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Abstract— optimal alignment of DNA sequences is a reliable 
approach to discover mutations in one sequence in comparison 
to the other or to discover the differences between two 
sequences. Needleman-Wunsch is the most applicable software 
for optimal alignment of the sequences and Smith-Waterman is 
the most applicable one for local optimal alignment. Their 
performances are excellent with short sequences, but as the 
sequences become longer their performance degeneration grow 
exponentially to the point that it is practically impossible to 
align two compete human DNAs. Alignment process is 
essential in diagnosis of genome related diseases. Therefore, 
many researches are done or being conducted to find ways of 
performing the alignment with tolerable time and memory 
consumptions. One such effort is breaking the sequences into 
same number of parts and align corresponding parts together to 
produce the overall alignment. With this, there are three 
achievements simultaneously: run time reduction, main 
memory utilization reduction, and the possibility to better 
utilize multiprocessors, multicores and General Purpose 
Graphic Processing Units (GPGPUs).  In this research, the 
method for breaking long sequences into smaller parts is based 
on the divide and conquer approach. The breaking points are 
selected along the longest common subsequence of the current 
sequences. The method is demonstrated to be very efficient with 
respect to both time and main memory utilization. 
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I.  INTRODUCTION 

Genomic sequence analysis gained extra momentum since 
the beginning of human genome project [1]. Nowadays, with the 
advances in the genome sequencing technologies enormous 
amount of genomic data is continuously being produced which 
makes it an explosive big data area. There are variety of purposes 
such as revealing the relations between genes or proteins, 
understanding their homology and functionality, deciphering 
sequences to disclose biological aspects, diagnosing diseases, 
and producing drugs, in the analysis of this big data. Many 
diseases are caused by variations in the genome sequences such 
as many kinds of cancers [2] and variety of disorders related to 
nervous system’s degeneration such as Huntington’s disease [3]. 
Even a repeat polymorphism in one of the genes, i.e., IL-lra, is 

shown to be associated with an increased possibility of 
osteoporotic fractures [4][5].  Comparing a subject sequence 
against a reference one to find the differences is commonly used 
in these analysis. The scientific meaning of comparison here is 
alignment of sequences and revealing their differences. 

Alignment of two sequences is the arranging of these 
sequences such that similarities and differences are shown in the 
best possible way while the order of elements of each sequence 
is preserved. Often, a scoring function is proposed and the 
quantitative optimal alignment of the two sequences becomes 
equivalent to minimizing or maximizing this function, 
depending on the problem being solved and the formulation of 
the scoring function. Considering the countless number of ways 
that two sequences can be aligned, when gaps are allowed, the 
Dynamic Programming (DP) approach is an extremely 
innovative way of optimally aligning sequences [6]. DP is a 
Mathematics-Computer optimization problem. A problem has to 
have the principle of optimality [6] property to be considered for 
being solved using the DP approach. The novelty of the DP idea 
is in systematic solution of all possible sizes of problems starting 
from the smallest one and going toward the biggest, which is 
actually the given problem to be solved. It stores the solution 
results of smaller problems and in solving a bigger problem it 
can use the solution results of any of the previously solved 
problems in an optimized manner. The optimal sequence 
alignment has the principle of optimality and it is successfully 
solved by the DP approach. The two most utilized approaches 
are the Needleman-Wunsch algorithm and the Smith-Waterman 
algorithm. 

Needleman-Wunsch algorithm [7] is often used to compare 
biological sequences with the goal of computing the similarity 
score of sequences. It does so by arranging the sequences in such 
a way that the scoring function is maximized (in some cases the 
goal is to minimize the overall penalty). In this paper we are 
interested in global alignments (not necessarily global optimal) 
of pairs of sequences of DNA, RNA, or other similar genomic 
sequences composed of the four nucleotides A(adenine), 
T(thymine), G(guanine), and C(cytosine). The optimization 
problem is organized as filling an m by n matrix S of scores, 
where m is the length of one of the sequences and n is the length 
of the other. Si,j is the maximum score of aligning the i first 
characters of the first sequence and the  j first characters of the 
second one. This is the clue to the DP nature of breaking the 



