
11th International Conference on Computer and Knowledge Engineering (ICCKE 2021),
October 28-29, 2021, Ferdowsi University of Mashhad

978-1-6654-0208-8/21/$31.00 ©2021 IEEE

Divide and Conquer Approach to Long Genomic
Sequence Alignment

Mahmoud Naghibzadeh, Samira Babaei
Computer Engineering Dept.

Ferdowsi University of Mashhad
Mashhad, Iran

 naghibzadeh@um.ac.ir
samira.babaei@mail.um.ac.ir

Behshid Behkmal*, Mojtaba Hatami
Computer Engineering Dept.

Ferdowsi University of Mashhad
Mashhad, Iran

behkamal@um.ac.ir
 hatami.mojtaba@mail.um.ac.ir

Abstract— optimal alignment of DNA sequences is a reliable
approach to discover mutations in one sequence in comparison
to the other or to discover the differences between two
sequences. Needleman-Wunsch is the most applicable software
for optimal alignment of the sequences and Smith-Waterman is
the most applicable one for local optimal alignment. Their
performances are excellent with short sequences, but as the
sequences become longer their performance degeneration grow
exponentially to the point that it is practically impossible to
align two compete human DNAs. Alignment process is
essential in diagnosis of genome related diseases. Therefore,
many researches are done or being conducted to find ways of
performing the alignment with tolerable time and memory
consumptions. One such effort is breaking the sequences into
same number of parts and align corresponding parts together to
produce the overall alignment. With this, there are three
achievements simultaneously: run time reduction, main
memory utilization reduction, and the possibility to better
utilize multiprocessors, multicores and General Purpose
Graphic Processing Units (GPGPUs). In this research, the
method for breaking long sequences into smaller parts is based
on the divide and conquer approach. The breaking points are
selected along the longest common subsequence of the current
sequences. The method is demonstrated to be very efficient with
respect to both time and main memory utilization.

Keywords—genome sequence alignment; divide and

conquer; longest common subsequence; big genome data

I. INTRODUCTION

Genomic sequence analysis gained extra momentum since
the beginning of human genome project [1]. Nowadays, with the
advances in the genome sequencing technologies enormous
amount of genomic data is continuously being produced which
makes it an explosive big data area. There are variety of purposes
such as revealing the relations between genes or proteins,
understanding their homology and functionality, deciphering
sequences to disclose biological aspects, diagnosing diseases,
and producing drugs, in the analysis of this big data. Many
diseases are caused by variations in the genome sequences such
as many kinds of cancers [2] and variety of disorders related to
nervous system’s degeneration such as Huntington’s disease [3].
Even a repeat polymorphism in one of the genes, i.e., IL-lra, is

shown to be associated with an increased possibility of
osteoporotic fractures [4][5]. Comparing a subject sequence
against a reference one to find the differences is commonly used
in these analysis. The scientific meaning of comparison here is
alignment of sequences and revealing their differences.

Alignment of two sequences is the arranging of these
sequences such that similarities and differences are shown in the
best possible way while the order of elements of each sequence
is preserved. Often, a scoring function is proposed and the
quantitative optimal alignment of the two sequences becomes
equivalent to minimizing or maximizing this function,
depending on the problem being solved and the formulation of
the scoring function. Considering the countless number of ways
that two sequences can be aligned, when gaps are allowed, the
Dynamic Programming (DP) approach is an extremely
innovative way of optimally aligning sequences [6]. DP is a
Mathematics-Computer optimization problem. A problem has to
have the principle of optimality [6] property to be considered for
being solved using the DP approach. The novelty of the DP idea
is in systematic solution of all possible sizes of problems starting
from the smallest one and going toward the biggest, which is
actually the given problem to be solved. It stores the solution
results of smaller problems and in solving a bigger problem it
can use the solution results of any of the previously solved
problems in an optimized manner. The optimal sequence
alignment has the principle of optimality and it is successfully
solved by the DP approach. The two most utilized approaches
are the Needleman-Wunsch algorithm and the Smith-Waterman
algorithm.

