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ABSTRACT In this paper, we develop compositional vector-based semantics of positive transitive sentences
using quantum natural language processing (Q-NLP) to compare the parametrized quantum circuits of two
synonymous simple sentences in English and Persian. We propose a protocol based on quantum long short-
term memory (Q-LSTM) for Q-NLP to perform various tasks in general but specifically for translating a
sentence from English to Persian. Then, we generalize our method to use quantum circuits of sentences as
an input for the Q-LSTM cell. This enables us to translate sentences in different languages. Our work paves
the way toward representing quantum neural machine translation, which may demonstrate quadratic speedup
and converge faster or reaches a better accuracy over classical methods.

INDEX TERMS Q-NLP, DisCoCat diagrams, ZX-calculus, quantum circuits, Q-LSTM.

I. INTRODUCTION
Machine translation (MT) [1] - automated translation of
natural languages by computers - was proposed by Warren
Weaver in 1949 [2]. Subsequently, a rule-based machine
translation (RBMT)was used based on dictionaries and gram-
mars for four decades. Then from the 1980s to 2000s, statis-
tical machine translation (SMT) gained better performance
than RBMT and dominated the field. SMT uses statistical
models based on the analysis of bilingual text corpus to
achieve translation [3]. A few years later in 2003, a lan-
guage model based on neural networks was suggested [4],
which gave a better-quality for the data sparsity problem of
traditional SMT models, getting a foundation for the next
neural networks on machine translation such as Convolu-
tional Neural Network (CNN), and then Recurrent Neural
Network (RNN) as the decoder to transform the state vector
into the target language [5]. This resulted in the birth of
the Neural Machine Translation (NMT), which is a method
that uses deep learning neural networks to map natural

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuan Zhuang .

language. NMT’s nonlinear mapping differs from the linear
SMT models, and describes the semantic equivalence using
the state vectors which connect encoder and decoder. NMT
is used to predict a sequence of numbers when a sequence of
numbers is provided. In the case of translation, each word
in the input sentence (e.g English) is encoded as a num-
ber to be translated into a resulting sequence of numbers
representing the translated target sentence (e.g Persian) via
neural network. Vaswani et al. introduced the basic trans-
former encoder-decoder architecture [6]. Martin Popel et al.
presented a deep learning system, CUBBITT [7], which could
win a race (English-to-Czech and Czech-to-English news
translation in preserving text meaning) against a professional
agency translation in a context-aware blind evaluation by
human judge. In general, the success of NMT depends on
the quantity and quality of the training pairs of sentences
in the source and target language. NMT architecture con-
sists of embedding layers, a classification layer, an encoder
network and a decoder network. In the architecture of the
CUBBITT machine translation system, the input sentence is
converted to a numerical representation that is encoded into a
deep representation by a six-layer encoder, which is decoded
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by a six-layer decoder into the translation in the target
language.

Natural language processing (NLP) [8]–[13] is a subgroup
of linguistics and artificial intelligence used for language
interactions between computers and humans, e.g. program-
ming computers to analyze natural language data with large
volumes. A computer can understand the meanings and con-
cepts of the texts in documents, recognises speech, and gen-
erates natural language via NLP. NLP was proposed first
in 1950 by Alan Turing [14] i.e. in what is now called
the Turing test as a criterion of intelligence for automated
interpretation and generation of natural language. Regarding
the Turing test for CUBBITT, most participants struggle
to distinguish CUBBITT translations from human transla-
tions [7]. Also, a group of researchers at OpenAI have devel-
oped Generative Pre-trained Transformer 3 (GPT-3) language
model [15], as the largest non-sparse language model with
higher number of parameters and a higher level of accuracy
versus previous models with capacity of ten times larger than
that of Microsoft’s Turing-NLG to date.

Recent advances in quantum computation and informa-
tion has opened up new windows in different technologies
with broad applications [16]–[21]. For example, recent quan-
tum approaches for NLP have been developed that may
reach quantum advantages over classical counterparts in
future [22], [23]. Protocols for quantum Natural Language
Processing (QNLP) have two aspects: semantic and syntax.
Both aspects are performed by a mathematical framework.
Compact closed categories are used to provide semantics
for quantum protocols [24]. The use of quantum maps for
describing meaning in natural language was started by Bob
Coecke [25]. Coecke has introduced diagrammatic language
to describe processes and their compositions [26]. The dia-
grammatic language of non-commutative categorical quan-
tum logic represents reduction diagrams for sentences, and
allows one to compare the grammatical structures of sen-
tences in different languages. Sadrzadeh has used pregroups
to provide an algebraic analysis of Persian sentences [27].
Pregroups are used to encode the grammar of languages. One
can fix a set of basic grammatical roles and a partial ordering
between them, then freely can generate a pregroup of these
types [25]. The category of finite dimensional vector spaces
and pregroups are monoidal categories. Models of the seman-
tic of positive and negative transitive sentences are given in
ref. [25]. Moreover, Frobenius algebras are used to model
the semantics of subject and object relative pronouns [28].
Brian Tyrrell [29] has used vector space distributional com-
positional categorical models of meaning to compare the
meaning of sentences in Irish and in English. Here, we use
vector-based models of semantic composition to model the
semantics of positive transitive sentences in Persian.