optimization of a large problem into optimization of smaller 
problems. At the end, the bottom right corner of that matrix, i.e., 
Sm,n,  gives the overall score of the alignment. To find the actual 
alignment, a technique for going from the bottom right corner to 
the top left corner of the matrix has to be followed. For long 
sequences, the time complexity of Needleman-Wunsch 
algorithm which is O(mn) prolongs its execution time, hence 
continuous efforts are made to make it more practical [8][9][10]. 
For example, for two human genomes of size 3.2 Giga 
Nucleotides each, and considering at least 10 operations to fill 
each cell of the 3.2Giga by 3.2Giga matrix, the number of 
operations needed to fill the whole matrix is 1020. Using a single 
processor computer with the power of 10 million instructions per 
second, it takes approximately 317,000 years to complete the 
matrix. 

Smith-Waterman algorithm [11] is another variant of global 
sequence alignment. An important aspect of this alignment is 
that if the scoring value of a cell of the scoring matrix is 
calculated to be negative, its value is set to zero. This means, in 
such situations, the partial alignment score of sequences up to 
this point should not affect the alignment score of the rest of the 
sequences.  The net consequence of this assumption is that 
Smith-Waterman algorithm can better demonstrate the score of 
local alignments. As a matter of fact, it better shows the local 
alignment scores and hence it is often used for finding similar 
regions of sequences. Smith-Waterman algorithm has the same 
problem as Needleman-Wunsch algorithm has, i.e., its time 
complexity and hence it’s high execution time for aligning long 
sequences. In addition, its space complexity is also high such 
that some later researches have concentrated on lowering its 
space complexity only [12].  

One way to reduce the alignment execution time is to break 
the two sequences into many pairs of smaller sequences, when, 
possible, and align each pair separately. For example, suppose 
the length of each of the original two sequences is 1000,000 base 
pairs, i.e., characters. Using the Needleman-Wunsch alignment 
algorithm, the number of operations would be proportional to 
1012. Let’s assume we can break the two sequences into 10 pairs 
of sequences such that the length of each of the resulting new 
sequences is approximately 100,000 base pairs, i.e., bps for 
short. The number of operations for aligning all these 10 pairs is 
proportional to 10*1010=1011 which would need 10 times less 
execution time compared to the case when the original 
sequences are aligned. On global alignment of related long 
genome sequences, many attempts have been made to break 
pairs of such long sequences into many smaller pairs [8][13]. 
The current research is in the same direction to higher the 
efficiency and the quality of globally aligning two genome 
sequences. It uses the Longest Common Subsequence (LCS) 
technology to find anchor points, Divide and Conquer (DaC) 
approach to recursively break pairs of longer sequences, and 
Needleman-Wunsch algorithm to align every short pair of 
sequences. 

Finding the LCS of two genome sequences has many 
applications such as phylogenetic construction and analysis, 
quick search in genome sequences big data, and identification of 
motifs. The natural approach to solve LCS of a pair of sequences 
is to formulate it as a dynamic programming problem similar to 

Needleman-Wunsch algorithm. However, there are quite newer 
methods with lower time complexities [14][15]. 

In this paper, a new divide and conquer approach to genome 
sequence alignment is proposed. The division is along the LCS 
of the two sequences which is located approximately in the 
middle of the two sequences. Only a section in the middle of the 
two sequences are selected in which the LCS is sought. If the 
discovered LCS is not long enough the sections length is 
enlarged until a reasonable length LCS is obtained. The 
novelties of this approach is highlighted in the following. 

• It is much faster than either of Needleman-Wunsch and 
Smith-Waterman algorithms. 

• The LCS subsequence is removed from both sequences, 
and hence from further processing, which further saves 
both execution time and memory space. 

• It is faster than the state of the art anchor-based methods 
which also use some kind of division. 

• The space requirement of the method is extremely low. 

