
Jordan Journal of Mathematics and Statistics (JJMS) 12(4), 2019, pp 557 - 580

TRIANGULAR FUNCTIONS WITH CONVERGENCE FOR

SOLVING LINEAR SYSTEM OF TWO-DIMENSIONAL FUZZY

FREDHOLM INTEGRAL EQUATION

E. HENGAMIAN ASL (1) AND J. SABERI-NADJAFI (2)

Abstract. In this paper, we present a review on triangular functions (TFs) to

solve linear two-dimensional fuzzy Fredholm integral equations system of the second

kind (2D-FFIES-2). The properties of triangular functions are utilized to reduce

the 2D-FFIES-2 to a linear system of algebraic equations. Moreover, we state the

convergence analysis of the method. Finally, some examples show the simplicity

and the validity of the present numerical method.

1. Introduction

It is well known that the fuzzy differential equations and the fuzzy integral equa-

tions are one of the important parts of numerical analysis and applied mathematics.

Usually in many mathematical models, some of problems are represented by fuzzy

Volterra and Fredholm integral equations. For example, Nanda, in his book, [1] in-

troduced the integration of fuzzy mappings. Kaleva [2], Wu and Ma [3] introduced

the differential equations and integral equations of fuzzy set-valued functions. There

are several numerical methods to to solve Fredholm integral equations, fuzzy Fred-

holm integral equations and fuzzy integro-differential equations. Otadi and Mosleh
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[4] considered fuzzy nonlinear integral equations of the second kind and obtained

an approximate solution to the fuzzy nonlinear integral equations. The existence of

solution of nonlinear fuzzy Fredholm integro-differential equations is discussed in [5].

Rivaz and Yousefi [6] and Ezzati and Ziari [7] used homotopy perturbation method

and fuzzy Bivariate Bernestein polynomials method for solving two-dimensional fuzzy

Fredholm integral equations of the second kind, respectively. Recently, Babolian et

al. [8, 9, 10], Maleknejad et al. [11], Mirzaee et al. [12] and Hengamian Asl et al.

[13, 14] have used triangular functions for solving of Fredholm integral equations and

fuzzy Fredholm integral equations. Since the triangular functions method is a suc-

cessful numerical method for solving Fredholm integral equations, we will develop this

method for following general form of linear system of two-dimensional fuzzy Fredholm

integral equation of the second kind (2D-FFIES-2):































u1(x, y) = g1(x, y) ⊕
∑n

j=1
λ1j ⊗

∫

1

0

∫

1

0
k1j(x, y, s, t) ⊗ uj(s, t)dsdt,

u2(x, y) = g2(x, y) ⊕
∑n

j=1
λ2j ⊗

∫

1

0

∫

1

0
k2j(x, y, s, t) ⊗ uj(s, t)dsdt,

...

un(x, y) = gn(x, y) ⊕
∑n

j=1
λnj ⊗

∫

1

0

∫

1

0
knj(x, y, s, t) ⊗ uj(s, t)dsdt,

(1.1)

where kij(x, y, s, t), i, j = 1, . . . , n, are an orbitary kernel function over (Ω × Ω) and

λij 6= 0 , i, j = 1, . . . , n are real constants and ui(x, y) and gi(x, y) are fuzzy real

valued functions for i = 1, · · · , n and u1(x, y), u2(x, y), . . . , un(x, y) are the solutions

to be determined.

This paper is organized as follows. Review of triangular functions and their prop-

erties which will be used later, is briefly provided in Section 2. Also in this section,

we give an overview of elementary concepts of the fuzzy calculus. Section 3 presents

a numerical method for solving system of two-dimensional fuzzy Fredholm integral

equations of the second kind. Convergence analysis for this method is established in
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Section 4. Finally, we illustrate in Section 5 some numerical examples to show the

efficiency and accuracy of the proposed method.