Our goal is to represent an algorithm that can be imple-
mented on quantum hardware and our work is a theoretical
proposal in this study. First we need to convert classical
information to quantum and vice versa. To go from classical
to quantum we employ various encoding quantum circuits.

Parametrized quantum circuits offer a concrete way to imple-
ment algorithms and even demonstrate quantum supremacy
in the noisy intermediate-scale quantum (NISQ) era. Accord-
ing to [22] the DisCoCat diagram is simplified to some other
diagram and is turned into a quantum circuit, which can
be compiled via NISQ devices. The grammatical quantum
circuits are spanned by a set θ . The meaning of the words
and hence whole the sentence are encoded in the created
semantic space. Finally, we rewrite the diagram as a bipar-
tite graph to turn a quantum circuit. ZX-calculus, like a
translator, turns a linguistic diagram into a quantum circuit.
According to [30] we consider both grammar and meaning
of a grammatical sentence in Persian and turn DisCoCat
diagram into a quantum circuit form. In section V we propose
an algorithm to translate sentences of different languages.
In this algorithm we use the special kind of recurrent neu-
ral networks as quantum long short-term memory (LSTM)
model. A recurrent neural network (RNN) can be thought
of as multiple copies of the same network, each passing a
message to a successor. RNNs are not able to learn to connect
the information. This problem are solved via the long short-
term memory (LSTM). In [31], a hybrid quantum-classical
model of LSTM (QLSTM) is proposed. Variational quantum
circuits (VQCs) are introduced as the building blocks of the
proposed framework. Finally, we present an algorithm that
can be used as translating a sentence into its successor. This
approach will be applied to convert short English sentences
into corresponding Persian sentences. The QLSTM encoder
and decoder are used to process the sequence to sequence
modelling in this task.

II. PRELIMINARIES
In this section, we provide some content, which will be used
throughout this paper. See the references [28] and [25] for
more details.
Definition 1: A category C consists of:
• a class obj(C), called the class of objects;
• for every two objects A,B a class C(A,B) of morphisms;
it is convenient to abbreviate f ∈ C(A,B) by f : A→ B;

• for every two morphisms f ∈ C(A,B) and g ∈ C(B,C),
we have g ◦ f ∈ C(A,C). These must satisfy the
following properties, for all objects A,B,C,D and all
morphisms f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D):

h ◦ (g ◦ f ) = (h ◦ g) ◦ f ;

• for every object A there is an identity morphism 1A ∈
C(A,A); for f ∈ C(A,B) we have

1B ◦ f = f = f ◦ 1A

Definition 2: Amonoidal category is a category C with the
following properties:
• a functor ⊗ : C × C → C, called the tensor product and
we have

(A⊗ B)⊗ C = A⊗ (B⊗ C);
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• there is a unit object I such that

I ⊗ A = A = A⊗ I ;

• for each ordered pair morphisms f ∈ C(A,C), g ∈
C(B,D) we have f ⊗ g : A⊗ B→ C ⊗ D such that

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2).

Monoidal categories are used to encode semantic and syn-
tax of sentences in different languages.
Definition 3: A symmetric monoidal category is a

monoidal category C such that the tensor product is symmet-
ric. This means that there is a natural isomorphism η such that
for all objects A,B ∈ C, A⊗B

ηA,B
−→B⊗A is an isomorphism.

Graphical language is a high-level language for research-
ing in quantum processes, which has applications in many
areas such as QNLP and modelling quantum circuits.

A. GRAPHICAL LANGUAGE FOR MONOIDAL CATEGORY
According to [25], morphisms are depicted by boxes, with
input and output wires. For example, the morphisms

1A f g ◦ f f ⊗ g

where f : A→ B and g : B→ C, are depicted as follows:

States and effects of an object A are defined as follows,
respectively from left to right:

Definition 4: A compact closed category is a monoidal
category where for each object A there are objects Ar and Al ,
and morphisms

ηl : I → A⊗ Al, ηr : I → Ar ⊗ A

εl : Al ⊗ A→ I , εr : A⊗ Ar → I

such that:
• (1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A
• (εr ⊗ 1A) ◦ (1A ⊗ ηr ) = 1A
• (εl ⊗ 1Al ) ◦ (1Al ⊗ η

l) = 1Al
• (1Ar ⊗ εr ) ◦ (ηr ⊗ 1Ar ) = 1Ar .