• It has the potential to be implemented in parallel in three 
different levels, division of the long sequences, 
alignment of all short pairs of sequences, and utilization 
of General Purpose Graphic Processing Units (GPGPU) 
within each alignment of short sequences. 

The structure of the rest of the paper is as follows. In Section 
2 a short review of related work is presented. Section 3 is a brief 
clarification of the problem being solved. Section 4 details the 
implementation of the proposed method’s solution approach. 
Section 5 is the evaluation section and finally a short summary 
and future work is documented in Section 6. 

II. RELATED WORK 

Sequence alignment is the canonical point of most tools of 
DNA and other genome sequences alignments. Human genome 
sequencing and analysis [1] formally started in 1990 and with it, 
computational methods, especially alignment, became an 
important part of any genome analysis activity. Undoubtedly, 
with the invention of its dynamic programming implementation 
and also after that, there has been great progress in making the 
alignment algorithms efficient and up to date. It is worth 
mentioning that although we have focused on genome sequence 
alignment, alignment is widely used in other domains such as 
protein sequences alignment, protein networks alignment [16] 
and all kinds of text alignment [17]. 

Needleman-Wunsch algorithm is the basic method for global 
sequence alignments [7]. Smith-Waterman algorithm is a variant 
of Needleman-Wunsch algorithm which is also a global aligner 
but it is tailored to find local similar regions of sequences being 
aligned [11]. The problem with these algorithms is their high 
time complexity which is O(mn), or O(n2) where the length of 
the two sequences are the same and it is equal to n. In addition, 
the space complexity of these algorithms is also O(mn) which 
can be problematic for large sequences. In such cases the 
solution would be to have part of the scoring matrix in the 
secondary storage which will further worsen the execution time 
requirement. Many improvements are reported which we will 
concentrate on the most recent ones, here. 



BLAST is heuristic algorithm developed to search a short 
sequence in a large volume of data. Based on a hashing 
mechanism and a local alignment method, it is capable of finding 
sequences in the database that are similar to the search sequence 
with some degree of similarity [18]. BLAST is not originally 
developed for alignment of genomic sequences and it has the 
potential to be used in any kind of text data with any kind of 
alphabet. Later, specific program versions were developed for 
this purpose. BLASTZ and LASTZ are recent versions of the 
program that are widely used for local optimal alignment of 
genomic and DNA data. It is much faster than Smith-Waterman 
method especially for long sequences. 

Leimeister et al. [8] proposed a new anchor point finding 
method called filtered spaced word match. Anchor points are 
short subsequences in the two sequences which will be matched 
in the final alignment of these sequences. Subsequences between 
consecutive anchor points of the two sequences are aligned using 
known alignment algorithms. They claim that their superiority is 
in finding better anchor points. However, their comparison with 
that of Mugsy pipeline [9] did not lead to similar quality for 
closely related sequences but they claim it is superior in 
alignment of distal sequences. Neither time nor space 
complexity of the method is reported. Our guess is that its time 
complexity would be in the level of that of Needleman-Wunsch 
but there may be improvements is its space complexity.  

Another recent development in the field of long genome 
sequence alignment is MUMmer4 [10] which is the fourth 
generation of MUMmer. It is based on a 48-bit suffix array data 
structure. It is capable of using multicores of the host computer 
however, this is applicable for the case of aligning many 
sequences to the reference genome; e.g., aligning many short 
reads to the human reference genome. In such cases, it can 
handle very large input size up to 141 Tera bps. Although the 
most important aspect of an algorithmic computational method 
is its time and space complexity, these are not reported in the 
paper. 

The research reported by Sun et al. [12] is an effort towards 
space requirement reduction of Smith-Waterman. Similar to that 
of Smith-Waterman, its input is a pair of sequences and it 
performs the optimal local alignment of the sequences. It is 
capable of aligning long sequences up to 100 million bps. It 
claims that the space requirement is tremendously reduced but 
the order of reduction is not reported.  It also claims its time 
complexity is the same as that of Smith-Waterman. However, 
because of extra computations required to reduce space, one 
would expect its time requirement would be higher than that of 
Smith-Waterman. 