2. Preliminaries

2.1. One-dimensional triangular functions.

Definition 2.1. ([9]) Two m-sets of one-dimensional triangular functions (1D-TFs)

are defined over the interval [0,T] as:

T1i(t) =







1 − t−ih
h

, ih ≤ t < (i + 1)h,

0, o.w,

T2i(t) =







t−ih
h

, ih ≤ t < (i + 1)h,

0, o.w,

where i = 0, 1, . . . , m − 1, h = T
m

, with a positive integer value for m.

Moreover, if

(2.1) T1(t) = [T10(t), T11(t), . . . , T1m−1(t)]
T ,

(2.2) T2(t) = [T20(t), T21(t), . . . , T2m−1(t)]
T ,

then T (t), the TF vector, can be defined as:

(2.3) T (t) = [T1(t) T2(t)]T .

2.2. Two-dimensional triangular functions.

Definition 2.2. ([11]) An (m1 × m2)-set of two-dimensional triangular functions

(2D-TFs) are defined on Ω = [0, 1] × [0, 1] as:
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T
1,1
i,j (s, t) =



















(1 − s−ih1

h1

)(1 − t−jh2

h2

),
ih1 ≤ s < (i + 1)h1,

jh2 ≤ t < (j + 1)h2,

0, otherwise,

T
1,2
i,j (s, t) =



















(1 − s−ih1

h1

)( t−jh2

h2

),
ih1 ≤ s < (i + 1)h1,

jh2 ≤ t < (j + 1)h2,

0, otherwise,

T
2,1
i,j (s, t) =



















( s−ih1

h1

)(1 − t−jh2

h2

),
ih1 ≤ s < (i + 1)h1,

jh2 ≤ t < (j + 1)h2,

0, otherwise,

T
2,2
i,j (s, t) =



















( s−ih1

h1

)( t−jh2

h2

),
ih1 ≤ s < (i + 1)h1,

jh2 ≤ t < (j + 1)h2,

0, otherwise,

where i = 0, 1, · · · , m1 − 1, j = 0, 1, · · · , m2 − 1, h1 = 1

m1

, h2 = 1

m2

. m1 and m2 are

arbitrary positive integers.

Moreover, if

T11(s, t) = [T 1,1
0,0 (s, t), . . . , T 1,1

0,m2−1, T
1,1
1,0 (s, t), . . . , T 1,1

m1−1,m2−1(s, t)]
T ,

T12(s, t) = [T 1,2
0,0 (s, t), . . . , T 1,2

0,m2−1, T
1,2
1,0 (s, t), . . . , T 1,2

m1−1,m2−1(s, t)]
T ,

T21(s, t) = [T 2,1
0,0 (s, t), . . . , T 2,1

0,m2−1, T
2,1
1,0 (s, t), . . . , T 2,1

m1−1,m2−1(s, t)]
T ,

T22(s, t) = [T 2,2
0,0 (s, t), . . . , T 2,2

0,m2−1, T
2,2
1,0 (s, t), . . . , T 2,2

m1−1,m2−1(s, t)]
T ,
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then T (s, t), the 2D-TF vector, can be defined as:

(2.4) T (s, t) =

















T11(s, t)

T12(s, t)

T21(s, t)

T22(s, t)

















4m1m2×1

.

Also, we have

(2.5)

∫

1

0

∫

1

0

T T (s, t)T (s, t)dsdt = D,

where D is (4m1m2 × 4m1m2)-matrix as follows:

(2.6) D =

















h1

3
I1 ⊗

h2

3
I2

h1

3
I1 ⊗

h2

6
I2

h1

6
I1 ⊗

h2

3
I2

h1

6
I1 ⊗

h2

6
I2

h1

3
I1 ⊗

h2

6
I2

h1

3
I1 ⊗

h2

3
I2

h1

6
I1 ⊗

h2

6
I2

h1

6
I1 ⊗

h2

3
I2

h1

6
I1 ⊗

h2

3
I2

h1

6
I1 ⊗

h2

6
I2

h1

3
I1 ⊗

h2

3
I2

h1

3
I1 ⊗

h2

6
I2

h1

6
I1 ⊗

h2

6
I2

h1

6
I1 ⊗

h2

3
I2

h1

3
I1 ⊗

h2

6
I2

h1

3
I1 ⊗

h2

3
I2

















,

where I1 = Im1×m1
and I2 = Im2×m2

(see [12]).