Needleman-Wunsch algorithm [7] is often used to compare
biological sequences with the goal of computing the similarity
score of sequences. It does so by arranging the sequences in such
a way that the scoring function is maximized (in some cases the
goal is to minimize the overall penalty). In this paper we are
interested in global alignments (not necessarily global optimal)
of pairs of sequences of DNA, RNA, or other similar genomic
sequences composed of the four nucleotides A(adenine),
T(thymine), G(guanine), and C(cytosine). The optimization
problem is organized as filling an m by n matrix S of scores,
where m is the length of one of the sequences and n is the length
of the other. Si,j is the maximum score of aligning the i first
characters of the first sequence and the j first characters of the
second one. This is the clue to the DP nature of breaking the

optimization of a large problem into optimization of smaller
problems. At the end, the bottom right corner of that matrix, i.e.,
Sm,n, gives the overall score of the alignment. To find the actual
alignment, a technique for going from the bottom right corner to
the top left corner of the matrix has to be followed. For long
sequences, the time complexity of Needleman-Wunsch
algorithm which is O(mn) prolongs its execution time, hence
continuous efforts are made to make it more practical [8][9][10].
For example, for two human genomes of size 3.2 Giga
Nucleotides each, and considering at least 10 operations to fill
each cell of the 3.2Giga by 3.2Giga matrix, the number of
operations needed to fill the whole matrix is 1020. Using a single
processor computer with the power of 10 million instructions per
second, it takes approximately 317,000 years to complete the
matrix.

Smith-Waterman algorithm [11] is another variant of global
sequence alignment. An important aspect of this alignment is
that if the scoring value of a cell of the scoring matrix is
calculated to be negative, its value is set to zero. This means, in
such situations, the partial alignment score of sequences up to
this point should not affect the alignment score of the rest of the
sequences. The net consequence of this assumption is that
Smith-Waterman algorithm can better demonstrate the score of
local alignments. As a matter of fact, it better shows the local
alignment scores and hence it is often used for finding similar
regions of sequences. Smith-Waterman algorithm has the same
problem as Needleman-Wunsch algorithm has, i.e., its time
complexity and hence it’s high execution time for aligning long
sequences. In addition, its space complexity is also high such
that some later researches have concentrated on lowering its
space complexity only [12].

One way to reduce the alignment execution time is to break
the two sequences into many pairs of smaller sequences, when,
possible, and align each pair separately. For example, suppose
the length of each of the original two sequences is 1000,000 base
pairs, i.e., characters. Using the Needleman-Wunsch alignment
algorithm, the number of operations would be proportional to
1012. Let’s assume we can break the two sequences into 10 pairs
of sequences such that the length of each of the resulting new
sequences is approximately 100,000 base pairs, i.e., bps for
short. The number of operations for aligning all these 10 pairs is
proportional to 10*1010=1011 which would need 10 times less
execution time compared to the case when the original
sequences are aligned. On global alignment of related long
genome sequences, many attempts have been made to break
pairs of such long sequences into many smaller pairs [8][13].
The current research is in the same direction to higher the
efficiency and the quality of globally aligning two genome
sequences. It uses the Longest Common Subsequence (LCS)
technology to find anchor points, Divide and Conquer (DaC)
approach to recursively break pairs of longer sequences, and
Needleman-Wunsch algorithm to align every short pair of
sequences.

Finding the LCS of two genome sequences has many
applications such as phylogenetic construction and analysis,
quick search in genome sequences big data, and identification of
motifs. The natural approach to solve LCS of a pair of sequences
is to formulate it as a dynamic programming problem similar to

Needleman-Wunsch algorithm. However, there are quite newer
methods with lower time complexities [14][15].

In this paper, a new divide and conquer approach to genome
sequence alignment is proposed. The division is along the LCS
of the two sequences which is located approximately in the
middle of the two sequences. Only a section in the middle of the
two sequences are selected in which the LCS is sought. If the
discovered LCS is not long enough the sections length is
enlarged until a reasonable length LCS is obtained. The
novelties of this approach is highlighted in the following.

