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We study Hawaiian groups of the infinite dimensional Hawaiian earring which is the 
weak join of all finite dimensional Hawaiian earrings. We show that the structure of 
the 1st Hawaiian groups of the infinite dimensional Hawaiian earring and the one 
dimensional Hawaiian earring are isomorphic. Also, for n ≥ 2, we prove that the 
nth Hawaiian group of the infinite dimensional Hawaiian earring is isomorphic to 
the direct product of direct sum of a family consisting of quotient of nth homotopy 
groups of consecutive retractions.
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1. Introduction and motivation

M.G. Barratt et al. [3] defined an n-dimensional space, n ∈ N, as the union of countably infinite number 
of shrinking n-spheres with a single point in common. In 2000, K. Eda et al. [5] called it the n-dimensional 
Hawaiian earring, n = 1, 2, . . ., as a generalization of the well-known Hawaiian earring. We denote it by 
HEn and it equals 

⋃
k∈N Sn

k , where Sn
k is the n-sphere with radius 1/k centred at (1/k, 0, . . . , 0) in Rn+1. 

Here, θ denotes the origin.
U.H. Karimov et al. [8] defined the infinite dimensional Hawaiian earring as the weak join of all finite 

dimensional Hawaiian earrings. By weak join of a family of spaces {(Xi, xi); i ∈ I}, denoted by (X, x∗) =∨̃
i∈I(Xi, xi), we mean the underlying space of wedge space (X̂, ̂x∗) =

∨
i∈I(Xi, xi) with the weak topology 

with respect to Xi’s, except at the common point. Every open neighbourhood in X at x∗ is of the form 
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⋃
i∈F Ui ∪

⋃
i∈I\F Xi, where Ui is an open neighbourhood at xi in Xi ⊂ X and F is a finite subset of I (see 

[3, Section 2] and [5, Page 18]).
Karimov et al. [7] defined the nth Hawaiian group of pointed space (X, x0) as the set of all pointed 

homotopy classes [f ], where f : (HEn, θ) → (X, x0) is continuous, with a group operation which comes from 
the operation of nth homotopy groups. We denote the nth Hawaiian group of a pointed space (X, x0) by 
Hn(X, x0) which is defined as follows.

Definition 1.1 ([7]). Let (X, x0) be a pointed space, [−] denote the class of pointed homotopy, and n =
1, 2, . . .. Then the nth Hawaiian group of (X, x0) is defined by Hn(X, x0) = {[f ] : f : (HEn, θ) → (X, x0)}
with the multiplication induced by (f ∗ g)|Sn

k
= f |Sn

k
· g|Sn

k
(k ∈ N) for any [f ], [g] ∈ Hn(X, x0), where ·

denotes the concatenation of n-loops.

One can see that Hn : hTop∗ → Groups is a covariant functor from the pointed homotopy category, 
hTop∗, to the category of all groups, Groups, for n ≥ 1. The Hawaiian group functor has some advantages 
over other famous functors such as homotopy, homology and cohomology functors. For instance, there 
exists a contractible space C(HE1), the cone over HE1, with uncountable 1st Hawaiian group, but trivial 
homotopy, homology and cohomology groups [7]. Also, this functor can classify some local properties of 
spaces. For instance, if X has a countable local basis at x0, then countability of the nth Hawaiian group 
Hn(X, x0) implies locally n-simply connectedness of X at x0 (see [7, Theorem 2]). Furthermore, there is 
a converse of the above statement in [2, Corollaries 2.16 and 2.17]: “let X have a countable local basis at 
x0, then Hn(CX, x) is trivial if and only if X is locally n-simply connected at x0 and it is uncountable 
otherwise”. Therefore, unlike homotopy groups, Hawaiian groups of pointed space (X, x0) depend on the 
behaviour of X at x0, and then their structures depend on the choice of base point. In this regard, there 
exist some examples of path connected spaces with non-isomorphic Hawaiian groups at different points, 
such as the n-dimensional Hawaiian earring, where n ≥ 2 (see [2, Corollary 2.11]).

