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NUMERICAL SOLUTION OF FRACTIONAL-ORDER

POPULATION GROWTH MODEL USING FRACTIONAL-ORDER

MUNTZ–LEGENDRE COLLOCATION METHOD AND

PADE–APPROXIMANTS

E. HENGAMIAN ASL (1), J. SABERI-NADJAFI (2) AND M. GACHPAZAN (3)

Abstract. This paper presents a numerical solution for a nonlinear fractional

Volterra integro-differential equation to study the behavior solution of the popula-

tion growth model. The technique applied based on the fractional-order Muntz–

Legendre polynomials and the Pade approximants. Finally, some numerical exam-

ples are presented to show the efficiency and validity of the proposed method.

1. Introduction

It is well known that fractional calculus is one of the important parts of the numerical

analysis, statistical mechanics, and physics in recent years. For example Bagley [1],

Mainardi [2] and Rossikhin et al. [3] presented a survey of the application of frac-

tional derivatives in mechanics and continuum. In addition, Ichise[4] demonstrated

the applications of fractional derivatives and fractional integrals in the areas of elec-

trochemical processes.

One of different types of the fractional order differential equations is population

growth model [5, 6, 7]. This equation is nonlinear fractional Volterra integro-differential

equation of the following form:

dαp

dt̃α
= ap− bp2 − cp

∫ t̃

0

p(s)ds,

p(0) = p0, 0 < α ≤ 1,
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where p(t̃) is the scaled population of identical individuals, t̃ denotes the time, α is

a constant describing the order of time-fractional derivative, a > 0 is the birth rate

coefficient, b > 0 is the crowing coefficient and c > 0 is the toxicity coefficient. The

coefficient c indicates the essential behavior of the population evolution before its

level falls to zero in the long term. We choose t = ct̃
b
and y = bp

a
, for the scale time

and population, respectively, to obtain the following problem

k
dαy

dtα
= y − y2 − y

∫ t

0

y(s)ds, 0 < α ≤ 1, 0 ≤ t, s ≤ T < ∞, (1.1)

y(0) = β, (1.2)

where k = c/(ab) is a prescribed non-dimensional parameter and β is the initial pop-

ulation. This model is a fractional-order integro-differential equation where the term

cy
∫ t

0
y(s)ds represents the effect of toxin accumulation on the species. For α = 1, this

equation will represents a first-order integro-ordinary differential equation. Recently,

several analytical and numerical methods have been proposed to solve the model (1.1).

For example, the Adomian decomposition method [5], Pade-approximation method

by the Adomian decomposition method [8], Sinc and rational Legendre collection

method [9], fractional shifted Legendre polynomial method [10] and other methods

[11, 12].

The aim of this paper is to apply the factional-order Muntz–Legendre polynomials

to solve the population growth model (1.1), using collocation method.

This paper is organized as follows. Review of Caputo fractional derivative, is briefly

provided in section 2. In section 3, we present fractional-order Muntz–Legendre poly-

nomials and its properties. Numerical method for solving model (1.1) is established

in section 4. Finally, we illustrate some numerical examples to show the efficiency

and accuracy of the proposed method in section 5.

2. Review of Caputo fractional derivative

Definition 2.1. The fractional derivative of y(t) in the Caputo sense is defined as

Dα
∗
y(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−αy′(τ)dτ (2.1)

for 0 < α < 1, t > 0.
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2.1. Properties. Some properties of the Caputo fractional derivative and operator

Dα
∗
, which will be used later, are as follows

i) Dα
∗
C = 0, where C is a constant.

ii)

Dα
∗
tv =























0, v ∈ N0, v < [α],

Γ(v+1)
Γ(v+1−α)

tv−α, (v ∈ N0, v ≥ [α]) or

(v /∈ N0, v > [α]),

(2.2)

where [α] is the smallest integer greater than or equal to α and

N0 = {0, 1, 2, . . . }.
iii) the Caputo fractional derivative is a linear operation:

Dα
∗

(

n
∑

i=1

aiyi(t)
)

=

n
∑

i=1

aiD
α
∗
yi(t)

For more details about the properties of the Caputo fractional derivative see [13].

3. Fractional Muntz-Legendre polynomials

Definition 3.1. The fractional Muntz-Legendre polynomials Li(t;α) on the interval

[0, T ] is given by the following formula [14]:

Li(t;α) =

i
∑

k=0

Ci,k

( t

T

)kα
, Ci,k =

(−1)i−k

αik!(i− k)!

i−1
∏

v=0

((k + v)α+ 1).