• It is much faster than either of Needleman-Wunsch and
Smith-Waterman algorithms.

• The LCS subsequence is removed from both sequences,
and hence from further processing, which further saves
both execution time and memory space.

• It is faster than the state of the art anchor-based methods
which also use some kind of division.

• The space requirement of the method is extremely low.

• It has the potential to be implemented in parallel in three
different levels, division of the long sequences,
alignment of all short pairs of sequences, and utilization
of General Purpose Graphic Processing Units (GPGPU)
within each alignment of short sequences.

The structure of the rest of the paper is as follows. In Section
2 a short review of related work is presented. Section 3 is a brief
clarification of the problem being solved. Section 4 details the
implementation of the proposed method’s solution approach.
Section 5 is the evaluation section and finally a short summary
and future work is documented in Section 6.

II. RELATED WORK

Sequence alignment is the canonical point of most tools of
DNA and other genome sequences alignments. Human genome
sequencing and analysis [1] formally started in 1990 and with it,
computational methods, especially alignment, became an
important part of any genome analysis activity. Undoubtedly,
with the invention of its dynamic programming implementation
and also after that, there has been great progress in making the
alignment algorithms efficient and up to date. It is worth
mentioning that although we have focused on genome sequence
alignment, alignment is widely used in other domains such as
protein sequences alignment, protein networks alignment [16]
and all kinds of text alignment [17].

Needleman-Wunsch algorithm is the basic method for global
sequence alignments [7]. Smith-Waterman algorithm is a variant
of Needleman-Wunsch algorithm which is also a global aligner
but it is tailored to find local similar regions of sequences being
aligned [11]. The problem with these algorithms is their high
time complexity which is O(mn), or O(n2) where the length of
the two sequences are the same and it is equal to n. In addition,
the space complexity of these algorithms is also O(mn) which
can be problematic for large sequences. In such cases the
solution would be to have part of the scoring matrix in the
secondary storage which will further worsen the execution time
requirement. Many improvements are reported which we will
concentrate on the most recent ones, here.

BLAST is heuristic algorithm developed to search a short
sequence in a large volume of data. Based on a hashing
mechanism and a local alignment method, it is capable of finding
sequences in the database that are similar to the search sequence
with some degree of similarity [18]. BLAST is not originally
developed for alignment of genomic sequences and it has the
potential to be used in any kind of text data with any kind of
alphabet. Later, specific program versions were developed for
this purpose. BLASTZ and LASTZ are recent versions of the
program that are widely used for local optimal alignment of
genomic and DNA data. It is much faster than Smith-Waterman
method especially for long sequences.

Leimeister et al. [8] proposed a new anchor point finding
method called filtered spaced word match. Anchor points are
short subsequences in the two sequences which will be matched
in the final alignment of these sequences. Subsequences between
consecutive anchor points of the two sequences are aligned using
known alignment algorithms. They claim that their superiority is
in finding better anchor points. However, their comparison with
that of Mugsy pipeline [9] did not lead to similar quality for
closely related sequences but they claim it is superior in
alignment of distal sequences. Neither time nor space
complexity of the method is reported. Our guess is that its time
complexity would be in the level of that of Needleman-Wunsch
but there may be improvements is its space complexity.

Another recent development in the field of long genome
sequence alignment is MUMmer4 [10] which is the fourth
generation of MUMmer. It is based on a 48-bit suffix array data
structure. It is capable of using multicores of the host computer
however, this is applicable for the case of aligning many
sequences to the reference genome; e.g., aligning many short
reads to the human reference genome. In such cases, it can
handle very large input size up to 141 Tera bps. Although the
most important aspect of an algorithmic computational method
is its time and space complexity, these are not reported in the
paper.