The following lemma, proven in [2, Lemma 2.2], is a natural way to make a continuous map by the 
concatenation of a sequence of n-loops. Recall that a sequence of pointed maps fk : (X, x0) → (Y, y0)
(k ∈ N) is nullconvergent if for each open neighbourhood U of y0 in Y , there exists K ∈ N such that if 
k ≥ K, then im(fk) ⊆ U (see [2, Definition 2.1]).

Lemma 1.2 ([2]). Let {fk : (Sn, θ) → (X, x0)}k∈N be a sequence of n-loops. Then f : (HEn, θ) → (X, x0)
defined by f |Sn

k
= fk (k ∈ N) is continuous if and only if {fk}k∈N is nullconvergent. Moreover, let {f ′

k}k∈N
be a nullconvergent sequence of n-loops and f ′ : (HEn, θ) → (X, x0) be the continuous map induced by 
f ′|Sn

k
= f ′

k. If there exists a nullconvergent sequence of homotopy mappings {Hk : fk 	 f ′
k}k∈N , then there 

is a homotopy map H : f 	 f ′ defined by H|Sn
k×I = Hk.

In this paper, we study the structures of the fundamental group and Hawaiian groups of the infinite 
dimensional Hawaiian earring. We present the fundamental group and the 1st Hawaiian group of HE∞ as 
follows:

π1(HE∞) ∼= π1(HE1) ∼= ×σ
ℵ0
Z,

H1(HE∞, θ) ∼= H1(HE1, θ) ∼=
∏
ℵ0

∏
ℵ0

W
×σ

ℵ0
Z,

where, 
∏W

i∈I Gi denotes the weak direct product of a family of groups {Gi}i∈I and ×σ
ℵ0
Z denotes the free 

σ-product of countably infinite copies of Z.
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Recall that the infinite dimensional Hawaiian earring is the weak join of all finite dimensional Hawaiian 
earrings, that is HE∞ =

∨̃
n∈N

∨̃
k∈NSn

k . In Lemma 2.1, we present another representation for the infinite 
dimensional Hawaiian earring as the weak join of spheres of various dimensions according to the sequence

1, 2, 1, 2, 3, . . . , 1, . . . , n, 1, . . . , n, n + 1, . . . , (1)

which we use this homeomorphic copy of the infinite dimensional Hawaiian earring for the rest of the paper.
Let ri be the ith term of the sequence (1) which can be between 1 to n. Using the above representation 

of HE∞, for n ≥ 2, we prove the following isomorphism

Hn(HE∞, θ) ∼=
∏
m∈N

⊕
ℵ0

πn(
∨̃

i≥mSri
i , θ)

πn(
∨̃

i≥m+1S
ri
i , θ)

,

where ⊕ denotes the direct sum of abelian groups. For proving these isomorphisms we use some properties 
of spheres such as semilocally strongly contractiblity and locally strongly contractiblity [2, Definition 1.2].

Definition 1.3 ([2]).

1. A space X is called semilocally strongly contractible at point x0 if there exists a neighbourhood U of x0
such that the inclusion map U ↪→ X is nullhomotopic to x0 [5].

2. A space X is called locally strongly contractible at point x0 if for each neighbourhood U of x0 there 
exists a neighbourhood V of x0 such that the inclusion map V ↪→ U is nullhomotopic to x0.

Throughout this paper, all spaces are considered to have a countable local basis at their base points, and 
also all homotopies are relative to the base point unless stated otherwise.

2. The fundamental group of HE∞

In this section, we intend to study the fundamental group of the infinite dimensional Hawaiian earring. 
Recall that the infinite dimensional Hawaiian earring HE∞ is defined as the weak join of all finite dimen-
sional Hawaiian earrings. In the following lemma, we see that the infinite dimensional Hawaiian earring is 
homeomorphic to a weak join of spheres and we use this homeomorphic copy of HE∞ for the rest of the 
paper.