The above equations are called yanking equations. In the
graphical language the η maps are depicted by caps, and ε
maps are depicted by cups [25]. The yanking equation results
in a straight wire. For example, the diagrams for ηl : I →
A⊗Al , εl : Al ⊗A→ I and (εl ⊗ 1Al ) ◦ (1Al ⊗ η

l) = 1Al are
as follows, respectively from left to right:

Definition 5: As defined in [25], a partially ordered non-
commutativemonoidP is called a pregroup, to whichwe refer
as Preg. Each element p ∈ P has both a left adjoint pl ∈ P
and a right adjoint pr ∈ P. A partially ordered monoid is a
set (P, . , 1,≤, (−)l, (−)r ) with a partial order relation on P
and a binary operation − · − : P× P→ P that preserves the
partial order relation. The multiplication has the unit 1, that
is p = 1.p = p.1. Explicitly we have the following axioms:

εlp = pl .p ≤ 1, εrp = p.pr ≤ 1,

ηlp = 1 ≤ p.pl, ηrp = 1 ≤ pr .p

We refer the above axioms as reductions.

B. PREG AND FVEC AS COMPACT CLOSED CATEGORIES
Preg is a compact closed category. Morphisms are reductions
and the operation ‘‘ . ’’ is the monoidal tensor of the monoidal
category. As mentioned in [25], the category Preg can be
used to encode the grammatical structure of a sentence in a
language. Objects and morphisms are grammatical types and
grammatical reductions, respectively. The operation ‘‘ . ’’ is
the juxtaposition of types. According to [28], let FVect be the
category of finite dimensional vector spaces over the field of
realsR. FVect is a monoidal category, in which vector spaces,
linear maps and the tensor product are as objects, morphisms
and the monoidal tensor, respectively. In this category the
tensor product is commutative, i.e. V ⊗ W ∼= W ⊗ V , and
hence V l ∼= V r ∼= V ∗, where V l , V r and V ∗ are left adjoint,
right adjoint and a dual space of V . We consider a fixed
base, so we have an inner-product. Consider a vector space
V with base {−→ei }i. Since V is an inner product space with
finite dimension, V ∗ ∼= V . Therefore V r ∼= V l ∼= V ,

ηl = ηr : R → V ⊗ V

1 7→
∑
i

−→ei ⊗
−→ei

and

εl = εr : V ⊗ V → R
∑
ij

cij
−→vi ⊗

−→wj 7→
∑
ij

cij
〈
−→vi |
−→wj
〉
.
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TABLE 1. Examples of the equivalent expressions in English and Persian.

Consider the monoidal functor F : Preg→ FVect, which
assigns the basic types to vector spaces as follows:

F(n) = N F(s) = S F(1) = I ,

and also F(x ⊗ y) = F(x) ⊗ F(y). The compact structure is
preserved by Monoidal functors; this means that

F(xr ) = F(x l) = F(x)∗

for more details see [28].

III. POSITIVE TRANSITIVE SENTENCE
The simple declarative Persian sentence with a transitive verb
has the following structure: subject + object + objective
sign+ transitive verb. For example, ‘Sara ketab ra mikharad’
is the Persian sentence for ‘Sara buys the book’. In Table 1,
we present the equivalent expressions in English and Persian.
In this sentence, ‘Sara’ is the subject, ‘ketab’ is the direct
object, ‘ra’ is the objective sign and ‘mikharad’ is the tran-
sitive verb in present tense, see [27].

A. VECTOR SPACE INTERPRETATION
Vector spaces and pregroups are used to assign meanings to
words and grammatical structure to sentences in a language.
The reductions and types are interpreted as linear maps and
vector spaces, obtained by a monoidal functor F from Preg
to FVect. In this paper we present one example from Persian:
positive transitive sentence, for which we fix the following
basic types,

n: noun
s: declarative statement
o: object
According to [25] if the juxtaposition of the types of the

words in a sentence reduces to the basic type s, the sentence
is called grammatical. We use an arrow→ for ≤ and drop
the ‘‘. ’’ between juxtaposed types. According to [27] the
example sentence ‘Sara ketab ra mikharad’, has the following
type assignment:

Sara ketab ra mikharad.
n n (nro) (ornrs)

Which is grammatical because of the following reduction:

nn(nro)(ornrs)→ n11nrs→ s

For the above sentence this reduction is depicted diagrammat-
ically as follows:

FIGURE 1. The reduction diagram of the sentence.