(3.1)

According to the Eq. (3.1), the analytic form of Li(t;α) can be written as follows:

Li(t;α) =

i
∑

k=0

bk,i
( t

T

)kα
, (3.2)

where

bk,i =
(−1)i−kΓ( 1

α
+ k + i)

k!(i− k)!Γ( 1
α
+ k)

. (3.3)

Also, we have

Li(t;α) = P
(0, 1

α
−1)

i (2
( t

T

)α − 1), α > 0, (3.4)
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where P
(α,β)
i are the Jacobi polynomial with parameters α, β > −1 [14, 15]. Using

Eq.(3.4) and recurrence relation between the Jacobi polynomials [15], can be obtained

the following recurrence formula:

Li+1(t;α) = aαi Li(t;α)− bαi Li−1(t;α), i = 1, 2, . . .

where

aαi =
(2i+ 1

α
)[(2i+ 1

α
− 1)(2i+ 1

α
+ 1)(2

(

t
T

)α − 1)− ( 1
α
− 1)2]

2(i+ 1)(i+ 1
α
)(2i+ 1

α
− 1)

,

bαi =
i(i+ 1

α
− 1)(2i+ 1

α
+ 1)

(i+ 1)(i+ 1
α
)(2i+ 1

α
− 1)

,

L0(t;α) = 1, L1(t;α) = (
1

α
+ 1)

( t

T

)α − 1

α
.

Note that Li(1;α) = 1. Also, for α = 1 and T = 1, we obtain shift Legendre

polynomials [16] as follows:

Li(t; 1) = P
(0,0)
i (2t− 1), t ∈ [0, 1].

For α 6= 1, we have

Li(t;α) = P
(0, 1

α
−1)

i (2tα − 1) 6= P
(0,0)
i (2tα − 1),

where P
(0,0)
i (2tα − 1) are fractional shift Legendre polynomials [17].

3.1. Properties. The FMLPs are orthogonal on the interval [0, 1] with the orthog-

onality relation as follows:

∫ 1

0

li(t;α)lj(t;α)dt =
1

2iα+ 1
δij , (3.5)

where li(
t
T
;α) = Li(t;α) and δij is the Kronecker function.

Theorem 3.1. The FMLPs are orthogonal on the interval [0, T ] with the orthogo-

nality relation:

∫ T

0

Li(t;α)Lj(t;α)dt =
T

2iα + 1
δij , (3.6)
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proof. In Eq. (3.5), let t = x
T
, then

∫ 1

0

li(t;α)lj(t;α)dt =

∫ T

0

li(
x

T
;α)lj(

x

T
;α)

1

T
dx

=

∫ T

0

Li(x;α)Lj(x;α)
1

T
dx =

1

2iα+ 1
δij ,

hence we have
∫ T

0

Li(x;α)Lj(x;α)dx =
T

2iα + 1
δij.

So, the proof is completed.

3.2. Function approximation.

Definition 3.2. An arbitrary function y(t) which is integrable in [0, T ] can be ex-

panded as follows:

y(t) =
∞
∑

i=0

aiLi(t;α), (3.7)

where

ai =
2iα + 1

T

∫ T

0

y(t)Li(t;α)dt, i = 0, 1, . . .

In practice, only the first (m + 1)-terms FMLPs are considered. Then it can be

written the Eq. (3.7) as follows

y(t) ≃ ym(t) =

m
∑

i=0

aiLi(t;α) = ATφ(t;α), (3.8)

where

A = [a0, a1, . . . , am]
T , (3.9)

φ(t;α) = [L0(t;α), L1(t;α), . . . , Lm(t;α)]
T .

In the other hand,

φ(t;α) = BTX(t;α),

where

B =

















b00 b01 · · · b0m

0 b11 · · · b1m
...

. . .
. . .

...

0 · · · 0 bmm

















, X(t;α) =

















1
(

t
T

)1α

...
(

t
T

)mα

















, (3.10)
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and bij are defined in (3.3). So, we can write

y(t) ≃ ym(t) = ATBTX(t;α). (3.11)

3.3. Convergence analysis. Following Theorems show approximation converges of

FMLPs to y(t).

Theorem 3.2. Suppose Dkαy(t) ∈ C[0, 1] for k = 0, 1, . . . , m and 2mα ≥ 0. If ym(t)

in Eq. (3.11) is the best approximation to y(t) from

Mm,α = span{l0(t;α), l1(t;α), . . . , lm(t;α)},

then.