A recent method called GSAlign is the last method studied 
here. It is specifically designed for semi-optimal alignment of 
long Genome and DNA sequences [19]. Fundamentally, it is 
composed of three phases: seed identification and pairing of the 
two sequences’ seeds, similar region identification by chaining 
seed pairs, and finally the local aligning of regions. To produce 
the overall alignment, local alignment of regions are joined 
together. It is capable to implement the alignment phase of the 
process in parallel using a multithreading technique.  The 
authors claim that GSAlign is the fastest semi optimal aligner of 
long sequences. They also claim that the developed program 

produces perfect or nearly perfect precision and recalls on the 
identification of sequence variations in the dataset.  

III. PROBLEM DEFINITION 

Two genome sequences S1 and S2 are inputs to the longest 
common subsequence divide and conquer approach which is 
developed here. The length of the sequences are considered to 
be m and n, respectively. The output would be the global 
alignment of the two sequences in which differences and 
similarities of the sequences are clearly recognizable. It is 
assumed that the sequences are composed of characters A, C, G, 
and T. The length of the sequences could range from couple of 
nucleotides up to the length of a whole human genome. For very 
short sequences, up to 100 bps, the Needleman-Wunsch will 
directly be used and hence there would be no improvements on 
these sizes. As the length become longer the efficiency of the 
presented method with respect to both time and space increases. 

IV. LCSDAC IMPLEMENTATION 

In this section details of the implementation of the proposed 
Longest Common Subsequence Divide and Conquer (LCSDaC) 
alignment of two sequences is explained. The system will be 
able to align similar sequences of any sizes up to the length of a 
human genome, i,e., 3.2 Giga bps. If both sequences are short, 
i.e., less than 100 bps is assumed here, the Needleman-Wunsch 
will directly be utilized. Otherwise, the dividing and conquer 
process will systematically break them into many pairs of short 
sequences. Figure 1 illustrates how this breaking process works. 
From the middle of each of the sequences a subsequence of 
length equal to the minimum of 1000 and one third of the current 
sequence’s length, i.e., Minimum (1000, n1/3), is distinguished 
which become the input to the LCS procedure. This procedure 
will find their longest common subsequence. If this subsequence 
is long enough the division is successful, otherwise the length of 
the distinguished subsequences are doubled and the LCS is 
called again. There is a maximum which is set to 3 for this step 
and in the worst case the longest common subsequence obtained 
in the third iteration is accepted as the breaking point. Figure 1 
also shows the maximum number of times the LCS is called in 
each level of the tree.  

Figure 2 has illustrated this procedure on a miniature pair of 
sequences. It is assumed that the first iteration of the procedure 
gives an acceptable result. In this example, the length of each of 
the sequences is 50. Although the length of sequences should be 
more than 100 to perform the division, for this example the 
division is applied. The LCS procedure will find the longest 
common subsequence to be GGAGCATGAGCTGG. It is 
located in Locations 17 to 30 of the first sequence and 19 to 32 
of the second sequence. These places are assumed to be aligned 
in the final alignment of the two sequences and hence they are 
exempted from further processing. The algorithm remembers 
this alignment and includes it in the final alignment. In the 
second level of the tree of Figure 1 we will have to deal with two 
pairs of sequences to be processed. The first pair is in locations 
1 to 16 of the first sequence and Locations 1 to 18 of the second 
sequence. The second pair is in locations 31 to 50 of the first 
sequence and Locations 33 to 50 of the second sequence. The 
division is not continued because the sequences are short. For 
these two pairs Needleman-Wunsch is directly applied. 