The research reported by Sun et al. [12] is an effort towards
space requirement reduction of Smith-Waterman. Similar to that
of Smith-Waterman, its input is a pair of sequences and it
performs the optimal local alignment of the sequences. It is
capable of aligning long sequences up to 100 million bps. It
claims that the space requirement is tremendously reduced but
the order of reduction is not reported. It also claims its time
complexity is the same as that of Smith-Waterman. However,
because of extra computations required to reduce space, one
would expect its time requirement would be higher than that of
Smith-Waterman.

A recent method called GSAlign is the last method studied
here. It is specifically designed for semi-optimal alignment of
long Genome and DNA sequences [19]. Fundamentally, it is
composed of three phases: seed identification and pairing of the
two sequences’ seeds, similar region identification by chaining
seed pairs, and finally the local aligning of regions. To produce
the overall alignment, local alignment of regions are joined
together. It is capable to implement the alignment phase of the
process in parallel using a multithreading technique. The
authors claim that GSAlign is the fastest semi optimal aligner of
long sequences. They also claim that the developed program

produces perfect or nearly perfect precision and recalls on the
identification of sequence variations in the dataset.

III. PROBLEM DEFINITION

Two genome sequences S1 and S2 are inputs to the longest
common subsequence divide and conquer approach which is
developed here. The length of the sequences are considered to
be m and n, respectively. The output would be the global
alignment of the two sequences in which differences and
similarities of the sequences are clearly recognizable. It is
assumed that the sequences are composed of characters A, C, G,
and T. The length of the sequences could range from couple of
nucleotides up to the length of a whole human genome. For very
short sequences, up to 100 bps, the Needleman-Wunsch will
directly be used and hence there would be no improvements on
these sizes. As the length become longer the efficiency of the
presented method with respect to both time and space increases.

IV. LCSDAC IMPLEMENTATION

In this section details of the implementation of the proposed
Longest Common Subsequence Divide and Conquer (LCSDaC)
alignment of two sequences is explained. The system will be
able to align similar sequences of any sizes up to the length of a
human genome, i,e., 3.2 Giga bps. If both sequences are short,
i.e., less than 100 bps is assumed here, the Needleman-Wunsch
will directly be utilized. Otherwise, the dividing and conquer
process will systematically break them into many pairs of short
sequences. Figure 1 illustrates how this breaking process works.
From the middle of each of the sequences a subsequence of
length equal to the minimum of 1000 and one third of the current
sequence’s length, i.e., Minimum (1000, n1/3), is distinguished
which become the input to the LCS procedure. This procedure
will find their longest common subsequence. If this subsequence
is long enough the division is successful, otherwise the length of
the distinguished subsequences are doubled and the LCS is
called again. There is a maximum which is set to 3 for this step
and in the worst case the longest common subsequence obtained
in the third iteration is accepted as the breaking point. Figure 1
also shows the maximum number of times the LCS is called in
each level of the tree.

Figure 2 has illustrated this procedure on a miniature pair of
sequences. It is assumed that the first iteration of the procedure
gives an acceptable result. In this example, the length of each of
the sequences is 50. Although the length of sequences should be
more than 100 to perform the division, for this example the
division is applied. The LCS procedure will find the longest
common subsequence to be GGAGCATGAGCTGG. It is
located in Locations 17 to 30 of the first sequence and 19 to 32
of the second sequence. These places are assumed to be aligned
in the final alignment of the two sequences and hence they are
exempted from further processing. The algorithm remembers
this alignment and includes it in the final alignment. In the
second level of the tree of Figure 1 we will have to deal with two
pairs of sequences to be processed. The first pair is in locations
1 to 16 of the first sequence and Locations 1 to 18 of the second
sequence. The second pair is in locations 31 to 50 of the first
sequence and Locations 33 to 50 of the second sequence. The
division is not continued because the sequences are short. For
these two pairs Needleman-Wunsch is directly applied.