Lemma 2.1. The infinite dimensional Hawaiian earring is homeomorphic to the weak join of countably 
infinite number of spheres with the following sequence of dimensions:

1, 2, 1, 2, 3, . . . , 1, . . . , n, 1, . . . , n, n + 1, . . . . (1)

Proof. Assume that X =
∨̃

i∈NSri
i where ri is the ith term in the sequence (1) and let x∗ be the common 

point. There is a bijection between spheres of the same dimension in HE∞ and X. It induces a bijection 
g : HE∞ → X that maps the kth n-sphere of HEn in HE∞ onto the n-sphere corresponded to the kth n
in the sequence (1). Since g is a bijection, we must prove that g and h = g−1 are continuous. Since X is 
compact and HE∞ is Hausdorff, it suffices to show that h is continuous.

Since the restriction of bijection h is continuous on each sphere, we need only to verify the continuity of 
h at x∗. Let U be an open set containing θ. Then by the topology of weak join in HE∞, U =

⋃
1≤n≤N Un ∪⋃

n>N HEn for some N , where Un is an open set in HEn, 1 ≤ n ≤ N . Again by the topology of weak 
join in HEn, for each 1 ≤ n ≤ N , Un =

⋃
1≤k≤Kn

V n
k ∪

⋃
k>Kn

Sn
k for some Kn ∈ N where V n

k is an open 
neighbourhood of θ in Sn

k for 1 ≤ k ≤ Kn. Hence
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U =
⋃

1≤n≤N

⋃
1≤k≤Kn

V n
k ∪

⋃
1≤n≤N

⋃
k>Kn

Sn
k ∪

⋃
n>N

⋃
k∈N

Sn
k ,

where V n
k is an open set at θ in Sn

k for 1 ≤ n ≤ N and 1 ≤ k ≤ Kn. We show that h−1(U) is open. For 
h−1(U), put M := max

{
{Kn; 1 ≤ n ≤ N} ∪ {N}

}
. Since M ≥ N , for n > M , h−1(U) contains the whole 

of all n-spheres in X. Also, since M ≥ Kn for all 1 ≤ n ≤ N , h−1(U) contains the whole of all n-spheres 
after the first M in sequence (1). That is h−1(U) contains the whole of all n-spheres after the first M
corresponded to ri where i = M(M+1)

2 . Also for the other indices, h−1(U) contains open components. On 
the other hand, each open set W in X at x∗ is of the form W =

⋃
1≤i≤M Wi ∪

⋃
i>M Sri

i for some M ∈ N, 
where ri is the ith term of the sequence (1) and Wi is an open set in Sri

i at x∗. Hence h−1(U) is open in 
X. Therefore h is continuous. Since X is compact, HE∞ is Hausdorff, and h is a continuous bijection, it is 
a homeomorphism. �

The homeomorphic copy of the infinite dimensional Hawaiian earring defined in Lemma 2.1 is more 
familiar than the original one. For instance, it satisfies the hypotheses of [9, theorem 4.1] and [4, Theorem 
A.1] to obtain its fundamental group. In fact, it is proven that the fundamental group of the weak join of 
some family of spaces is isomorphic to the free σ-product of the fundamental groups of the given spaces 
[9,4]. Here, we recall the definition of free σ-product of groups and free σ-group. For more details and proofs 
see [4].

Definition 2.2 ([4]). Let {Gi}i∈I be an infinite family of groups. We assume that Gi ∩Gj = {e} for distinct 
i, j ∈ I. A σ-word w : S →

⋃
i∈I Gi is a function, where S is a countable linearly ordered set and {α ∈ S :

w(α) ∈ Gi} is finite for each i ∈ I. We denote the set of all σ-words by Wσ(Gj : i ∈ I). For finite subset F
of I, wF is the word of finite length obtained by deleting all elements in 

⋃
i/∈F Gi from w. In other words, 

if S(w, F ) = {α ∈ S : w(α) ∈
⋃

i∈F Gi}, then wF = w|S(w,F ). Two σ-words v, w are equivalent, if vF = wF

holds in the free product group ∗i∈FGi for every finite subset F of I. The equivalence class containing 
w is denoted by [w]. A group operation is defined on the set of all equivalence classes of σ-words by the 
concatenation of presentations of two σ-words. Then {[w] : w ∈ Wσ(Gi: i ∈ I)} forms a group which we 
call the free σ-product of family {Gi}i∈I , denoted by ×σ

i∈IGi. Immediately ∗i∈IGi is a subgroup of ×σ
i∈IGi. 