A positive sentence with a transitive verb in Persian has
the pregroup type nn(nro)(ornrs). The interpretation of a
transitive verb is computed as follows:

F(or ⊗ nr ⊗ s) = F(or )⊗ F(nr )⊗ F(s)

= F(o)r ⊗ F(n)r ⊗ F(s)

= F(o)∗ ⊗ F(n)∗ ⊗ F(s)

= N ⊗ N ⊗ S.

So the meaning vector of a Persian transitive verb is a
vector in N ⊗ N ⊗ S. The pregroup reduction of a transitive
sentence is computed as follows:

F((εrn ⊗ 1s) ◦ (1n ⊗ εrn ⊗ ε
r
o ⊗ 1n ⊗ 1s))

= (F(εrn)⊗ F(1s)) ◦ (F(1n)⊗ F(ε
r
n)⊗ F(ε

r
o)⊗ F(1s)

= (F(εn)∗ ⊗ F(1s)) ◦ (F(1n)⊗ F(εn)∗ ⊗ F(εo)∗ ⊗ F(1s)

= (εN ⊗ 1S ) ◦ (1N ⊗ εN ⊗ εN ⊗ 1N ⊗ 1S )

and depicted as:

The distributional meaning of ‘Sara ketab ra mikharad’ is
as follows:

F((εrn ⊗ 1s) ◦ (1n ⊗ εrn ⊗ ε
r
o ⊗ 1n ⊗ 1s))

(
−−→
Sara⊗

−−→
ketab⊗−→ra ⊗

−−−−−−→
mikharad)

where −→ra is the vector corresponding to the meaning of ‘ra’.
We set

−→ra =
∑
i

−→ei ⊗
−→ei ∈ N ⊗ N
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and in this case we have
−→ra ' ηN : R→ N ⊗ N .

We obtain diagrammatically:

Which by the diagrammatic calculus of compact closed
categories [32], is equal to:

Consider the vector9 in the tensor space which represents
the type of verb:

9 =
∑
ijk

cijk
−→wi ⊗

−→vj ⊗
−→sk ∈ N ⊗ N ⊗ S

where for each i, −→wi is the meaning vector of object and −→vj
is the meaning vector of subject. Then we have:

(εN ⊗ 1S ) ◦ (1N ⊗ εN ⊗ 1N ⊗ 1S )(
−→v ⊗−→w ⊗

−→
9 )

= (εN ⊗ 1S ) ◦ (1N ⊗ εN ⊗ 1N ⊗ 1S )

(−→v ⊗−→w ⊗ (
∑
ijk

cijk
−→wi ⊗

−→vj ⊗
−→sk ))

= (εN ⊗ 1S )(
−→v ⊗ 〈w,wi〉 ⊗

−→vj ⊗
−→sk )

=

∑
ijk

cijk 〈w,wi〉
〈
v, vj

〉
−→sk .

B. TRUTH THEORETIC MEANING AND CONCRETE
INSTANTIATION
According to [28] we letN to be the vector space spanned by a
set of individuals {−→ni } and S to be the one dimensional space
spanned by the unit vector

−→
1 . The unit vector and the zero

vector represent truth value 1 and truth value 0 respectively.
A transitive verb Ψ ∈ N ⊗ N ⊗ S is represented as follows:

Ψ :=
∑
ji

−→nj ⊗
−→ni ⊗ (αji

−→
1 )

where
−→
sub =

∑
i
−→ni ,
−→
obj =

∑
j
−→nj and αji’s are degrees

of truth, i.e. −→ni Ψ ’s −→nj with degree αji, for all i, j. For

−→
sub =

∑
k
−→nk and

−→
obj =

∑
l
−→nl , where k and l range over

the sets of basis vectors representing the respective common
nouns, the truth-theoretic meaning of a transitive sentence is
computed as follows:
−−−−−−−−−−−→
sub obj ra verb

= (εN ⊗ 1S ) ◦ (1N ⊗ εN ⊗ 1N ⊗ 1S )(
−→
sub⊗

−→
obj⊗

−−→
verb)

= (εN ⊗ 1S ) ◦ (1N ⊗ εN ⊗ 1N ⊗ 1S )(
∑
k

−→nk ⊗
∑
l

−→nl ⊗

(
∑
ji

−→nj ⊗
−→ni ⊗ αji

−→
1 )) =

∑
kl

αkl
−→
1 .