The overall pseudocode of the algorithm of the method
presented here is shown in Algorithm 1. In Line 2, two new
sequences which are the final results of the alignment are
obtained. Their length is not necessarily equal to the length of
the original sequences and may be a bit longer. The whole
process, Lines 3 to 19, is declared as a recursive procedure. In
this procedure, whenever one of the two inputs is short, i.e., less
than 100 base pairs, Needleman-Wunsch is called to align the

two sequences (Lines 5 to 8). The aligned results would be place
in output sequences SA1 and SA2. In Lines 9 and 10, the
SELECT procedure selects a subsequence from the middle of
each of the sequences and then the longest common subsequence
of the selected sequences are computed (Line 11). A similar
procedure has to be applied to either sides of the anchor
segments with the LCS being placed in the middle (Lines 12 to
18).

Figure 1. The division process of LCSDaC showing the number of LCS calls

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

CCTTTATCTAATCTTTGGAGCATGAGCTGGCATAGTTGGAACCGCCCTCA

CCTTTATGTAATCTTTGTGGAGCATGAGCTGGGAGTTGGACACGCCCTCA
Figure 2. The effect of applying LCS on two sequences

V. EVALUATION

For the alignment of long sequences, which is the interest of
this research, both time and space complexities are two major
limitations. Otherwise, Needleman-Wunsch produces the
optimal alignment. Accuracy is often scarified to be able to
obtain approximate solution in tolerable amount of time and
with the available storage capacity. We proceed first with the
most important property of the algorithm which is time
complexity.

Time complexity of Algorithm 1

The number of operations needed to find the LCS of two
sequences of length k is proportional to k, i.e., C1k where C1 is a
constant [15]. On the other hand, the number of times we can
divide an integer n by 2 before the final result becomes less than
100 is log���� � log��100� or approximately log�� �� - 6.
This is the depth of the tree of Figure 1. Therefore, the number
of times the LCS procedure is called is shown by Formula (1).

��
��� �� ��� ����� � � 2�
⌈ !"�#�$!"�%&&�⌉

�(&
 (1)

⌈ lo
g� �

� �
log

�1
00

�⌉ 1 ���

2 ���

4 ���

2⌈ !"�#�$!"�%&&�⌉

� 2�
⌈ !"�#�$!"�%&&�⌉

�(&
 ∗ ���

Algorithm 1. The pseudocode for LCSDaC approach

Assuming the maximum length of the pair of sequences
which is sent to the LCS procedure to be k1, the number of
operations needed to run the whole algorithm would satisfy
Formula (2). In this formula O(SA) represents the time
complexity of the Short Align (SA) procedure.

+��� ≤ �% ∗ -% � 2�
⌈ !"�#�$!"�%&&�⌉

�(&
+ 2/01�#�2% 3��4� (2)

Or,

+��� ≤ �% ∗ -% � + � ∗ 3��4�. (3)

Recall that even if the length of the original sequences to be
aligned is as large as a whole genome or any other longer length,
in the algorithm, alignment for only short sequences with length
less than 100 bps is called. Let’s assume that the number of
operations needed to do this alignment is k. It is usually very
small compared to the length of the input sequences and it is
bounded by a constant. However, it is not too small to satisfy the
definition of the big O notation of the time complexity to
consider it a constant. On the average, for alignment of short
sequences there would be 50*50=2500 cells to fill. As this is
represented by k, the time complexity of the method would be
O(kn). Of course, there is always an option to set the length of
short sequences to be less than 100 bps.

There is a hidden benefit in the proposed method which is
the exemption of longest common subsequences of each pair of
sequences from any further processing. In the calculation of the
time complexity, this is ignored because it does not affect the
time complexity itself but reduces the hidden constant

Space complexity of Algorithm 1

Space complexity of the alignment methods is as important
as their time complexities. Some recent methods such as Sun et
al. [12] have left the time complexity of the aligner untouched
and have concentrated on reducing its space complexity. The
actual space complexity of their proposed algorithm is not
reported because, it is calculated for the worst case and in the
worst case it would not be impressive. However, they claim the
main memory of a “normal personal computer” would be able
to align sequences as long as 100,000,000 nucleotides.