‖y(t)− ym(t)‖ω ≤ Mα

Γ(mα + 1)
√
2mα+ 1

,

where Mα ≥ |Dmαy(t)|, t ∈ [0, 1].

Proof. By applying the generalized Taylor’s expansion formula (see [18, 19]), we have

y(t) =
m−1
∑

k=0

tkα

Γ(kα + 1)
Dkαy(0+) +

tmα

Γ(mα + 1)
Dmαy(ξ), 0 < ξ < t, t ∈ [0, 1].

Also,

|y(t)−
m−1
∑

k=0

tkα

Γ(kα + 1)
Dkαy(0+)| ≤ Mαt

mα

Γ(mα + 1)
.

On the other hand, we have ym(t) = ATφ(t;α) is the best approximation to y(t), and
∑m−1

k=0
tkα

Γ(kα+1)
Dkαy(0+) ∈ Mm,α. So, it can be written

‖y(t)− ym(t)‖2ω ≤‖y(t)−
m−1
∑

k=0

tkα

Γ(kα + 1)
Dkαy(0+)‖2ω

≤ M2
α

Γ(mα + 1)2

∫ 1

0

t2mαdt =
M2

α

Γ(mα + 1)2(2mα + 1)
.

Hence,

‖y(t)− ym(t)‖ω ≤ Mα

Γ(mα + 1)
√
2mα+ 1

,

and this completes the proof.
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Theorem 3.3. Suppose Dkαy(t) ∈ C[0, T ] for k = 0, 1, . . . , m and 2mα ≥ 0. If

ym(t) in Eq. (3.11) is the best approximation to y(t) from

Mm,α = span{L0(t;α), L1(t;α), . . . , Lm(t;α)},

then,

‖y(t)− ym(t)‖ω ≤ Mα

Γ(mα + 1)

√

T

2mα + 1
,

where Mα ≥ |Dmαy(t)|, t ∈ [0, T ].

Proof. It is the result of the Theorem 3.2.

4. Functions approximation and description of the method

Let ym(t) be an approximation for the solution of Eqs. (1.1) and (1.2), then it can

be written as

y(t) ≃ ym(t) = ATφ(t;α) = ATBTX(t), t ∈ [0, T ], (4.1)

where A,B and X are defined in relations (3.9) and (3.10).

To get a solution of the problem (1.1), we employ the collocation method with suitably

choice of collocation Chebyshev–Gauss–Lobatto points defined by:

tj =
T

2
− T

2
cos(

πj

m
), j = 0, . . . , m. (4.2)

By substituting this collocation points into Eq. (4.1), we have

ym(tj) = ATBTX(tj). (4.3)

By using the relation (2.2), we get the Caputo fractional derivative of ym(t) of order

α in relation (4.1) as:

Dα
∗
ym(t) = ATBTDα

∗
X(t), (4.4)

where

Dα
∗
X(t) =





















0

Γ(α+1)
Tα

Γ(2α+1)
Γ(α+1)T 2α t

α

...

Γ(mα+1)
Γ((m−1)α+1)Tmα t

(m−1)α





















. (4.5)
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By putting the collocation points into Eq. (4.4), we get

Dα
∗
ym(tj) = ATBTDα

∗
X(tj), j = 0, . . . , m. (4.6)

For the integral part of Eq. (1.1), we can write

∫ t

0

ym(s)ds = ATBT
(

∫ t

0

X(s)ds
)

= ATBT IX(t), (4.7)

where

IX(t) =





















t

tα+1

(α+1)Tα

t2α+1

(2α+1)T 2α

...

tmα+1

(mα+1)Tmα





















. (4.8)

By putting the collocation points into Eq. (4.7), we get

∫ tj

0

ym(s)ds = ATBT IX(tj), j = 0, . . . , m. (4.9)

Now, by substituting the approximate solution ym and putting the collocation points

into Eqs. (1.1) and (1.2) as follows

kDα
∗
ym(tj)− ym(tj) + y2m(tj) + ym(tj)

∫ tj

0

ym(s)ds = 0, j = 1, . . . , m.