2.3. Function expansion with 1D-TFs and 2D-TFs. Let f(t) be an L2[0, 1)

function, the expansion of f(t) with respect to 1D-TFs, can be defined as follows:

(2.7) f(t) '

m−1
∑

i=0

[fiT1i(t) + fi+1T2i(t)] = F1TT1(t) + F2T T2(t) = FT .T (t),

where the sequence of constant coefficients {fi}
m
i=0 are the samples of f(t) function

such that fi = f(ih) for i = 0, 1, . . . , m.

Let f(s, t) be a function of two variables on Ω = [0, 1] × [0, 1]. It can be approxi-

mated with respect to 2D-TFs as follows:

f(s, t) '

m1−1
∑

i=0

m2−1
∑

j=0

ci,jT
1,1
i,j (s, t) +

m1−1
∑

i=0

m2−1
∑

j=0

di,jT
1,2
i,j (s, t)
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+

m1−1
∑

i=0

m2−1
∑

j=0

ei,jT
2,1
i,j (s, t) +

m1−1
∑

i=0

m2−1
∑

j=0

li,jT
2,2
i,j (s, t)

=F1T .T11(s, t) + F2T .T12(s, t) + F3T .T21(s, t) + F4T .T22(s, t)

=[F1T F2T F3T F4T ].

















T11(s, t)

T12(s, t)

T21(s, t)

T22(s, t)

















= F T .T (s, t),

or

(2.8) f(s, t) ' T T (s, t).F,

where F1, F2, F3 and F4 can be computed by sampling the function f(s, t) at grid

points si and tj such that si = ih1 and tj = jh2, for various values of i and j. So we

have

(F1)k = ci,j = f(si, tj),

(F2)k = di,j = f(si, tj+1),

(F3)k = ei,j = f(si+1, tj),

(F4)k = li,j = f(si+1, tj+1),

where k = im2 + j and i = 0, 1, · · · , m1 − 1, j = 0, 1, · · · , m2 − 1.

Let u(s, t, r) be a function of three variables on Ω× [0, 1]. It can be approximated

with respect to 2D-TFs and 1D-TFs as follows:

(2.9) u(s, t, r) = T T (s, t).U.T (r),

where T (s, t) and T (r) are 2D-TF vector and 1D-TF vector of dimension 4m1m2 and

2m3, respectively and U is a (4m1m2 × 2m3) 2D-TF coefficient matrix. This matrix
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can be represented as

(2.10) U =

















U11 U12

U21 U22

U31 U32

U41 U42

















,

where each block of U is an (m1m2 ×m3)-matrix that can be computed by sampling

the function u(s, t, r) at grid points (si, tj, rk) such that

si = ih1, i = 0, 1, . . . , m1 − 1, h1 =
1

m1

,

tj = jh2, j = 0, 1, . . . , m2 − 1, h2 =
1

m2

,

rk = kh3, k = 0, 1, . . . , m3 − 1, h3 =
1

m3

.

Choosing l = im2 + j, we have

(U11)l,k = u(si, tj, rk),

(U12)l,k = u(si, tj, rk+1),

(U21)l,k = u(si, tj+1, rk),

(U22)l,k = u(si, tj+1, rk+1),

(U31)l,k = u(si+1, tj, rk),

(U32)l,k = u(si+1, tj, rk+1),

(U41)l,k = u(si+1, tj+1, rk),

(U42)l,k = u(si+1, tj+1, rk+1).