For concrete instantiation in the model of Grefenstette and
Sadrzadeh [33] the vectors are obtained from corpora and the
scalar weights for noun vectors are not necessarily 1 or 0.
For any word vector

−−→
word =

∑
cwordi
−→ni , the scalar weight

cwordi is the number of times that the word has appeared in that
context. Where −→ni ’s are context basis vectors. The meaning
of the transitive sentence is:
−−−−−−−−−−−→
sub obj ra verb =

∑
jit

〈
−→
obj|−→nj

〉 〈
−→
sub|−→ni

〉
cjit
−→st

A transitive verb is represented as a two dimensional
matrix. The corresponding vector of this matrix is

−−→
verb =∑

ji cji(
−→nj ⊗

−→ni ). Note that the sum of the tensor product
of the objects and subjects of the verb throughout a corpus
represents the meaning vector of the verb. So the meaning of
the transitive sentence is:
−−−−−−−−−−−→
sub obj ra verb =

∑
ji

〈
−→
obj|−→nj

〉 〈
−→
sub|−→ni

〉
cji(
−→nj ⊗

−→ni )

=

∑
ji

cobjj csubi cji(
−→nj ⊗

−→ni ).

The meaning vector is decomposed to point-wise multipli-
cation of two vectors as follows:

(
∑
ji

cobjj csubi (−→nj ⊗
−→ni ))� (

∑
ji

cji(
−→nj ⊗

−→ni ))

= (
−→
obj⊗

−→
sub)�

−−→
verb

where� is the point-wise multiplication. The meaning vector
of the transitive sentence in English is as follows

(
−→
sub⊗

−→
obj)�

−−→
verb.

Thus for synonymous sentences in the same corpus of
English and Persian we have:

(
−→
sub⊗

−→
obj)�

−−→
verb = (

−→
obj⊗

−→
sub)T �

−−→
verb

where (
−→
obj ⊗

−→
sub)T is the transpose of (

−→
obj ⊗

−→
sub). The

procedure for learning weights for matrices of subject, object
and verb is represented in [33]. Note that (

−→
obj ⊗

−→
sub) is

the Kronecker product of
−→
obj and

−→
sub of the verb. In order

to compare the meaning of two sentences in English and
Persian, we compute the following:

(
−→
sub⊗

−→
obj)�

−−→
verb− (

−→
obj⊗

−→
sub)T �

−−→
verb.
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Our goal in classification synonymous sentences in two
different languages is to translate the sentence from one
language to another.

IV. DIAGRAMS REWRITING AND QUANTUM CIRCUITS
As mentioned in the previous sections a sentence in a corpus
is parsed according to its grammatical structure. According
to [22] we simplify the DisCoCat diagram to some other dia-
gram and turn into a quantum circuit, which can be compiled
via NISQ devices. Two methods are presented for this pur-
pose. The bigraph method and snake removal method. Both
methods are done in the symmetric version of the pregroup
grammar. We consider the grammatical sentence from Fig. 1,
and obtain the diagram in Fig. 2.

FIGURE 2. The DisCoCat diagram of the sentence.

where the boxes denote tensors, and the order of which is the
number of their wires. We use a bigraph method to turn the
diagram in Fig. 2 into a bipartite graph.Words at odd distance
from the root word are transposed into effects, and we obtain
the diagram in Fig. 3.

FIGURE 3. The rewritten diagram.

Transposition turns states into effects, see [32]. According
to [22], we consider CNOT+U(3) of unitary qubit ansatze.
Layers of CNOT gates between adjacent qubits with layers
of single-qubits rotations in Z and X form unitary quan-
tum circuits. Let P̂ be the symmetric version of the pre-
group grammar P. Consider the monoidal functor from P̂ to
fHilb, in which word states are mapped to the state ansatze.
State ansatze are obtained by applying the unitary ansatze to
the pauli Z |0〉 state. Word effects are mapped to the effect
ansatze, in which effect ansatze are obtained by transposing
the state ansatze in the computational basis, and wire crossing
are mapped to swaps. Now consider the diagram in Fig. 3.
If each wire is mapped to a qubit, the circuit has about four
CNOTs. In ZX-calculus [34], suppose single-qubits white
and black dots are rotations in pauli Z and pauli X. A CNOT

gate is Black and white dots connected by a horizontal line.
So we obtain the following circuits:

One can use the bigraph algorithm to form quantum cir-
cuits of the semantic side of the meaning. In the pregroup
type of the sentence ‘Sara ketab ra mikharad’ set o = n.
For atomic types n and s consider two qubits and one qubit
respectively. The number of qubits for each type t is the sum
of the number of qubits associated to all atomic types in t .
For example the transitive verb ‘mikharad’ has five qubits.
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For each word in the sentence we have a quantum circuit as
follows:

The quantum circuit of the whole sentence is as follows:

The reduction diagram of the sentence ‘Sara buys the book’
in English is:

and the quantum circuit of each word is as follows:

So the quantum circuit of the whole sentence is as follows:

The two sentences ‘Sara Ketab ra mikharad’ and ‘Sara
buys the book’ have the same meaning but are grammatically
different. By training these circuits on a quantum hardware,
we’ll give a model to translate from English to Persian and
vice versa. According to [30] we present grammar+meaning
as quantum circuit for the above two sentences. Consider the
states |ψns〉 and |ψno〉 correspond to the subject and the object,
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respectively. Also a transitive verb as a map ηtv that takes
|ψns〉 ∈ C2 and |ψno〉 ∈ C2 and produces |ψns.no.tv〉 ∈ C2k ,
diagrammatically:

So |ψmikharad 〉 ∈ C2
⊗ C2

⊗ C2k . Because the quantum
model relies on the tensor product, an exponential blow-up
occurs for meaning spaces of words. In order to avoid this
obstacle in experiments decrease the dimension of the spaces
in which meanings of transitive verbs live. For the transitive
verb, instead of state in the large space |ψmikharad 〉 ∈ C2

⊗

C2
⊗ C2k consider state in a smaller space |ψ∗mikharad∗〉 ∈

C2
⊗ C2, diagrammatically:

Then copy each of the wires and bundle two of the wires
together to make up the thick wire. Thus ‘mikharad’ is
obtained:

For more details see [30]. Now inter Sara and Ketab into
the picture:

we pull some spiders out and obtain:

FIGURE 4. The circuit obtained from pulling out spiders.

and by Using the Choi-Jamiolkowski correspondence we
obtain the circuit in Fig. 5. The circuit in Fig. 4 requires
4 qubits and has two CNOT-gates in parallel, but the circuit
Fig. 5 requires 3 qubits and has sequential CNOT-gates.
Indeed, the use of the Choi-Jamiolkowski correspondence has
reduced the number of qubits, but has increased the depth of
the CNOT-gates.

FIGURE 5. The circuit obtained from Choi-Jamiolkowski correspondence.

As mentioned in [30] ion trap hardware has less qubits,
but performs better for greater circuit depth. In ZX-calculus
and via Euler decomposition any one-qubit unitary gate is
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represented as follows:

Each verb is represented by an unitary gate U and has
different values α, β and γ . So we obtain the following
circuits:

By considering the singular value decomposition for the
verb we obtain the circuit of Fig. 6. Where the state P is
the diagonal of the matrix. We represent all noun states by
gates and obtain the circuit of Fig. 8. As mentioned in III-A,
similarly for the sentence ‘Sara buys the book’ we obtain
the DisCoCat diagram in Fig. 7. Indeed we ignore ‘the’ and
‘ra’ of positive transitive sentences in English and Persian
respectively. Therefore according to [30] the parametrised
quantum circuit of the diagram in Fig. 7 is as Fig. 9. The

quantum circuits in Fig. 8 and Fig. 9 are compatible to train
on a quantum hardware. By providing a set of quantum
circuits of sentences in English and Persian and training on
a quantum hardware we can perform the classification task.
This approach can make a quicker and an advantage over
classical counterparts for NLP. In the next section we try to
provide an algorithm for translating sentences of different
languages.

FIGURE 6. The circuit-form of ‘Sara ketab ra mikharad’.

FIGURE 7. DisCoCat diagram of the sentence ‘Sara buys the book’.

V. ALGORITHM OF USING QUANTUM LONG
SHORT-TERM MEMORY FOR QUANTUM
NATURAL LANGUAGE PROCESSING
In this section we propose an algorithm to translate sentences
of different languages. In this algorithm we use quantum
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FIGURE 8. The quantum circuit of ‘Sara ketab ra mikharad’.

FIGURE 9. The quantum circuit of ‘Sara buys the book’.

long short-term memory (LSTM) model. The long short-
term memory is a special kind of recurrent neural net-
works (RNNs) that can learn a longer range of sequential
dependency in the data. In this way, we use parametrized
quantum circuits (PQCs) of sentences as quantum input for

quantum LSTM cell. This model encodes features of a quan-
tum circuit of a sentence into a learned hidden vector state and
then decodes that vector into its successor sentence. A hybrid
quantum model of LSTM to translate is capable to modeling
sequential data. Now we use the method presented in [35] to
map a DisCoCat diagram into a quantum circuit. Sentences
of different grammatical structure are mapped to different
quantum circuits. This method is easier than the methods
presented in section IV. In DisCoCat diagram of the sentence
‘Sara ketab ra mikharad’ in Fig. 2 we bend down all nouns
of the sentence, and obtain the diagram of Fig. 10. Then we
have the quantum circuit of Fig. 11.

FIGURE 10. The rewritten diagram.

We choose one qubit for every wire of type n and s, and
replace all word states (effects) with parametrised quantum
states (effects). So the verb is a state on three qubits. For
verb, so called IQP-based states is being used. IQP layer
consists of an H gate on every qubit composed with two
controlled Z-rotation gates, connecting adjacent qubits. The
words ‘Sara’ and ‘ketab’ replace with the quantum effects.
Note that each cup is corresponding to a Bell-effect. Similarly
for the DisCoCat diagram of the sentence ‘Sara buys the
book’ we have the diagram of Fig. 12, and obtain the quantum
circuit of Fig.13.