The overall pseudocode of the algorithm of the method 
presented here is shown in Algorithm 1. In Line 2, two new 
sequences which are the final results of the alignment are 
obtained. Their length is not necessarily equal to the length of 
the original sequences and may be a bit longer. The whole 
process, Lines 3 to 19, is declared as a recursive procedure. In 
this procedure, whenever one of the two inputs is short, i.e., less 
than 100 base pairs, Needleman-Wunsch is called to align the 

two sequences (Lines 5 to 8). The aligned results would be place 
in output sequences SA1 and SA2. In Lines 9 and 10, the 
SELECT procedure selects a subsequence from the middle of 
each of the sequences and then the longest common subsequence 
of the selected sequences are computed (Line 11). A similar 
procedure has to be applied to either sides of the anchor 
segments with the LCS being placed in the middle (Lines 12 to 
18). 

 

Figure 1.  The division process of LCSDaC showing the number of LCS calls 

  1    2    3   4    5    6    7    8   9   10  11  12  13  14  15 16  17  18 19  20  21  22  23  24 25  26  27  28  29  30  31 32  33  34  35 36  37  38  39 40  41  42   43 44  45  46  47 48   49 50 

CCTTTATCTAATCTTTGGAGCATGAGCTGGCATAGTTGGAACCGCCCTCA 

CCTTTATGTAATCTTTGTGGAGCATGAGCTGGGAGTTGGACACGCCCTCA 
Figure 2.  The effect of applying LCS on two sequences     

V. EVALUATION 

For the alignment of long sequences, which is the interest of 
this research, both time and space complexities are two major 
limitations. Otherwise, Needleman-Wunsch produces the 
optimal alignment. Accuracy is often scarified to be able to 
obtain approximate solution in tolerable amount of time and 
with the available storage capacity. We proceed first with the 
most important property of the algorithm which is time 
complexity.  

Time complexity of Algorithm 1 

The number of operations needed to find the LCS of two 
sequences of length k is proportional to k, i.e., C1k where C1 is a 
constant [15]. On the other hand, the number of times we can 
divide an integer  n by 2 before the final result becomes less than 
100 is log���� � log��100�  or approximately log�� ��  - 6. 
This is the depth of the tree of Figure 1. Therefore, the number 
of times the LCS procedure is called is shown by Formula (1). 
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Algorithm 1. The pseudocode for LCSDaC approach 

 

 

Assuming the maximum length of the pair of sequences 
which is sent to the LCS procedure to be k1, the number of 
operations needed to run the whole algorithm would satisfy 
Formula (2). In this formula O(SA) represents the time 
complexity of the Short Align (SA) procedure. 

+��� ≤ �% ∗ -%  � 2�
⌈ !"�#�$ !"�%&&�⌉
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Or, 

+��� ≤ �% ∗ -% � + � ∗   3��4�. (3) 

Recall that even if the length of the original sequences to be 
aligned is as large as a whole genome or any other longer length, 
in the algorithm, alignment for only short sequences with length 
less than 100 bps is called. Let’s assume that the number of 
operations needed to do this alignment is k. It is usually very 
small compared to the length of the input sequences and it is 
bounded by a constant. However, it is not too small to satisfy the 
definition of the big O notation of the time complexity to 
consider it a constant. On the average, for alignment of short 
sequences there would be 50*50=2500 cells to fill. As this is 
represented by k, the time complexity of the method would be 
O(kn). Of course, there is always an option to set the length of 
short sequences to be less than 100 bps.  

There is a hidden benefit in the proposed method which is 
the exemption of longest common subsequences of each pair of 
sequences from any further processing. In the calculation of the 
time complexity, this is ignored because it does not affect the 
time complexity itself but reduces the hidden constant 

Space complexity of Algorithm 1 

Space complexity of the alignment methods is as important 
as their time complexities. Some recent methods such as Sun et 
al. [12] have left the time complexity of the aligner untouched 
and have concentrated on reducing its space complexity. The 
actual space complexity of their proposed algorithm is not 
reported because, it is calculated for the worst case and in the 
worst case it would not be impressive. However, they claim the 
main memory of a “normal personal computer” would be able 
to align sequences as long as 100,000,000 nucleotides.  