Let k(s, t, x, y) be a function of four variables on (Ω×Ω). It can be approximated

with respect to 2D-TFs as follows:

(2.11) k(s, t, x, y) ' T T (s, t).K.T (x, y),
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where T (s, t) and T (x, y) are 2D-TF vectors of dimension 4m1m2 and 4m3m4, re-

spectively and K is a (4m1m2 × 4m3m4) 2D-TF coefficient matrix. This matrix can

be represented as

(2.12) K =

















K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

















,

where each block of K is an (m1m2×m3m4)-matrix that can be computed by sampling

the function k(s, t, x, y) at grid points (si1 , tj1, xi2 , yj2) such that

si1 = i1h1, i1 = 0, 1, . . . , m1 − 1, h1 =
1

m1

,

tj1 = j1h2, j1 = 0, 1, . . . , m2 − 1, h2 =
1

m2

,

xi2 = i2h3, i2 = 0, 1, . . . , m3 − 1, h3 =
1

m3

,

yj2 = j2h4, j2 = 0, 1, . . . , m4 − 1, h4 =
1

m4

.
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Choosing p = i1m2 + j1 and q = i2m4 + j2, we get

(K11)p,q = k(si1, tj1, xi2 , yj2),

(K12)p,q = k(si1, tj1, xi2 , yj2+1),

(K13)p,q = k(si1, tj1, xi2+1, yj2),

(K14)p,q = k(si1, tj1, xi2+1, yj2+1),

(K21)p,q = k(si1, tj1+1, xi2 , yj2),

(K22)p,q = k(si1, tj1+1, xi2 , yj2+1),

(K23)p,q = k(si1, tj1+1, xi2+1, yj2),

(K24)p,q = k(si1, tj1+1, xi2+1, yj2+1),

(K31)p,q = k(si1+1, tj1 , xi2 , yj2),

(K32)p,q = k(si1+1, tj1 , xi2 , yj2+1),

(K33)p,q = k(si1+1, tj1 , xi2+1, yj2),

(K34)p,q = k(si1+1, tj1 , xi2+1, yj2+1),

(K41)p,q = k(si1+1, tj1+1, xi2 , yj2),

(K42)p,q = k(si1+1, tj1+1, xi2 , yj2+1),

(K43)p,q = k(si1+1, tj1+1, xi2+1, yj2),

(K44)p,q = k(si1+1, tj1+1, xi2+1, yj2+1).

In this paper for convergence, we supposed that m1 = m2 = m3 = m4 = m. More

details about the properties of functions expansion with TFs are given in [12, 13, 14].

2.4. The basic concepts of fuzzy equations.

In this Section the most basic used notations in fuzzy calculus and integral equations

are briefly introduced. We started by defining the fuzzy number.
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Definition 2.3. ([15]) A fuzzy number is a fuzzy set u : R
1 → [0, 1] such that:

(a): u is upper semi-continuous,

(b): u(x) = 0 outside some interval [a, d],

(c): There are real numbers b, c such as a ≤ b ≤ c ≤ d and

(i) u(x) is monotonic increasing on [a, b],

(ii) u(x) is monotonic decreasing on [c, d],

(iii) u(x) = 1, b ≤ x ≤ c.

An alternative definition or parametric form of a fuzzy number which yields the

same E1 is given by Kaleva [2] as follows:

Definition 2.4. A fuzzy number u is a pair (u, u) of functions u(r) and u(r),

0 ≤ r ≤ 1, such that

(a): u(r) is abounded monotonic increasing left continuous function,

(b): u(r) is abounded monotonic decreasing left continuous function,

(c): u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary fuzzy numbers u = (u(r), u(r)), v = (v(r), v(r)) and real number k,

we define

(a): u = v if and only if u(r) = v(r) and u(r) = v(r),

(b): addition, u ⊕ v = (u(r) + v(r), u(r) + v(r)),

(c): scalar multiplicationand, k ⊗ u =







(ku(r), ku(r)), k ≥ 0,

(ku(r), ku(r)), k < 0.

Definition 2.5. For arbitrary numbers u = (u(r), u(r)) and v = (v(r), v(r)),

(2.13) D(u, v) = max{ sup
0≤r≤1

|u(r) − v(r)|, sup
0≤r≤1

|u(r) − v(r)|}
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is the distance between u and v. It is proved that (E1, D) is a complete metric space

with the properties [1], and

(a): ∀u, v, w ∈ E1; D(u ⊕ w, v ⊕ w) = D(u, v),

(b): ∀u, v ∈ E1, ∀k ∈ R; D(k ⊗ u, k ⊗ v) = |k|D(u, v),

(c): ∀u, v, w, e ∈ E1; D(u ⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e).

