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Abstract

In this paper we intend to offer a numerical method to solve linear two-dimensional Fredholm
integral equations system of the second kind. This method converts the given two-dimensional
fredholm integral equations system into a linear system of algebraic equations by using two-
dimensional triangular functions. Moreover, we prove the convergence of the method. Finally
the proposed method is illustrated by an example and also results are compared with the exact
solution by using computer simulations.
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1 Introduction

As we know the differential and integral equations are one of the important parts of the analysis theory that

play major role in numerical analysis. Recently, introduced a new set of triangular orthogonal functions have

been applied for solving Fredholm integral equation system by Babolian et al.[1]. Maleknejad et al.[2] have

used two-dimensional triangular functions for solving nonlinear class of mixed Volterra Fredholm integral

equations. The aim of this paper is to apply the two-dimensional triangular functions (2D-TFs) for the linear

two-dimensional fredholm integral equations system of the second kind (2D-FIES-2).
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2 Solving linear 2D-FIES-2

Definition 2.1. [2] An (m1 × m2)-set of two-dimensional triangular functions (2D-TFs) are defined on

Ω = [0, 1]× [0, 1] as:

T
1,1
i,j (s, t) =







(1− s−ih1

h1
)(1− t−jh2

h2
),

ih1 ≤ s < (i+ 1)h1,
jh2 ≤ t < (j + 1)h2,

0, otherwise,

T
1,2
i,j (s, t) =







(1− s−ih1

h1
)( t−jh2

h2
),

ih1 ≤ s < (i+ 1)h1,
jh2 ≤ t < (j + 1)h2,

0, otherwise,

T
2,1
i,j (s, t) =







( s−ih1

h1
)(1− t−jh2

h2
),

ih1 ≤ s < (i+ 1)h1,
jh2 ≤ t < (j + 1)h2,

0, otherwise,

T
2,2
i,j (s, t) =







( s−ih1

h1
)( t−jh2

h2
),

ih1 ≤ s < (i+ 1)h1,
jh2 ≤ t < (j + 1)h2,

0, otherwise,

where i = 0, 1, · · · ,m1−1, j = 0, 1, · · · ,m2−1, h1 =
1
m1

, h2 =
1
m2
. m1 and m2 are arbitrary positive integers.

On the other hand, if

T11(s, t) = [T 1,10,0 (s, t), . . . , T
1,1
0,m2−1

, T
1,1
1,0 (s, t), . . . , T

1,1
m1−1,m2−1

(s, t)]T ,

T12(s, t) = [T 1,20,0 (s, t), . . . , T
1,2
0,m2−1

, T
1,2
1,0 (s, t), . . . , T

1,2
m1−1,m2−1

(s, t)]T ,

T21(s, t) = [T 2,10,0 (s, t), . . . , T
2,1
0,m2−1

, T
2,1
1,0 (s, t), . . . , T

2,1
m1−1,m2−1

(s, t)]T ,

T22(s, t) = [T 2,20,0 (s, t), . . . , T
2,2
0,m2−1

, T
2,2
1,0 (s, t), . . . , T

2,2
m1−1,m2−1

(s, t)]T ,

then T (s, t), can be defined as T (s, t) = [T11(s, t) T12(s, t) T21(s, t) T22(s, t)]T4m1m2×1
.

We can carry out the following double integration of T (s, t):

∫ 1

0

∫ 1

0
T T (s, t)T (s, t)dsdt = D, (2.1)

where D is a (4m1m2 × 4m1m2)-matrix (see[2]). Let f(s, t) be a function of two variables on Ω = [0, 1] ×

[0, 1]. It can be approximated with respect to 2D-TFs as f(s, t) ≃ T T (s, t).F where 4m1m2-vector F =

[F1T F2T F3T F4T ]T is called the 2D-TF coefficient vector. Also, let k(s, t, x, y) be a function of four

variables on (Ω × Ω). It can be approximated with respect to 2D-TFs as k(s, t, x, y) ≃ T T (s, t).K.T (x, y),

where T (s, t) and T (x, y) are 2D-TF vectors of dimension 4m1m2 and 4m3m4, respectively and K is a