When Gi
∼= Z for all i ∈ I, ×σ

i∈IGi is called the free σ-group on |I| alphabet.

The notion of free σ-group was introduced when the structure of the fundamental group of one dimensional 
Hawaiian earring, π1(HE1) was studied. More generally, for spaces made by the weak join of some family 
of spaces, the following theorem holds [4, Theorem A.1].

Theorem 2.3 ([4]). Let Xi be locally 1-simply connected at xi for each i ∈ N and (X, x∗) =
∨̃

i∈N(Xi, xi). 
Then

π1(X,x∗) ∼= ×σ
i∈Nπ1(Xi, xi).

In the following lemma, we use Theorem 2.3, Lemma 2.1 and [9, Theorem 4.1] to obtain the structure of 
the fundamental group of the infinite dimensional Hawaiian earring, π1(HE∞).

Theorem 2.4. The inclusion map i : HE1 → HE∞ induces an isomorphism on the fundamental groups. 
That is π1(HE∞) ∼= π1(HE1) ∼= ×σ

ℵ0
Z.

Proof. Since HE1 is a retract of HE∞, the inclusion map induces a monomorphism. To prove surjectivity, 
we recall the structure of π1(HE∞). The infinite dimensional Hawaiian earring, as represented in Lemma 2.1, 
has properties of [9, Theorem 4.1] and Theorem 2.3. Thus, there is a monomorphism from π1(HE∞) into 
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the group lim←m
∗i≤mπ1(Sri) with image consisting of all countably infinite tuples of words such that the 

number of components including letter of type j is finite for all j ∈ N by [9, Theorem 4.1]. By Theorem 2.3, 
π1(HE∞) ∼= ×σ

i∈Nπ1(Sri) which is induced by the natural retractions. Since for ri > 1, the group π1(Sri) is 
trivial, π1(HE∞) ∼= ×σ

ℵ0
π1(S1). Hence any map α : S1 → HE∞ is homotopic to a map with image contained 

in i(HE1). Therefore π1(i) is onto as desired. �
Note that the inclusion map in Theorem 2.4 does not induce an isomorphism for higher dimensions.

Remark 2.5.

1. Let n ≥ 2. If one considers πn(i) : πn(HE1) → πn(HE∞), then πn(i) is not an isomorphism, because 
πn(HE1) is trivial and πn(HE∞) is not. In fact, πn(HE∞) contains πn(HEn) as a subgroup which is 
isomorphic to the direct product of infinite cyclic groups 

∏
ℵ0

Z [5, Corollary 1.2].
2. Moreover, let n ≥ 2 and j : HEn → HE∞ be the inclusion map. Then πn(j) : πn(HEn) → πn(HE∞) is 

not an isomorphism, because it is not onto. For example, let α be the non-trivial simple n-loop in Sn
1 . 

Then there is no n-loop in Sn
1 which is mapped to the n-loop (α, α, 0, 0, . . .) in S1

1 ∨ Sn
1 by the inclusion 

map j. Recall that πn(S1
1 ∨ Sn

1 ) ∼=
⊕

ℵ0
Z [6, Page 364, Example 4.27].

3. The first Hawaiian group of HE∞

In this section, we study the 1st Hawaiian group of the infinite dimensional Hawaiian earring, H1(HE∞, θ)
by the inclusion map i : HE1 → HE∞ which induces isomorphism on the fundamental groups as proven 
in Theorem 2.4. However, there are maps inducing isomorphisms on homotopy groups and not inducing 
isomorphisms on Hawaiian groups (see [7, Remark 1]). In the following theorem, we find some conditions 
under which a given map induces isomorphism on Hawaiian groups.