More details about the properties of the fuzzy integral are given in [1, 2, 3, 15].

3. Solving linear 2D-FFIES-2

In this section, we present a 2D-TFs method to solve a linear 2D-FFIES-2. First

consider (g
i
(x, y, r), gi(x, y, r)) and (ui(x, y, r), ui(x, y, r)), 0 ≤ r ≤ 1 be parametric

forms of gi(x, y) and ui(x, y) in system (1.1), respectively. In this paper, we assumed

that λij = 1 and kij(x, y, s, t) ≥ 0. Therefore, by using definition (4), we can write

kij(x, y, s, t) ⊗ uj(x, y) = (kij(x, y, s, t)uj(x, y, r), kij(x, y, s, t)uj(x, y, r)),

Now, for solving (1.1) we write the parametric form of the given fuzzy integral

equations system as follows:



















































































u1(x, y, r) = g
1
(x, y, r) +

∑n

j=1

∫

1

0

∫

1

0
k1j(x, y, s, t)uj(s, t, r)dsdt,

u1(x, y, r) = g1(x, y, r) +
∑n

j=1

∫

1

0

∫

1

0
k1j(x, y, s, t)uj(s, t, r)dsdt,

u2(x, y, r) = g
2
(x, y, r) +

∑n

j=1

∫

1

0

∫

1

0
k2j(x, y, s, t)uj(s, t, r)dsdt,

u2(x, y, r) = g2(x, y, r) +
∑n

j=1

∫

1

0

∫

1

0
k2j(x, y, s, t)uj(s, t, r)dsdt,

...

un(x, y, r) = g
n
(x, y, r) +

∑n

j=1

∫

1

0

∫

1

0
knj(x, y, s, t)uj(s, t, r)dsdt,

un(x, y, r) = gn(x, y, r) +
∑n

j=1

∫

1

0

∫

1

0
knj(x, y, s, t)uj(s, t, r)dsdt.

(3.1)
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For convenience, we consider the ith equation of system (3.1) as

ui(x, y, r) = g
i
(x, y, r) +

n
∑

j=1

∫

1

0

∫

1

0

kij(x, y, s, t)uj(s, t, r)dsdt,(3.2)

ui(x, y, r) = gi(x, y, r) +

n
∑

j=1

∫

1

0

∫

1

0

kij(x, y, s, t)uj(s, t, r)dsdt.(3.3)

For solving (3.2) by using TFs, first let us expand ui(x, y, r), g
i
(x, y, r) and kij(x, y, s, t)

by using Eqs. (2.9) and (2.11) as follows:

ui(x, y, r) ' T T (x, y).U i.T (r),

g
i
(x, y, r) ' T T (x, y).Gi.T (r),(3.4)

kij(x, y, s, t) ' T T (x, y).Kij.T (s, t),

where U i and Gi for i = 1, . . . , n are similar to Eq. (2.10) as follows:

U i =

















U11i U12i

U21i U22i

U31i U32i

U41i U42i

















, Gi =

















G11i G12i

G21i G22i

G31i G32i

G41i G42i

















,

and Kij for i, j = 1, . . . , n are similar to Eq. (2.12) as follows:

Kij =

















K11ij K12ij K13ij K14ij

K21ij K22ij K23ij K24ij

K31ij K32ij K33ij K34ij

K41ij K42ij K43ij K44ij

















.

Substituting the Eqs. (3.4) in Eq. (3.2), we have

T T (x, y)U iT (r) ' T T (x, y)GiT (r)

+

n
∑

j=1

∫

1

0

∫

1

0

(

T T (x, y)KijT (s, t)T T (s, t)U jT (r)
)

dsdt
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= T T (x, y)GiT (r)(3.5)

+ T T (x, y)

n
∑

j=1

Kij

(
∫

1

0

∫

1

0

T (s, t)T T (s, t)dsdt

)

U jT (r).