Here we explicitly express that the space complexity of our
algorithm is O(n) where n is the length of longer input sequence.
There are two input sequences of length say n and two output
sequences of approximate length n, too. LCSDaC would need
4n bytes to keep them all in the main memory. Within this
algorithm, each Needleman-Wunsch execution will require at
the most 10,000 cells and considering 4 bytes for each cell, adds
up to 40,000 bytes. In the non-parallel version of LCSDaC, there
would be only one running Needleman-Wunsch at any given
time. Other minor memory requirements are ignorable.
Therefore, the total memory space needed is expressed by
Formula (4).

���� � 4� + 40000 (4)

For sequences larger than 40000 bps, the space requirement
would be

���� ≤ 5� (5)

Therefore, the space complexity is S(n) ∈ O(n). Even for the
case of parallel implementation of the LCSDaC using
multicores, the number of multicores are limited and it is small,
say 16, which still leaves the space complexity to be O(n). This
is another achievement of the current research.

The method presented here has a high potential to be
implemented in parallel. The simplest section that can be
paralleled is the “Short align” section of the algorithm which is
responsible for alignment of short sequences. This section
corresponds to the lowest level of the tree of Figure 1. Within
each short align instance one can utilize General Purpose
Graphic Processing Unit to elevate the degree of parallelism.
Furthermore, the LCS recognition can become parallel. For
example, in Level 2 (third level) of the tree of Figure 1 four LCS
instances could run in parallel. In this paper, the whole idea is
developed sequentially and the compassions are with sequential
competitors. Actually, we intended to put our idea into practice
soon and evaluate the practicality of the method. The
parallelization of the algorithm is left for future work.

For short sequences, there is no need for comparison, and the
choice is definitely Needleman-Wunsch [7] with optimal
alignment capability. For local optimal alignment, the choice is
Smith-Waterman [11] for local optimal alignment. For medium
length sequences it depends on the available computer, its
number of cores, number of General Purpose Graphic Process
Units (GPGPUs), and the capabilities of the employed software
program. For large and very large sequences the choice is
definitely not Needleman-Wunsch or Smith-Waterman. A
practical choice is an efficient heuristic semi-optimal methods.
Therefore, two such recent methods are selected for the
comparison part: MUMmer [10], and GSAlign [19]. The
experiment includes both short genomes and long ones.

1- Input Sequences S1 and S2

2- Global SA1, SA2 // the two sequences after alignment

3- Recursive Procedure LCSDaC (S1, S2)

4-{

5- if (S1 < 100 OR S2 <100){

6- SA (S1, S2) // Short Align and place in SA1, SA2

7- Return

8- }

9- SELECT (s1, S1) //s1 is selected from the middle of S1

10- SELECT (s2, S2)

11- LCS (s1, s2) //find the LCS of s1 and s2

12- S1=left section of S1 up to LCS start

13- S2=left section of S2 up to LCS start

14- LCSDaC (S1,S2) //recursive call for new sequences

15- Append(LCS) //append LCS to current end of SA1, SA2

16- S1=right section of S1 from end of LCS

17- S2=right section of S2 from end of LCS

18- LCSDaC (S1,S2)

19-}

BRCA1 is a human gene responsible for suppressing tumors
and repairing DNA, ATF6 is a human gene which acts as a
transcription factor inside the nucleus, and CFTR gene that is the
provider of instructions for making a kind of protein. The
approximate sizes of these genes are expressed in thousands (K)
of nucleotides in Table 1. These genes are taken from 1000
genomes project dataset. Escherichia coli (E.Coli), Shigella, and
Salmonella are three bacteria with the approximate sizes that are
expressed in millions (M) of nucleotides in this table. The
bacteria sequences are taken from NCBI site. For each gene and
bacteria two different variants are selected to be aligned.

The computer used for the experiments is Intel(R) core(TM)
i7-353U CPU 2GHz, RAM 6GB, and Linux Ubuntu 18.0
operating system.