Theorem 3.1. Let F : (X, x0) → (Y, y0) be a continuous map which induces isomorphisms πn(F ) :
πn(X, x0) ∼= πn(Y, y0) and πn(FUm

) : πn(Um, x0) ∼= πn(Vm, x0), m ∈ N, for two local bases {Um}m∈N
in X at x0 and {Vm}m∈N in Y at y0. Then

Hn(F ) : Hn(X,x0) ∼= Hn(Y, y0).

Proof. Let F∗ := Hn(F ) : Hn(X, x0) → Hn(Y, y0) be the induced homomorphism on the nth Hawaiian 
group. We prove that F∗ is injective and surjective. Let [g], [h] ∈ Hn(X, x0), and F∗([g]) = F∗([h]). Thus 
[F ◦ g] = [F ◦ h] or equivalently F ◦ g 	 F ◦ h rel {θ}. Hence F ◦ g|Sn

k
	 F ◦ h|Sn

k
rel {θ} for k ∈ N. 

By the isomorphism πn(F ) : πn(X, x0) → πn(Y, y0), we can conclude that g|Sn
k
	 h|Sn

k
rel {θ} for k ∈ N. 

Moreover, for each m ∈ N, there is Km ∈ N such that if k ≥ Km, then im(g|Sn
k
), im(h|Sn

k
) ⊆ Um. Also 

FUm
: Um → Vm induces an isomorphism on homotopy groups for each m ∈ N. It implies that there is 

a homotopy map g|Sn
k
	 h|Sn

k
rel {θ} in Um for Km ≤ k < Km+1. Since {Um} is a local basis at x0, by 

Lemma 1.2 one can compile homotopies to make a homotopy g 	 h rel {θ}, and hence F∗ is injective. Now 
let [h] ∈ Hn(Y, y0). There is a sequence {Km}m∈N such that if Km ≤ k < Km+1, then im(h|Sn

k
) ⊆ Vm. 

By isomorphism πn(FUm
), for m ∈ N, there is a sequence of maps {gk}k∈N such that [gk] ∈ πn(Um, x0)

and πn(F )[gk] = [h|Sn
k
] for Km ≤ k < Km+1. Define g : (HEn, θ) → (X, x0) by g|Sn

k
= gk. Since {Um}m∈N

is a local basis at x0, g is continuous. Also since πn(F )([gk]) = [h|Sn
k
], where we define g|Sn

k
= gk, then 

F∗([g]) = [h]. Therefore, F∗ is surjective. �
Theorem 3.1 helps us to study the structure of H1(HE∞, θ) by the structure of H1(HE1, θ). We recall 

the structure of H1(HE1, θ) in the following lemma which was proven in [1, Lemma 4.1].
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Lemma 3.2 ([1]). Let B be the subgroup of 
∏

ℵ0
×σ

ℵ0
Z consisting of all countably infinite tuples of reduced 

σ-words such that the number of components including letter of type m is finite, for all m ∈ N. Then

H1(HE1, θ) ∼= B.

The group B is a subgroup of 
∏

ℵ0
×σ

ℵ0
Z and Lemma 3.2 does not determine the exact structure of 

H1(HE1, θ). In the following theorem, we establish the structure of group B in a more generalized case.

Theorem 3.3. Let Xi be locally strongly contractible at xi for each i ∈ I and (X, x∗) =
∨̃

i∈N(Xi, xi). Then

H1(X,x∗) ∼=
∏
m∈N

∏
ℵ0

W
×σ

i≥m π1(Xi, xi).

Proof. First, by generalizing the proof of [1, Lemma 4.1] for (X, x∗), one can see that H1(X, x∗) is isomorphic 
to the subgroup A of 

∏
ℵ0

×σ
i∈Nπ1(Xi, xi) consisting of all countably infinite tuples of reduced σ-words such 

that the number of components including letter of group Gm = π1(Xm, xm) is finite, for all m ∈ N. Now we 
show that this group is isomorphic to 

∏
m∈N

∏W
ℵ0

×σ
i≥mGi. Note that since ℵ0 = ℵ0 ×ℵ0, there is a natural 

isomorphism 
∏

ℵ0
×σ

ℵ0
Gi

∼=
∏

ℵ0

∏
ℵ0

×σ
ℵ0
Gi. Now we can consider A as a subgroup of 

∏
ℵ0

∏
ℵ0

×σ
ℵ0
Gi. 

