
format and using ELISA Reader (Sunrise, Tecan, Austria)
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for optical density recording. All the assays were performed
according to manufacturer guidelines. One unit of enzyme
activity is the amount of enzyme that catalyzes the oxi-
dation of 1 μmole substrate per minute. The results are
accordingly given as U/mg protein.

Statistical analysis
Data were analyzed by a one-way analysis of variance
(ANOVA), followed by a Duncan’s post hoc analysis for
multiple comparisons. Differences were considered
statistically significant at P < 0.05. SPSS (version 17.0)
software was used for the statistical analysis.

Results
Metal contamination caused no changes in water quality
parameters in both FW and BW. The concentrations of
Cu2+ and Cd2+ in water of the metal treatments were
17.6 ± 1.1 μg/L and 281.6 ± 9.4 μg/L, respectively. Exposure
of H. Huso to metals did not cause any fish mortality
within 7 days in both FW and BW.
Plasma glucose levels increased significantly in the all

experimental treatments compared with FW (p < 0.05,
Figure 1a). Plasma cortisol levels showed significant
increases only when animals exposed to BW, Cu (FW/BW)
and Cd (BW) treatments. Also, Cu (BW) and Cd(BW)
caused no significant changes in plasma glucose and corti-
sol compared to BW (Figure 1a, b). The levels of tissue
and plasma proteins showed no significant changes when
animals exposed to BW or Cu/Cd in both FW and BW
environments (Table 1). Also, the levels of plasma T3 and
T4 remained constant in metal exposed and control
groups. Moreover, the levels of T3 and T4 did not differ
significantly in FW and BW (Figure 2a, b).
The CAT activity did not differ significantly following

BW and metal exposures (p > 0.05, Figure 3a). In contrast,
the activity of SOD decreased significantly in BW compared
to FW (Figure 3b). Moreover, Cu and Cd exposure
enhanced the activity of SOD in BW, while SOD did
not show any significant changes in FW.

Discussion
Exposure of juvenile European sturgeon to BW and a
sub-lethal level of Cu(20 μg/L in FW/BW) and Cd
(300 μg/L in FW/BW) for 7 days significantly enhanced
the levels of non-specific stress response like plasma
glucose and cortisol. On the contrary, salinity and metal
exposure appeared to have no effect on the other biochem-
ical parameters like plasma/tissue proteins and plasma T3

and T4. Although, hepatic activity of SOD was clearly
lower in BW compared with FW, a significant elevation in
SOD activity was observed during Cu(BW) and Cd(BW)
exposure. Unlike SOD, the levels of CAT remained un-
changed during BW and Cu(FW/BW) and Cd(FW/BW)
exposures.
As an ion-regulatory hormone, cortisol is considered a
primary indicator of stress response [32]. It is well
known that salinity and metal exposures enhance the
cortisol levels in fish [8,33-35]. The effects of salinity on
fish ion regulation may be the reason for high synthesis
and plasmatic levels of cortisol observed in BW and Cu
(BW)/Cd(BW) treatments. Generally, osmo-ionic disturb-
ance activates the hypothalamo-pituitary-interrenal axis
and subsequent cortisol secretion which stimulate Na+,
K+-ATPase activity [36,37]. In addition, cortisol induces
the plasma glucose levels by induction of gluconeogenesis
and glycogenolysis for supplying the new energy demand
[38,39]. It has been known that the levels of plasma corti-
sol and glucose usually correlate to each other [40,41].
During metal exposure, the glucose level usually increases
but it starts to decline to its initial level on other days of
the exposure [33,42]. In contrast, plasma glucose concen-
trations of the present study remained high even after
7 days of exposure. Similarly, some investigations have
shown such trend in plasma glucose levels after aqueous
metal exposure [8,43]. It means that juvenile H. huso
could not adapt themselves to new environments after
7 days of exposure.
Findings of the present study also showed that Cu/Cd

exposure in both FW and BW had no significant effect on
plasma/liver protein contents. It should be emphasized
that tissue protein contents are suitable biomarkers for
metal-induced stress, but a consistent trend has not
been observed among different studies, and the literature
contains several points of conflict [44-46]. It has been
stressed that carbohydrates represent the immediate energy
precursors for fishes exposed to stress condition, while
proteins are spared during chronic period of the pollutant
stress [47]. Exposure duration or sampling time (7 days)
might affect the obtained results. Juvenile carbohydrates/
lipids were probably sufficient for supplying of extra ener-
getic demands during metal exposures, so fish had no
need to mobilize proteins for energetic purposes.
Similar to protein contents, the levels of plasma T3 and