Substituting the Eq. (2.5) in Eq. (3.5), we can write

T T (x, y)U i ' T T (x, y)Gi + T T (x, y)

n
∑

j=1

λijKijDU j.

Thus we have

U i = Gi +
n

∑

j=1

λijKijDU j,

therefore we get the following system

(3.6)

n
∑

j=1

(∆ij − λijKijD)U j = Gi,

where

∆ij =







I, i = j,

0, i 6= j,

for i, j = 1, 2, . . . , n and I is a 4m2 × 4m2 identity matrix. By solving matrix system

(3.6), we can find U i for i = 1, 2, . . . , n. So ui(x, y, r) ' T T (x, y)U iT (r). The same

trend hold for ui(x, y, r) in Eq. (3.3) as follows:

ui(x, y, r) ' T T (x, y)U iT (r).

For solving system (3.1), we need to solve two systems of (3.6).

4. Convergence Analysis

In this Section, we prove that the present numerical method converges to the exact

solution.

Theorem 4.1. If kij(x, y, s, t), i, j = 1, 2, . . . , n and 0 ≤ x, y, s, t ≤ 1 are bounded

and continuous, then approximate solution of system (1.1), converges to the exact

solution.
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Proof. Suppose that ui,m(x, y), i = 1, . . . , n is approximate solution of exact solution

ui(x, y). Therefore

ui,m(x, y) =
m−1
∑

p=0

m−1
∑

q=0

ci
p,qT

1,1
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

di
p,qT

1,2
p,q (s, t)

+

m−1
∑

p=0

m−1
∑

q=0

ei
p,qT

2,1
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

lip,qT
2,2
p,q (s, t).(4.1)

By using Eqs. (1.1) and (4.1), we can write

D
(

ui,m(x, y) − ui(x, y)
)

= D
(

n
∑

j=1

λij

∫

1

0

∫

1

0

kij(x, y, s, t)(
m−1
∑

p=0

m−1
∑

q=0

cj
p,qT

1,1
p,q (s, t)

+

m−1
∑

p=0

m−1
∑

q=0

dj
p,qT

1,2
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

ej
p,qT

2,1
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

ljp,qT
2,2
p,q (s, t))dsdt

−

n
∑

j=1

λij

∫

1

0

∫

1

0

kij(x, y, s, t)uj(s, t)dsdt
)

≤ M

n
∑

j=1

∫

1

0

∫

1

0

D
(

uj,m(s, t) − uj(s, t)
)

dsdt,

where

M = max
0≤x,y,s,t≤1

|λijkij(x, y, s, t)| < ∞.

Also, we have limm→∞ uj,m(x, y) = uj(x, y), so D
(

uj,m(x, y)− uj(x, y)
)

→ 0 as m →

∞ for j = 1, . . . , n , and since M is bounded, thus

lim
m→∞

D
(

ui,m(x, y) − ui(x, y)
)

→ 0.

So the proof is completed.
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5. Numerical Illustration

In this section, we present two examples of linear 2D-FFIES-2 and results will

be compared with the exact solutions. All results are computed by using a program

written in the Matlab. in this regard, the result presented in the following Tables and

Figures.

Example 5.1. Consider the system of linear two-dimensional fuzzy Fredholm integral

equations with

g
1
(x, y, r) = xy(

8

9
r −

1

12
(r5 + 2r),

g1(x, y, r) = xy(
8

9
(2 − r) −

1

12
(6 − 3r3)),

g
2
(x, y, r) = xy(−

1

12
r −

15

16
(r5 + 2r),

g2(x, y, r) = xy(−
1

12
(2 − r) −

15

16
(6 − 3r3)),

and kernel functions:

kij(x, y, s, t) = xysitj, i, j = 1, 2.

One can easily verify that,

(u1(x, y, r), u1(x, y, r)) = xy(r, 2 − r),

(u2(x, y, r), u2(x, y, r)) = xy(r5 + 2r, 6 − 3r3),

is an exact solution of the given problem.