Here we explicitly express that the space complexity of our 
algorithm is O(n) where n is the length of longer input sequence. 
There are two input sequences of length say n and two output 
sequences of approximate length n, too. LCSDaC would need 
4n bytes to keep them all in the main memory. Within this 
algorithm, each Needleman-Wunsch execution will require at 
the most 10,000 cells and considering 4 bytes for each cell, adds 
up to 40,000 bytes. In the non-parallel version of LCSDaC, there 
would be only one running Needleman-Wunsch at any given 
time. Other minor memory requirements are ignorable. 
Therefore, the total memory space needed is expressed by 
Formula (4). 

���� � 4� + 40000 (4) 

For sequences larger than 40000 bps, the space requirement 
would be 

���� ≤ 5� (5) 

Therefore, the space complexity is S(n) ∈ O(n). Even for the 
case of parallel implementation of the LCSDaC using 
multicores, the number of multicores are limited and it is small, 
say 16, which still leaves the space complexity to be O(n). This 
is another achievement of the current research. 

The method presented here has a high potential to be 
implemented in parallel. The simplest section that can be 
paralleled is the “Short align” section of the algorithm which is 
responsible for alignment of short sequences. This section 
corresponds to the lowest level of the tree of Figure 1. Within 
each short align instance one can utilize General Purpose 
Graphic Processing Unit to elevate the degree of parallelism. 
Furthermore, the LCS recognition can become parallel. For 
example, in Level 2 (third level) of the tree of Figure 1 four LCS 
instances could run in parallel. In this paper, the whole idea is 
developed sequentially and the compassions are with sequential 
competitors. Actually, we intended to put our idea into practice 
soon and evaluate the practicality of the method. The 
parallelization of the algorithm is left for future work.  

For short sequences, there is no need for comparison, and the 
choice is definitely Needleman-Wunsch [7] with optimal 
alignment capability. For local optimal alignment, the choice is 
Smith-Waterman [11] for local optimal alignment. For medium 
length sequences it depends on the available computer, its 
number of cores, number of General Purpose Graphic Process 
Units (GPGPUs), and the capabilities of the employed software 
program. For large and very large sequences the choice is 
definitely not Needleman-Wunsch or Smith-Waterman. A 
practical choice is an efficient heuristic semi-optimal methods. 
Therefore, two such recent methods are selected for the 
comparison part: MUMmer [10], and GSAlign [19]. The 
experiment includes both short genomes and long ones. 

1- Input Sequences  S1 and S2 

2- Global  SA1, SA2 // the two sequences after alignment 

3- Recursive Procedure LCSDaC (S1, S2) 

4-{ 

5- if (S1 < 100 OR S2 <100){ 

6-     SA (S1, S2)  // Short Align and place in SA1, SA2 

7-  Return 

8- } 

9- SELECT (s1, S1)     //s1 is selected from the middle of S1 

10- SELECT (s2, S2) 

11- LCS (s1, s2)       //find the LCS of s1 and s2 

12- S1=left section of S1 up to LCS start 

13- S2=left section of S2 up to LCS start 

14- LCSDaC (S1,S2) //recursive call for new sequences 

15-      Append(LCS)  //append LCS to current end of SA1, SA2 

16- S1=right section of S1 from end of LCS 

17- S2=right section of S2 from end of LCS 

18- LCSDaC (S1,S2)  

19-} 



BRCA1 is a human gene responsible for suppressing tumors 
and repairing DNA, ATF6 is a human gene which acts as a 
transcription factor inside the nucleus, and CFTR gene that is the 
provider of instructions for making a kind of protein. The 
approximate sizes of these genes are expressed in thousands (K) 
of nucleotides in Table 1. These genes are taken from 1000 
genomes project dataset. Escherichia coli (E.Coli), Shigella, and 
Salmonella are three bacteria with the approximate sizes that are 
expressed in millions (M) of nucleotides in this table. The 
bacteria sequences are taken from NCBI site. For each gene and 
bacteria two different variants are selected to be aligned. 