(4.10)

ym(0)− β = 0 (4.11)

Then, by substituting the Eqs. (4.3), (4.6) and (4.9) in Eq. (4.10) and (4.11), we get

a nonlinear system of algebraic equations as










kCDα
∗
X(tj)− CX(tj) + (CX(tj))

2 + (CX(tj))(CIX(tj)) = 0, j = 1, . . . , m,

CX(t0)− β = 0.
(4.12)

where C = ATBT . After solving the nonlinear system (4.12) of (m+1) equations for

the (m+1) unknown coefficients aj by using fslove command in Matlab, we can find

the following approximate solution

ym(t) = CX(t).



NUME. SOL. OF FRACTIONAL-ORDER POPULATION GROWTH MODEL ... 165

5. Illustrative Examples

In this section, we present some examples to study the mathematical behavior of the

solution of population growth model (1.1). The accuracy of our method is estimated

by the error function Eα
m(t), which is given as follows:

Eα
m(t) = |kD

α
∗
ym(t)

dtα
− ym(t) + y2m(t) + ym(t)

∫ t

0

ym(s)ds|, (5.1)

where Dα
∗
ym(t)
dtα

is the Caputo fractional derivative of ym(t) of order α in relation (4.1).

Example 5.1. In the population growth model (1.1) with condition (1.2), we take

k = 0.8, α = 1, T = 5 and β = 0.1. For m = 4, 6, 8 and 12, using the present method,

we obtain the approximate solutions ym(t) as follows:

y4(t) =0.08165192454951264− 1.271345945354403(
t

5
)

+ 4.567059600747760(
t

5
)2 − 5.845176215680037(

t

5
)3

+ 2.532289533473607(
t

5
)4,

y6(t) =0.051035763136624− 1.633888140122556(
t

5
)

+ 14.97271853121058(
t

5
)2 − 54.03608160535557(

t

5
)3

+ 90.74008607748452(
t

5
)4 − 71.46001230339654(

t

5
)5

+ 21.40936113327181(
t

5
)6

y8(t) =0.0999999999999 + 0.7778253301087412(
t

5
)

− 2.893403760675780(
t

5
)2 + 33.21988373820448(

t

5
)3
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− 129.4368169807767(
t

5
)4

+ 229.8686697548550(
t

5
)5

− 214.0759639892768(
t

5
)6 + 102.7333048401608(

t

5
)7

− 20.16481519185317(
t

5
)8,

y12(t) =0.1 + 0.5640171129058788(
t

5
) + 1.169875600818050(

t

5
)2

+ 2.489039531857378(
t

5
)3 − 29.61864282688904(

t

5
)4

+ 185.9605147254196(
t

5
)5 − 931.4457561115956(

t

5
)6

+ 2708.712629788791(
t

5
)7 − 4651.846775084796(

t

5
)8

+ 4890.555176130227(
t

5
)9 − 3118.301393754186(

t

5
)10

+ 1113.113097660241(
t

5
)11 − 171.3218700205367(

t

5
)12.

Fig. 1 shows a graph of the above approximate solutions. Table 1 shows the absolute

error

ǫm(t) = |ymax(t)− ymmax(t)|,

where ymmax is the maximum approximate solution of present method and ymax is the

maximum exact solution of given in [7] as

ymax = 1 + k log(
k

1 + k − β
).

Numerical experiments show the absolute error is large when m < 8. Furthermore,

we present the logarithmic graph of Eα
m(t), (log10E

α
m(t)) for various values of m in

Fig. 2.

Table 1 and Figs. 1 and 2 show that by increasing m, the error is smaller.
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Table 1. Absolute error ǫm(t) for various values of m (Example 5.1)

m ǫm(t)

4 3.1533e− 01

6 3.4594e− 01

8 7.1002e− 04

9 1.4619e− 04

10 1.0780e− 04

12 2.6653e− 05
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−0.05
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0.15

0.2
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0.3

0.35

0.4

t

y
m

(t
)

 

 

m=4

m=6

m=8

m=12

Figure 1. The approximate solutions of Example 5.1 for various val-

ues of m.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−14

−12

−10

−8

−6

−4

−2

0

t

lo
g

1
0
E

mα
(t

)

 