The results will be compared with the exact solutions. The accuracy of present

method is estimated by the absolute errors Em
i (x, y, r) and E

m

i (x, y, r), which are

given as follows:

Em
i (x, y, r) = |ui(x, y, r) − T T (x, y)U iT (r)|,
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E
m

i (x, y, r) = |ui(x, y, r) − T T (x, y)U iT (r)|.

We have applied the numerical method given in this paper to this equation. The

absolute errors Em
i (x, y, r) and E

m

i (x, y, r), are listed in Tables 1 and 2. We see

that the proposed method is accurate for this example. As it can be observed in

Table 1, the absolute error is greater at grid points far from the (x, y) = (0, 0). The

dependence of the absolute error on m is displayed in Table 2. We see that the absolute

error decreases by increasing m. Also Fig. 1 shows a comparison between the exact

solution and the approximate solution by the presented method. Moreover, Absolute

error functions obtained by the present method for u1(x, y, r), u1(x, y, r), u2(x, y, r)

and u2(x, y, r) are shown in Figs. 2 and 3. We can see that the absolute error

converges to zero as m → ∞ (see the absolute error functions obtained for u1(x, y, r)

for m = 5, 10, 15, 20. in the Fig. 2).

Table 1. Absolute errors Em
i (x, y, r) and E

m

i (x, y, r), for Example 1,

with r = 0.5, m = 20.

(x, y) E20

1 (x, y, r) E
20

1 (x, y, r)) E20

2 (x, y, r) E
20

2 (x, y, r)

(0.0, 0.0) 0.0000e-00 0.0000e-00 0.0000e-00 0.0000e-00

(0.1, 0.1) 9.5597e-07 5.1283e-06 1.6019e-06 7.8208e-06

(0.2, 0.2) 3.8239e-06 2.0513e-05 6.4076e-06 3.1283e-05

(0.3, 0.3) 8.6037e-06 4.6155e-05 1.4417e-05 7.0387e-05

(0.4, 0.4) 1.5295e-05 8.2054e-05 2.5630e-05 1.2513e-04

(0.5, 0.5) 2.3899e-05 1.2821e-04 4.0048e-05 1.9552e-04

(0.6, 0.6) 3.4415e-05 1.8462e-04 5.7669e-05 2.8155e-04

(0.7, 0.7) 4.6842e-05 2.5129e-04 7.8493e-05 3.8322e-04

(0.8, 0.8) 6.1182e-05 3.2821e-04 1.0252e-04 5.0053e-04

(0.9, 0.9) 7.7433e-05 4.1540e-04 1.2975e-04 6.3349e-04
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Table 2. Absolute errors Em
i (x, y, r) and E

m

i (x, y, r), for Example 1,

with m = 5, 10, 15, 20.

m Em
1 (0.1, 0.1, 0.5) E

m

1 (0.1, 0.1, 0.5) Em
2 (0.1, 0.1, 0.5) E

m

2 (0.1, 0.1, 0.5)

5 1.5525e-05 8.1646e-05 1.5355e-04 3.2478e-04

10 3.8262e-06 2.0525e-05 6.4166e-06 3.1331e-05

15 1.7020e-06 9.1105e-06 1.6772e-05 3.6101e-05

20 9.5597e-07 5.1283e-06 1.6019e-06 7.8208e-06

Example 5.2. Consider the system of linear two-dimensional fuzzy Fredholm integral

equations











































u1(x, y, r) = g
1
(x, y, r) +

∫

1

0

∫

1

0
xsuj(s, t, r)dsdt +

∫

1

0

∫

1

0
yt2uj(s, t, r)dsdt,

u1(x, y, r) = g1(x, y, r) +
∫

1

0

∫

1

0
xsuj(s, t, r)dsdt +

∫

1

0

∫

1

0
yt2uj(s, t, r)dsdt,

u2(x, y, r) = g
2
(x, y, r) +

∫

1

0

∫

1

0
ys2uj(s, t, r)dsdt +

∫

1

0

∫

1

0
xtuj(s, t, r)dsdt,

u2(x, y, r) = g2(x, y, r) +
∫

1

0

∫

1

0
ys2uj(s, t, r)dsdt +

∫

1

0

∫

1

0
xtuj(s, t, r)dsdt,

with

g
1
(x, y, r) = (r2 + r + 1)(xy −

x

6
) −

y

3
(r + 1)(e − 1),

g1(x, y, r) = (4 − r)(xy −
x

6
) − y(3 − r)(e − 2),

g
2
(x, y, r) = ex(r + 1) −

y

8
(r2 + r + 1) −

x

2
(r + 1)(e − 1),

g2(x, y, r) = ey(3 − r) −
y

8
(4 − r) − x(3 − r).