T4 did not change in both salinity and metal exposures. It
is implicated that thyroid hormones play important roles
in fish development, downstream migration and seawater
tolerance [48-51]. Our data do not coincide with the
results reported by other researchers who have issued
plasma T3 and T4 alterations related to salinity and metal
exposures [8,52]. However, results of the present study
may suggest that the employed concentrations of salinity
(11 ppt) and Cu/Cd could not affect thyroid function and
thyroid hormone signaling in beluga juveniles. A number
of studies have noted that plasma thyroid hormone levels
may be a poor predictive indicator of disruption of the
thyroid axis [53-55].
Exposure of H. huso juveniles to BW for 7 days resulted

in a significant reduction in liver SOD activity compared



Table 1 Changes in plasma and liver protein in juvenile H. huso exposed to brackish water (BW, 11 ppt), 20 μg/L of Cu
or 300 μg/L of Cd in FW/BW for 7 days

Parameters FW Cu(FW) Cd(FW) BW Cu(BW) Cd(BW)

Plasma protein (g/dL) 1.8 ± 0.2 2.1 ± 0.2 1.8 ± 0.1 2.1 ± 0.1 2 ± 0.2 1.3 ± 0.1

Liver protein (mg/g) 154.2 ± 15.3 167 ± 15.1 167.2 ± 14.1 172.4 ± 27.9 172.8 ± 20.8 137 ± 11.2

Data are presented as mean ± SEM, n = 4–6. Data was analyzed through one-way ANOVA besides Duncan comparisons.

Figure 1 Glucose (a) and cortisol (b) changes of juvenile European sturgeon, H. huso exposed to brackish water (BW, 11 ppt), 20 μg/L of Cu
and 300 μg/L of Cd in FW/BW for 7 days (mean ± SE, n = 4–6). Different letters indicate statistically significant difference among treatments (p < 0.05).
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Figure 2 Concentrations of the plasma thyroid hormones, T3 (a) and T4 (b) in juvenile European sturgeon, H. huso exposed to brackish
water (BW, 11 ppt), 20 μg/L of Cu and 300 μg/L of Cd in FW/BW for 7 days (mean ± SE, n = 4–6).
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with FW, but not CAT activity levels. Consistent with the
obtained results, a study on Acipenser naccarii [23]
showed that hepatic CAT and SOD decreased signifi-
cantly, as environmental salinity increased from FW to
35 ppt. They related decreased SOD and CAT activities to
the elevated amount of hepatic protein. On the other
hand, increased salinity from freshwater to seawater did
not lead to any significant changes in the antioxidant
activity of SOD and CAT in a euryhaline teleost Fundulus
heteroclitus [13]. We assume that different antioxidant
activity responses during salinity exposure are related to
different osmo-regulation physiology among fishes.
An increase in the liver SOD activity was detected in
juveniles exposed to Cu and Cd in BW. However, Cu
(FW)/Cd(FW)-exposed fish showed no significant dif-
ferences in SOD activity. These results indicate that
oxidative stress is probably increased during metal ex-
posure in BW and only manifested in SOD activity. To
cope with oxidative stress caused by metal exposure,
the antioxidant defense system of aquatic organisms is
activated [14-17]. Changes in antioxidant enzyme ac-
tivity especially for those of CAT and SOD have been
reported during metal exposure in fish [14,16]. It has
been suggested that SOD is more involved in protection



Figure 3 Liver CAT (a) and SOD (b) activities (U/mg protein) of juvenile European sturgeon, H. huso exposed to brackish water (BW,
11 ppt), 20 μg/L of Cu and 300 μg/L of Cd in FW/BW for 7 days (mean ± SE, n = 4–6). Different letters indicate statistically significant
difference among treatments (p < 0.05).
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against destruction caused by ROS compared with
CAT [56]. SODs are a group of metalloenzymes that
plays a crucial antioxidant role and constitutes a
defense system against the natural or chemically in-
duced production of ROS [21,22]. Accordingly, the
SOD activity increased in three-spined stickleback
Gasterosteus aculeatus, during the first week of Cu expos-
ure [14]. The stimulation of antioxidant parameters has
been reported in the liver of Oreochromis niloticus
exposed to chromium (Cr) and lead (Pb) when salinity
increased [57].
Conclusions
The results of the present study showed that exposure of
juvenile European sturgeon to BW and a sub-lethal level
of Cu(FW/BW) and Cd(FW/BW) enhanced the plasma
levels of non-specific stress response like plasma glucose
and cortisol. Moreover, the obtained data showed that
hepatic activity of SOD increased clearly in fish exposed
to Cu and Cd in BW, probably due to the increased
oxidative stress. These results indicate that even a
small sub-lethal level of the tested metals can be stressful
for juvenile European sturgeon.
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