FIGURE 11. The quantum circuit of ‘Sara ketab ra mikharad’.

Consider a language model trying to translate a sentence.
Encoder refers to the part of the network which reads the sen-
tence to be translated, and decoder is the part of the network
which translates the sentence into desired language. The first
step of our encoding scheme is to transform sentences into
PQCs. We choose features of the circuit of each sentence as
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FIGURE 12. The rewritten diagram.

FIGURE 13. The quantum circuit of ‘Sara buys the book’.

an input vector of a quantum LSTM cell. Quantum circuits
of sentences are trained on a quantum processor. At each
time step t, the aforementioned input is composed of a set
of features characterizing both the circuit and the processor.
In particular, with respect to the circuit, the following infor-
mation can be considered:
• an integer value representing the number of qubits com-
posing the circuit;

• an integer value representing the total number of CNOT
gates in the circuit;

• an integer value representing the total number of
Z-rotation gates in the circuit;

• an integer value representing the number of quantum
effects in the circuit;

• a matrix of integer values where the item [i, j] contains
the number of CNOT gates between the control qubit
and the target qubit of the circuit.

The task we present can be thought as translating a sen-
tence into its successor. We propose an algorithm of using
quantum LSTM for quantum natural language processing
in order to perform various tasks such as prediction a sen-
tence and translating. The algorithm in order to translate a
sentence from English to Persian is pictured diagrammat-
ically in Fig. 14. The encoder-decoder model of quantum
LSTM (QLSTM) encodes a feature vector of the quantum cir-
cuit of the sentence into a learned hidden vector state and then
decodes that into its successor sentence. The QLSTM cell of
the algorithm can be considered as shown in Fig. 15, [31].
In the QLSTM cell, there are six VQCs. For VQC1 to VQC4
consider the concatenation vt of the hidden state ht−1 from
the previous time step and current input vector xt . We choose

features of the quantum circuit of each sentence as input
vector xt . The measured values of VQCs go through nonlin-
ear activation functions. A mathematical formulation of the
QLSTM cell is as follows:

ft = σ (VQC1(vt )), vt = [ht−1, xt ]

it = σ (VQC2(vt ))

C̃t = tanh(VQC3(vt ))

ct = ft ∗ ct−1 + it ∗ C̃t
ot = σ (VQC4(vt ))

ht = VQC5(ot ∗ tanh(ct ))

yt = VQC6(ot ∗ tanh(ct ))

An output of a vector ft has values in [0,1] through the
sigmoid function. ∗ is the element-wise multiplication. ft ∗
ct−1 determines whether to keep or forget the elements in
the cell state ct−1 from the previous step. The output of the
VQC2 goes through the sigmoid function to determine which
values will be added to the cell state. The output of the VQC3
goes through the tanh function to generate a new cell state C̃t .
it ∗ C̃t is used to update the cell state. The output of the
VQC4 goes through the sigmoid function, and determines
which values in the cell state ct are relevant to the output.
ot ∗tanh(ct ) is processed with VQC5 to get the hidden state ht .
Also ot ∗tanh(ct ) is processed with VQC6 to get the output yt .
Generic VQC architecture is shown in Figure 16. In the VQC
architecture, xi’s are elements of the vector vt . The number
of qubits and the number of measurements are determined
by the numbers of xi’s. Three rotation angles αi, βi and γi
are not fixed. They are updated in the iterative optimization
process [31].

In the algorithm presented, one may face some problems.
The first three sentences in Table 2 have the same struc-

ture but different meanings, with quantum circuits such as
in Fig. 13. Each sentence may have different values for α,
β, γ , δ and ξ . For entering this feature to the algorithm, one
can enter this angles as real numbers into the input vectors.
In Table 2, the last two sentences have the same meanings
but different structures. For each language, one has to do
the meaning classification task in QNLP. As mentioned in
the III-A, the meaning of sentences can be reduced to linear
algebraic formulae. For example, the meaning vector of our
transitive sentence is:
−−−−−−−−−−−−−−→
Sara buys the book = f (

−−→
Sara⊗

−−→
buys⊗

−→
the⊗

−−→
book)

where f is the linear map that encodes the grammatical struc-
ture. Learning a semantic vector for each word is learning it’s
basis weights from the corpus. This setting offers geometric
means to reason about semantic similarity, e.g. via Cosine
measure. Grefenstette et al. [36] give some similarity calcu-
lations for some sentence pairs via inner product between the
meaning vector of sentences. In Table 3, one may translate
the first three sentences in Table 2 to Ukrainian and Spanish,
and can consider grammatical sentences of any language, and
determine the type of words in the sentences. One can verify
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FIGURE 14. The proposed algorithm for translation of an English sentence to another language (e.g. Persian) via QLSTM.