 

m=4

m=6

m=8

m=12

m=15

m=22

Figure 2. The logarithmic graph of Eα
m(t) of Example 5.1 for various

values of m.
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Example 5.2. In the population growth model (1.1) with condition (1.2), we take

k = 1, α = 17
20
, T = 5 and β = 0.1. For m = 4, 6, 8 and 12, using present method, we

obtain the approximate solutions ym(t) as follows:

y4(t) =0.07120726429698099− 1.145700387156755(
t

5
)
17

20

+ 3.485514593623768(
t

5
)
17

10 − 3.676334522253686(
t

5
)
51

20

+ 1.286081714613704(
t

5
)
17

5 ,

y6(t) =0.02828601827181646− 0.6592826537323773(
t

5
)
17

20

+ 4.777469686547025(
t

5
)
17

10 − 14.01714932871185(
t

5
)
51

20

+ 19.28983999076952(
t

5
)
17

5 − 12.46186346208233(
t

5
)
17

4

+ 3.059345106749583(
t

5
)
51

10 ,

y8(t) =0.1 + 0.5127344573375179(
t

5
)
17

20 − 1.823618792794863(
t

5
)
17

10

+ 16.69002679734211(
t

5
)
51

20 − 53.13733983700161(
t

5
)
17

5

+ 77.48462031728099(
t

5
)
17

4 − 59.13470565994732e(
t

5
)
51

10

+ 23.17736678419399e(
t

5
)
119

20 − 3.702676336081774e(
t

5
)
34

5 ,

y12(t) =0.1 + 0.3736300070681236(
t

5
)
17

20 + 0.6686166199181787(
t

5
)
17

10

+ 0.3281639985722173(
t

5
)
51

20 − 5.735074247981428(
t

5
)
17

5

+ 39.26678909412409(
t

5
)
17

4 − 200.9243703150748(
t

5
)
51

10

+ 518.7613298537932(
t

5
)
119

20 − 751.3470212276436(
t

5
)
34

5

+ 652.0726945959808(
t

5
)
153

20 − 339.4568935003740(
t

5
)
17

2

+ 98.26842958790718(
t

5
)
187

20 − 12.20957478224640(
t

5
)
51

5 ,

The results given in Figs. 3 and 4.
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Figure 3. The approximate solutions of Example 5.2 for various val-

ues of m.
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−1

0

t

lo
g

1
0
E
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(t
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m=6
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m=12

m=15

Figure 4. The logarithmic graph of Eα
m(t) of Example 5.2 for various

values of m.

Example 5.3. We take α = 1
2
, T = 5 and β = 0.1, by applying proposed method, for

k = 0.3, 0.4, 0.5 and m = 4 we obtain the approximate solutions y4(t) as follows:

k = 0.3 : y4(t) =0.1 + 4.313001991695015(
t

5
)
1

2 − 12.69683886911276(
t

5
)

+ 12.54222563261552(
t

5
)
3

2 − 4.193850305674383(
t

5
)2,

k = 0.4 : y4(t) =0.1 + 3.771577461838058(
t

5
)
1

2 − 10.65954849582612(
t

5
)
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y
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Figure 5. The approximate solutions of Example 5.3 for various val-

ues of k.

+ 10.15690159873609(
t

5
)
3

2 − 3.292960223068623(
t

5
)2,

k = 0.5 : y4(t) =0.1 + 3.243291933028762(
t

5
)
1

2 − 8.738930363136635(
t

5
)

+ 7.961921766381884(
t

5
)
3

2 − 2.479449160538878(
t

5
)2.

Fig. 5 shows the behavior of the above approximate solutions. It can be seen that ymax

decreases as k increases. Moreover, the rapid rise along the logistic curve followed by

the slow exponential decay after reaching the maximum point. This results is similar

to the results in other research [7, 20, 21]. In this example, for small m, we can obtain

the high accuracy. Fig. 6 shows the logarithmic graph of Eα
m(t), (log10E

α
m(t)) of the

above approximate solutions for m = 4.

It is well known that to study the rapid growth along the logistic curve that will reach

a peak, then followed by the slow exponential decay [7]. The analytical solution of

the population growth model (1.1) with condition (1.2) is obtained as follows [7, 21]:

y(t) = y(0)e

(

1

k

∫ t

0
[1−y(τ)−

∫ τ

0
y(x)dx]dτ

)

. (5.2)

This solution shows that y(t) > 0 if y(0) > 0. Also, y(t) → 0 as t → ∞. Sometime,

by applying the present method, for some values of α (almost near to zero),we do not

see these properties. To solve this problem, we applied the Pade approximants [22]

which approximate solution ym(t) leads to the a rational function to give a better
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Figure 6. The logarithmic graph of E
1

2

4 (t) of Example 5.3 for various

values of k.

mathematical behavior of the solution than the approximate solution ym(t) [22, 23].