One can easily verify that,

(u1(x, r), u1(x, r)) = xy(r2 + r + 1, 4 − r),

(u2(x, r), u2(x, r)) = (ex(r + 1), ey(3 − r)),
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is an exact solution of the given problem.

The results are shown in Table 3 and Figs. 4 and 5. Table 3 shows the absolute

errors Em
i (x, y, r) and E

m

i (x, y, r), with x = y = 0.1, m = 10. We see that the

proposed method is accurate for this example. Fig. 4 shows a comparison between

the exact solution and the approximate solution by the presented method for m =

5, 10, r = 0.5. The dependence of the error function on m is depicted in Fig. 5.

We see that the absolute error converges to zero as m → ∞ (see the absolute error

function of u1(x, y, r) in Fig. 5).

Table 3. Absolute errors Em
i (x, y, r) and E

m

i (x, y, r), for Example 2,

with x = y = 0.1, m = 10.

r E10

1 (x, y, r) E
10

1 (x, y, r)) E10

2 (x, y, r) E
10

2 (x, y, r)

0.0 5.4686e-04 1.7266e-03 3.0589e-04 1.0481e-03

0.1 6.0175e-04 1.6698e-03 3.3714e-04 1.0153e-03

0.2 6.5705e-04 1.6129e-03 3.6970e-04 9.8258e-04

0.3 7.1276e-04 1.5560e-03 4.0358e-04 9.4984e-04

0.4 7.6887e-04 1.4991e-03 4.3877e-04 9.1710e-04

0.5 8.2539e-04 1.4423e-03 4.7528e-04 8.8435e-04

0.6 8.8232e-04 1.3854e-03 5.1311e-04 8.5161e-04

0.7 9.3965e-04 1.3285e-03 5.5225e-04 8.1887e-04

0.8 9.9739e-04 1.2716e-03 5.9271e-04 7.8613e-04

0.9 1.0555e-03 1.2148e-03 6.3448e-04 7.5338e-04
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Figure 1. Comparison between the exact solution and the approxi-

mate solution by the present method of Example 1, with r = 0.5 : (1):

u1(x, y, r). (2): u1(x, y, r)). (3):u2(x, y, r). (4): u2(x, y, r)).
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Figure 2. Compare the absolute error for m = 5, 10, 15, 20 of Example

1, for u1(x, y, r) and r = 0.5.
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Figure 3. Absolute error functions by the present method of Example

1, with r = 0.5.
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Figure 4. Comparison between the exact solution and the approxi-

mate solution by the present method in Example 2, with r = 0.5 : (1):

u1(x, y, r). (2): u1(x, y, r)). (3):u2(x, y, r). (4): u2(x, y, r)).
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Figure 5. Absolute error functions by the present method of Example

2, with r = 0.5.

6. Conclusion

In this paper, we introduce TFs method for approximating the solution of the linear

2D-FFIES-2. The structural properties of TFs are utilized to reduce the 2D-FFIES-2

to a system of algebraic equations. The most important advantage of this method

is low cost of setting up the equations without using any projection method such as

Galerkin method, Collocation method, etc., and any integration. In the above pre-

sented numerical examples one can see that the proposed method well performs for

linear 2D-FFIES-2. Furthermore, the proposed method can be run with increasing

m until the results settle down to a suitable accuracy. Another direction for fur-

ther research would be to extend the presented method to the systems of nonlinear

2D-FFIES-2, nonlinear mixed fuzzy Volterra–Fredholm integral equations, and fuzzy

integro-differential equation.
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