The computer used for the experiments is Intel(R) core(TM) 
i7-353U CPU 2GHz, RAM 6GB, and Linux Ubuntu 18.0 
operating system.  

TABLE I.  SUMMARY OF THE TIMING COMPARISON RESULTS 

Sequence→ 
Method↓ 

BRCA1 
#127K 

ATF6 
#198K 

CFTR 
#430K 

E.coli 
#5M  

Shigella 
#5M 

Salmonella 
#4.9M 

MUMmer 5s 5s 9s 328s 350s 246s 

GSAlign 2s 3s 4s 125s 240s 160s 

LCSDaC 1s 2s 4s 138s 218s 127s 

 

The overall results of Table 1 for the six tested sequences, show 
that, on the average, LCSDaC 2.61 times faster than MUMmer, 
and 1.29 times faster than GSAlign. For example in comparing 
MUMmer and LCSDaC the following computation is used. 

�5 18 + 5 28 + 9 48 + 328 1388 + 330 2188 + 246 1278 �/6 � 2.61 

Another major area of comparison is the accuracy of the 
methods. It is obvious that Needleman-Wunsch is the most 
accurate one because it is an optimal aligner. The problem arises 
when the sequences are long and its time and space requirements 
is absolutely intolerable.  Smith-Waterman is not an optimal 
aligner but, it is a locally optimal one. MUMmer, GSAlign, and 
LCSDaC fall into the category and none of them could be used 
as a fully correct one. In the absence of an optimal alignment the 
number of exact matches of the two sequences are taken to be a 
measure for the purpose of correctness evaluation.  A higher 
value of this measure is interpreted as the method being more 
accurate. Table 2 shows that the method presented in this paper 
is more accurate than others, in all cases. Therefore, the Relative 
Accuracies (RA) of other methods are computed in comparison 
to LCSDaC. 

Evaluating their accuracy in terms of score, precision, recall, and 
F-measure requires extensive experiments on numerous 
sequences which is left for the future work. 

TABLE II.  RELATIVE ACCURACY COMPARISON RESULTS 

Sequence→ 
Method↓ 

BRCA1 
#127K 

ATF6 
#198K 

CFTR 
#430K 

E.coli 
#5M  

Shigella 
#5M 

Salmonella 
#4.9M 

MUMmer 103521 152501 366248 2814666 2505372 2494108 

GSAlign 98531 128951 323587 2453267 2378563 2108569 

LCSDaC 123087 197277 421446 2955849 2958760 2754703 

 

Therefore, the average relative accuracies of other methods are 
computed in comparison to LCSDaC. Details of calculations for 
MUMmer is shown in the following. 

?4@A@BCD � �103521/123087 + 152501/197277 + 366248/421446
+ 2814666/2955849 + 2505372/2958760
+ 2494108/2754703�/6 � 0.864 

Performing a similar calculation for GSAlign evaluates its 
relative accuracy to be ?4EFGH�1# � 0.6554. 

Therefore the accuracy of LCSDaC is the highest and that of 
MUMmer is 86 percent of LCSDaC. With respect to relative 
accuracy, the GSAlign is the lowest with 66 percent of the 
LCSDaC. 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we introduced LCSDaC which is a novel long 
DNA sequence aligner base on divide and conquer approach in 
which, the division takes place along the longest common 
subsequence of the middle portions of the current sequences. 
The time complexity of the method is analyzed and it is shows 
to be superior to traditional aligners. The space complexity of 
the algorithm is also calculated to be O(n) which is better than 
all classic aligners such as Needleman-Wunsch and Smith-
Waterman methods. Further, it outperforms any state of the art 
method. The sequential version of the presented method is 
implemented and it is compared against two state of the art 
heuristic aligners called MUMmer, and GSAlign. It is shown 
that on the average, the proposed algorithm, LCSDaC, is 2.61 
times faster than MUMmer, and 1.29 times faster than GSAlign. 
For the accuracy we show that the accuracy of MUMmer is 86 
percent of LCSDaC and that of GSAlign is 66 percent of the 
LCSDaC. 
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