Consider the following example:

Example 5.4. We take α = 1
5
, k = 0.8, T = 5 and β = 0.1, by applying proposed

method, for m = 3, 4, 5 we obtain the approximate solutions ym(t) as follows:

y3(t) =0.09999999999999965− 11.58175897951440(
t

5
)
1

5 + 26.30859058474087(
t

5
)
2

5

− 14.60417753583053(
t

5
)
3

5 ,

y4(t) =0.1− 22.63351582890925(
t

5
)
1

5 + 77.80108676581074(
t

5
)
2

5

− 86.77829769996865(
t

5
)
3

5 + 31.65776067327077(
t

5
)
4

5

y5(t) =0.1− 27.96942253972512(
t

5
)
1

5 + 244.9973483564507(
t

5
)
2

5

− 630.4311305594935(
t

5
)
3

5 + 639.5413214449511(
t

5
)
4

5

− 226.0159898258375(
t

5
)

Fig. 7 shows the behavior of the above approximate solutions and other values of m

(m = 10, 15, 20) . Clearly, we do not get the correct mathematical structure of the

solution of this population growth model. Therefore, we applied Pade approximants.

To achieve a desirable accuracy, setting m = 20 and we have

y20(t) =0.1 + 0.12253t
1

5 + 0.12680t
2

5 + 0.10713t
3

5 + 0.070850t
4

5 − 0.093675t
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+ 1.3158t
6

5 − 12.155t
7

5 + 75.626t
8

5 − 349.42t
9

5 + 1203.7t2

− 3135.0t
11

5 + 6193.9t
12

5 +O(t
13

5 ).

Let t
1

5 = x, then

y20(t) =0.1 + 0.12253x+ 0.12680x2 + 0.10713x3 + 0.070850x4 − 0.093675x5

+ 1.3158x6 − 12.155x7 + 75.626x8 − 349.42x9 + 1203.7x10

− 3135.0x11 + 6193.9x12 +O(x13).

Now, it can be calculated the [6/6] Pade approximants as follows

[6/6] =
0.1 + 1.3478x+ 8.4061x2 + 28.640x3 + 41.935x4 − 25.553x5 + 6.6709x6

1 + 12.253x+ 67.780x2 + 186.75x3 + 90.755x4 − 683.87x5 + 539.81x6
.

By recalling x = t
1

5 , we get

[6/6] =
0.1 + 1.3478t

1

5 + 8.4061t
2

5 + 28.640t
3

5 + 41.935t
4

5 − 25.553t+ 6.6709t
6

5

1 + 12.253t
1

5 + 67.780t
2

5 + 186.75t
3

5 + 90.755t
4

5 − 683.87t+ 539.81t
6

5

.

Similarly, for α = 1
6
, we get

[6/6] =
0.1 + 0.78523t

1

6 − 1.2827t
2

6 − 38.375t
3

6 − 183.90t
4

6 − 9.1786t
5

6 + 6.6397t

1− 22.139t
1

6 − 366.35t
2

6 − 1374.7t
3

6 + 90.755t
4

6 + 3518.3t
5

6 − 2214.4t
.

0 1 2 3 4 5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t

y
3
(t

)

 

 

m=3

0 1 2 3 4 5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t

y
4
(t

)

 

 

m=4

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

t

y
5
(t

)

 

 

m=5

0 1 2 3 4 5
−5

0

5

10

15

20

25

30

35

40

45

t

y
1

0
(t

)

 

 

m=10

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

t

y
1

5
(t

)

 

 

m=15

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t

y
2

0
(t

)

 

 

m=20

Figure 7. The approximate solutions ym(t) of Example 5.4 for m =

3, 4, 5, 10, 15 and 20.

Fig. 8 shows the behavior of the above [6/6] Pade approximants of approximate

solution y20(t) for α = 1
5
and 1

6
. It can be seen that by decreasing the fractional

derivative order, the amplitude of y(t) decreases.
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6
of Ex-

ample 5.4.

6. Conclusion

In this paper, we have studied the mathematical behavior of the solution of the

fractional order population growth model using fractional Muntz–Legendre polyno-

mials. This polynomials were used as an approximation basis for present method.

Sometime, for some values of α, specially near to zero, it cannot be seen the proper

properties of the graph of the model (1.1). For this purpose, we applied the Pade

approximants that was very successful. Numerical results state the efficiency and

accuracy of the present method. In the above presented numerical results, one can

see that by decreasing the fractional derivative order, the amplitude of solution y(t)

decreases.
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