(4m1m2 × 4m3m4) 2D-TF coefficient matrix. More details about the properties of the triangular functions

are given in [2]. In this paper for convergence of the proposed method, we supposed that m1 = m2 = m3 =

m4 = m. Now, we introduce the two-dimensional Fredholm integral equations system of the second kind
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(2D-FIES-2) in the following form






















u1(x, y) = g1(x, y) +
∑n

j=1 λ1j
∫ 1
0

∫ 1
0 k1j(x, y, s, t)uj(s, t)dsdt,

u2(x, y) = g2(x, y) +
∑n

j=1 λ2j
∫ 1
0

∫ 1
0 k2j(x, y, s, t)uj(s, t)dsdt,

...

un(x, y) = gn(x, y) +
∑n

j=1 λnj

∫ 1
0

∫ 1
0 knj(x, y, s, t)uj(s, t)dsdt,

(2.2)

where kij(x, y, s, t), i, j = 1, . . . , n, are an orbitary kernel function over (Ω×Ω) and λij 6= 0 , i, j = 1, . . . , n are

real constants and ui(x, y) and gi(x, y) are real valued functions for i = 1, · · · , n and u1(x, y), u2(x, y), . . . , un(x, y)

are the solutions to be determined. For convenience, we consider the ith equation of system (2.2) as

ui(x, y) = gi(x, y) +
n

∑

j=1

λij

∫ 1

0

∫ 1

0
kij(x, y, s, t)uj(s, t)dsdt. (2.3)

For solving system (2.2) by using 2D-TFs, first let us expand ui(x, y), gi(x, y) and kij(x, y, s, t) as

ui(x, y) ≃ T T (x, y).Ui,

gi(x, y) ≃ T T (x, y).Gi, (2.4)

kij(x, y, s, t) ≃ T T (x, y).Kij .T (s, t),

Substituting the Eqs. (2.4) into Eq. (2.3), we get

T T (x, y)Ui ≃ T T (x, y)Gi +

n
∑

j=1

λij

∫ 1

0

∫ 1

0

(

T T (x, y)KijT (s, t)T
T (s, t)Uj

)

dsdt

= T T (x, y)Gi + T T (x, y)

n
∑

j=1

λijKij

(
∫ 1

0

∫ 1

0
T (s, t)T T (s, t)dsdt

)

Uj . (2.5)

Next, by substituting the Eq. (2.1) into Eq. (2.5), we can write

T T (x, y)Ui ≃ T T (x, y)Gi + T T (x, y)

n
∑

j=1

λijKijDUj

Thus we haveUi = Gi +
∑n

j=1 λijKijDUj , Then we get the following system

n
∑

j=1

(∆ij − λijKijD)Uj = Gi, ∆ij =

{

I i = j

0 i 6= j,
(2.6)

for i, j = 1, 2, . . . , n and I is a 4m2 × 4m2 identity matrix. By solving matrix system (2.6) with Gauss

elimination method, we can find Ui for i = 1, 2, . . . , n. So ui(x, y) ≃ T T (x, y)Ui.

Theorem 2.2. (Convergence Analysis) If kij(x, y, s, t), i, j = 1, 2, . . . , n are bounded and continuous, then

approximate solution of system (2.2), converges to the exact solution.