TABLE I. SUMMARY OF THE TIMING COMPARISON RESULTS

Sequence→
Method↓

BRCA1
#127K

ATF6
#198K

CFTR
#430K

E.coli
#5M

Shigella
#5M

Salmonella
#4.9M

MUMmer 5s 5s 9s 328s 350s 246s

GSAlign 2s 3s 4s 125s 240s 160s

LCSDaC 1s 2s 4s 138s 218s 127s

The overall results of Table 1 for the six tested sequences, show
that, on the average, LCSDaC 2.61 times faster than MUMmer,
and 1.29 times faster than GSAlign. For example in comparing
MUMmer and LCSDaC the following computation is used.

�5 18 + 5 28 + 9 48 + 328 1388 + 330 2188 + 246 1278 �/6 � 2.61

Another major area of comparison is the accuracy of the
methods. It is obvious that Needleman-Wunsch is the most
accurate one because it is an optimal aligner. The problem arises
when the sequences are long and its time and space requirements
is absolutely intolerable. Smith-Waterman is not an optimal
aligner but, it is a locally optimal one. MUMmer, GSAlign, and
LCSDaC fall into the category and none of them could be used
as a fully correct one. In the absence of an optimal alignment the
number of exact matches of the two sequences are taken to be a
measure for the purpose of correctness evaluation. A higher
value of this measure is interpreted as the method being more
accurate. Table 2 shows that the method presented in this paper
is more accurate than others, in all cases. Therefore, the Relative
Accuracies (RA) of other methods are computed in comparison
to LCSDaC.

Evaluating their accuracy in terms of score, precision, recall, and
F-measure requires extensive experiments on numerous
sequences which is left for the future work.

TABLE II. RELATIVE ACCURACY COMPARISON RESULTS

Sequence→
Method↓

BRCA1
#127K

ATF6
#198K

CFTR
#430K

E.coli
#5M

Shigella
#5M

Salmonella
#4.9M

MUMmer 103521 152501 366248 2814666 2505372 2494108

GSAlign 98531 128951 323587 2453267 2378563 2108569

LCSDaC 123087 197277 421446 2955849 2958760 2754703

Therefore, the average relative accuracies of other methods are
computed in comparison to LCSDaC. Details of calculations for
MUMmer is shown in the following.

?4@A@BCD � �103521/123087 + 152501/197277 + 366248/421446
+ 2814666/2955849 + 2505372/2958760
+ 2494108/2754703�/6 � 0.864

Performing a similar calculation for GSAlign evaluates its
relative accuracy to be ?4EFGH�1# � 0.6554.

Therefore the accuracy of LCSDaC is the highest and that of
MUMmer is 86 percent of LCSDaC. With respect to relative
accuracy, the GSAlign is the lowest with 66 percent of the
LCSDaC.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced LCSDaC which is a novel long
DNA sequence aligner base on divide and conquer approach in
which, the division takes place along the longest common
subsequence of the middle portions of the current sequences.
The time complexity of the method is analyzed and it is shows
to be superior to traditional aligners. The space complexity of
the algorithm is also calculated to be O(n) which is better than
all classic aligners such as Needleman-Wunsch and Smith-
Waterman methods. Further, it outperforms any state of the art
method. The sequential version of the presented method is
implemented and it is compared against two state of the art
heuristic aligners called MUMmer, and GSAlign. It is shown
that on the average, the proposed algorithm, LCSDaC, is 2.61
times faster than MUMmer, and 1.29 times faster than GSAlign.
For the accuracy we show that the accuracy of MUMmer is 86
percent of LCSDaC and that of GSAlign is 66 percent of the
LCSDaC.

REFERENCES

[1] H. Chial, “DNA sequencing technologies key to the
Human Genome Project,” Nat. Educ., vol. 1, no. 1, p.
219, 2008.

[2] J. Lever, E. Zhao, J. Grewal, M. Jones, and S. Jones,
“CancerMine: a literature-mined resource for drivers,
oncogenes and tumor suppressors in cancer,” Nat.