FIGURE 15. The structure of a QLSTM cell.

FIGURE 16. The architecture of VQC.

that the structures of these sentences are similar to English
with similar circuits. Moreover, one may consider different
parameters for synonymous sentences in different languages.

The method used to convert the DisCoCat diagrams into
quantum circuits for our particular and simple examples,
can be generalized to a recipe. Pregroups have been used to
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TABLE 2. Examples of sentences in English and Persian.

TABLE 3. Examples of sentences in two different languages.

analyze the syntax of different languages, from English and
French to Polish, and many more. For more references see
[37], [38]. The proposed algorithm can be used for the trans-
lation of an English sentence to another language. In general,
the recipe can work for all languages in the world, and not
only for English and Persian.

A. QUANTUM ADVANTAGE
It has been shown that under certain conditions quantum
algorithms for compositional QNLP demonstrate quadratic
speedup over classical methods [39]. For example, an imme-
diate advantage for quantum implementations of the Dis-
CoCat diagrams [25] is gained by storing meaning vectors
in quantum systems. Each n-qubit system with 2n degrees
of freedom, indicating that N-dimensional classical vectors
can be stored in log2N qubits. Consider a corpus whose
word-meaning space is given by a basis of the 2000 most
common words, in the worst case one obtains the dramatic
improvements, e.g. for one transitive verb 8×109 classical
bits are required while only 33 qubits are required in QNLP,
and thus for 10k transitive verbs 8×1013 classical bits are
required but only 47 qubits for this aim. Regarding the com-
plexity comparisons for different closest vector algorithms,
there is a quadratic improvement in scaling with M train-
ing vectors with the dimension of the vectors N , the com-
plexity in classical regime is O(NM ) while in quantum is
O(
√
NM )log(M ) [39]. In QLSTMprotocol, it has been shown

that for certain testing cases, QLSTM converges faster or
reaches a better accuracy than its classical counterpart, that
paves the way toward implementation for sequence modeling
on NISQ devices [31].

VI. RESULTS AND FUTURE DIRECTIONS
First of all, we highlight what have done well in the study.
Then we give explanations and direct the future works.
• Developing a compositional vector-based semantics of a
transitive sentence for a non-English language within a
categorical framework.

• Comparing quantum circuits of two synonymous sen-
tences in English and Persian.

• A quantum algorithm for language translation via quan-
tum long short-term memory.

• The feasibility of a generalized algorithm for language
translation for other languages.

In this paper, we have suggested a protocol for translating
simple sentences from English to Persian via quantum natural
language processing. First, we extended the compact cate-
gorical semantics to analyse meanings of positive transitive
sentences in Persian language. It is necessary to introduce lin-
ear maps to represent the meaning of negative transitive sen-
tences and grammaticallymore complex sentences in Persian.
The demonstration of DisCoCat diagrams and quantum cir-
cuits of complicated sentences in Persian or any non-English
language remains to be studied in future works. Here, the two
sentences ‘Sara ketab ra mikharad’ (in Persian) and ‘Sara
buys the book’ (in English) are instantiated as parametrized
quantum circuits. The meaning of the two sentences are the
same but the appearance of the obtained quantum circuits are
different. These circuits need to be compiled correctly, thus it
is necessary to introduce a test measurement at the terminal
of the circuits to give almost similar results for the meaning
of the synonymous sentences in different languages. One
may use the compiler t|ket〉 to this aim, and run the circuits
on the IBMQ and analyze the results. Finally, we propose
an algorithm of using quantum long short-term memory for
quantum natural language processing in order to translate the
sentence above from English to Persian.

Here, we have proposed an algorithm in which one should
first convert sentences to circuits and then to vectors. As a
limitation, it does not convert the words to circuits and
therefore not applicable for words, but it is good for texts
which are composed of sentences. On the other hand, for
implementation we should propose an algorithm that offer
improvements to the quality of results, particularly for more
complex sentences in terms of memory and computational
requirements. As a future research prospect, one can per-
form different tests on IBMQ. For example, the meaning
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classification task of sentences in Persian and performing the
translation algorithm. Future directions include implementa-
tion of Q-NLP tasks such as sentence similarity of any non-
English language and using real-world data with a pregroup
parser. Bidirectional encoder-decoder model, which predicts
sentences in English from the previous and subsequent texts,
is another interesting future research direction.Moreover, one
can investigate the uncertainty of the proposed model based
on what is widely discussed in the literature [13], [40], [41].
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