Proof. Suppose that ui,m(x, y), i = 1, . . . , n is an approximate value of the exact solution ui(x, y). Therefore

ui,m(x, y) =
m−1
∑

p=0

m−1
∑

q=0

cip,qT
1,1
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

dip,qT
1,2
p,q (s, t)

+

m−1
∑

p=0

m−1
∑

q=0

eip,qT
2,1
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

lip,qT
2,2
p,q (s, t), (2.7)
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by using Eqs. (2.3) and (2.7), we can write

‖ui,m(x, y)− ui(x, y)‖ = max
(x,y)∈Ω

|ui,m(x, y)− ui(x, y)|

= max
(x,y)∈Ω

|

n
∑

j=1

λij

∫ 1

0

∫ 1

0
kij(x, y, s, t)(

m−1
∑

p=0

m−1
∑

q=0

cjp,qT
1,1
p,q (s, t)

+
m−1
∑

p=0

m−1
∑

q=0

djp,qT
1,2
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

ejp,qT
2,1
p,q (s, t) +

m−1
∑

p=0

m−1
∑

q=0

ljp,qT
2,2
p,q (s, t))dsdt

−
n

∑

j=1

λij

∫ 1

0

∫ 1

0
kij(x, y, s, t)uj(s, t)dsdt|

≤M

n
∑

j=1

∫ 1

0

∫ 1

0
max
(x,y)∈Ω

|uj,m(s, t)− uj(s, t)|dsdt

=M

n
∑

j=1

∫ 1

0

∫ 1

0
‖uj,m(x, y)− uj(x, y)‖dsdt,

where

M = max
0≤x,y,s,t≤1

|λijkij(x, y, s, t)| <∞.

Also, we have limm→∞ uj,m(x, y) = uj(x, y), so ‖uj,m(x, y)− uj(x, y)‖ → 0 as m→∞ for j = 1, . . . , n , and

since M is bounded, thus

lim
m→∞

‖ui,m(x, y)− ui(x, y)‖ → 0,

so the proof is completed.

Example 2.3. Consider the system of linear two-dimensional Fredholm integral equations

{

u1(x, y) = xy − 6
20x+

∫ 1
0

∫ 1
0 xu1(s, t)dsdt+

∫ 1
0

∫ 1
0 xst4u2(s, t)dsdt,

u2(x, y) = x2 − 1
6xy −

1
3y
2 +

∫ 1
0

∫ 1
0 xysu1(s, t)dsdt+

∫ 1
0

∫ 1
0 y2u2(s, t)dsdt.

One can easily verify that (u1(x, y), u2(x, y)) = (xy, x
2) is an exact solution of the given problem.

The absolute error of ui(x, y) is Ei = |ui,m(x, y) − ui(x, y)| for i = 1, 2 with m = 32, is listed in Table

1. Also Figure 1 illustrate the comparison values between the exact solution and the approximate solution

by the presented method. Moreover, Absolute error functions obtained by the present method also shown in

Figure 1.

Table 1: Numerical results for Example 2.3, with m = 32.
(x, y) Approximate solution (u1,m(x, y), u2,m(x, y)) E1 E2

(0.0, 0.0) (0.0000e-00, 0.0000e-00) 0.0000e-00 0.0000e-00
(0.1, 0.1) (1.0024e-02, 1.0160e-02) 2.4369e-05 1.5985e-04
(0.3, 0.3) (9.0073e-02, 9.0266e-02) 7.3107e-05 2.6647e-04
(0.5, 0.5) (2.5012e-01, 2.5009e-01) 1.2184e-04 8.8975e-05
(0.7, 0.7) (4.9017e-01, 4.9041e-01) 1.7058e-04 4.0883e-04
(0.9, 0.9) (8.1022e-01, 8.1044e-01) 2.1932e-04 4.4457e-04
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Figure 1: Up: Comparison between the Exact solution and the Approximate solution by the present method for m = 5 and

10 . Down:Absolute error u1(x, y) by the present method for m = 10, 20, 32 and absolute error u2(x, y) by the present method

for m = 16, 32 for Example 2.3.

Conclusion

In this paper, we introduced TFs method for approximating the solution of the linear 2D-FIES-2. The

structural properties of TFs are utilized to reduce the 2D-FIES-2 to a linear system of algebraic equations,

without using any integration. In the above presented numerical examples one can see that the proposed

method well performs for linear 2D-FIES-2.
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