Methods, vol. 16, pp. 505–507, 2019.

[3] I. Kovtun and C. McMurray, “Features of trinucleotide
repeat instability in vivo,” Cell Res., vol. 18, pp. 198–
213, 2008.

[4] B. Langdahl, E. Løkke, M. Carstens, S. LL, and E.
Eriksen, “Osteoporotic Fractures Are Associated with
an 86-Base Pair Repeat PolymCorphism in the
Interleukin-1–Receptor Antagonist Gene But Not with
olymorphisms in the Interleukin-1b Gene,” J Bone

Min. Res, vol. 15, no. 3, pp. 402–414, 2000.

[5] N. Saadati and R. Rajabian, “The effect of
bisphosphonate on prevention of glucocorticoid-
induced osteoporosis,” Iran. red crescent Med. J., vol.
10, no. 1, pp. 8–11, 2008.

[6] R. E. Bellman, Dynamic Programming. New York:
Dover Publications Inc, 2013.

[7] S. Needleman and C. Wunsch, “A general method

applicable to the search for similarities in the amino
acid sequence of two proteins,” J. Mol. Biol., vol. 48,
no. 3, pp. 443–453, 1970.

[8] C. Leimeister, T. Dencker, and B. Morgenstern,
“Accurate multiple alignment of distantly related
genome sequences using filtered spaced word matches
as anchor points,” Bioinformatics, vol. 35, no. 2, pp.
211–218, 2019.

[9] S. V Angiuoli and S. L. Salzberg, “Mugsy: fast
multiple alignment of closely related whole genomes,”
Bioinformatics, vol. 27, no. 3, pp. 334–342, 2011.

[10] G. MarcËais, A. L. Delcher, A. M. Phillippy, R.
Coston, S. L. Salzberg, and A. Zimin, “MUMmer4: A
fast and versatile genome alignment system,” PLOS

Comput. Biol., 2018.

[11] T. Smith and M. Waterman, “Identification of
Common Molecular Subsequences,” J. Mol. Biol., vol.
145, no. 1, pp. 195–197, 1981.

[12] J. Sun, K. Chen, and Z. Hao, “Pairwise alignment for
very long nucleic acid sequences,” Biochem Biophys

Res Commun, vol. 502, no. 3, pp. 313–317, 2018.

[13] M. Brudno, C. B. . Do, G. M. Cooper, M. F. Kim, and
E. et al. Davydov, “LAGAN and Multi-LAGAN:
Efficient Tools for Large-Scale Multiple Alignment of
Genomic DNA,” Genome Res., vol. 13, no. 4, pp.
721–731, 2003.

[14] Q. Wang, D. Korkin, and Y. Shang, “A Fast Multiple

Longest Common Subsequence (MLCS) Algorithm,”
IEEE Trans. Knowl. Data Eng., vol. 23, no. 3, pp.
321–334, 2011.

[15] M. Sazvar, M. Naghibzadeh, and N. Saadati, “Quick-
MLCS: A new algorithm for the multiple longest
common subsequence problem,” in Proceedings of the

Fifth International C* Conference on Computer

Science and Software Engineering, 2012, pp. 61–66.

[16] A. Mir, M. Naghibzadeh, and N. Saadati, “INDEX:
Incremental depth extension approach for protein–
protein interaction networks alignment,” BioSystems,
vol. 162, pp. 24–34, 2017.

[17] Y. Deng, S. Kumar, and W. Byrne, “Segmentation and
alignment of parallel text for statistical machine
translation,” Nat. Lang. Eng., vol. 13, no. 3, pp. 235–
260, 2007.

[18] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman, “Basic local alignment search tool,” J.
Mol. Biol., vol. 215, no. 3, pp. 403–410, 1990.

[19] H. N. Lin, & W. L. Hsu. “GSAlign: an efficient
sequence alignment tool for intra-species
genomes.” BMC genomics, vol. 21, no. 1, pp. 1-10.
2020.