Hence it suffices to verify the equality A =
∏

m∈N
∏W

ℵ0
×σ

i≥mGi as two subgroups of 
∏

ℵ0

∏
ℵ0

×σ
ℵ0
Gi. 

Let {{wm
k }k∈N}m∈N ∈ A. Then wm

k ’s are reduced σ-words such that the number of ones including some 
letter of group Gm = π1(Xm, xm) is finite, for all m ∈ N. One can consider the number of σ-words of 
{{wm

k }k∈N}m∈N including letter of group Gm and not including letter of group Gl for l < m equals Km. 
That is {wm

k }k∈N ∈
∏W

ℵ0
×σ

i≥mGi for each m ∈ N. Hence {{wm
k }k∈N}m∈N ∈

∏
m∈N

∏W
ℵ0

×σ
i≥mGi.

Conversely, let {{wm
k }k∈N}m∈N ∈

∏
m∈N

∏W
ℵ0

×σ
i≥mGi. Then for each m ∈ N, the number of σ-words 

of {wm
k }k∈N including letter of group ×σ

i≥mGi equals the natural number Km. That is for each m ∈ N, 
the number of σ-words including letter of group Gm is less than or equal to K1 + . . . + Km which is finite. 
Therefore {{wm

k }k∈N}m∈N ∈ A. Hence A =
∏

m∈N
∏W

ℵ0
×σ

i≥mGi as required. �
Using Theorems 3.1 and 3.3 we are in a position to give a structure for the 1st Hawaiian group of the 

infinite dimensional Hawaiian earring as follows.

Corollary 3.4.

1. Let HE∞ be the infinite dimensional Hawaiian earring and θ be the common point. Then

H1(HE∞, θ) ∼= H1(HE1, θ) ∼=
∏
ℵ0

∏
ℵ0

W
×σ

ℵ0
Z.

2. Also, if a ∈ HE∞ and a �= θ, then

H1(HE∞, a) ∼=
∏
ℵ0

W
π1(HE∞) ∼=

∏
ℵ0

W
×σ

ℵ0
Z.

Proof. 1. The inclusion map HE1 ↪→ HE∞ induces isomorphism on the fundamental groups by The-
orem 2.4. Similar to the proof of Theorem 2.4, one can prove that the isomorphisms hold for ap-
propriate countable local bases, because generators are mapping to generators isomorphically by [9, 
Theorem 4.1]. Thus, i : HE1 → HE∞ has properties of Theorem 3.1, and then the isomorphism 
H1(HE∞, θ) ∼= H1(HE1, θ) holds by Theorem 3.1. Now by Theorem 3.3, we have
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H1(HE1, θ) ∼=
∏
m∈N

∏
ℵ0

W
×σ

i≥m π1(S1
i , θ).

Since π1(S1
i , θ) ∼= Z, we have ×σ

i≥mπ1(S1
i , θ) ∼= ×σ

i≥mZ. Also since card{i ≥ m} = ℵ0 and card{m ∈
N} = ℵ0, the required isomorphism holds.

2. Since HE∞ is semilocally strongly contractible at a, by [2, Theorem 2.5], H1(HE∞, a) ∼=
∏W

ℵ0
π1(HE∞). 

By Theorem 2.4, π1(HE∞) ∼= ×σ
ℵ0
Z, and the result holds. �

Note that Corollary 3.4 shows that the group B, which was defined descriptively as a subgroup of ∏
ℵ0

×σ
ℵ0
Z in Lemma 3.2, is isomorphic to the well-known group 

∏
ℵ0

∏W
ℵ0

×σ
ℵ0
Z.

4. Higher Hawaiian groups of HE∞

In this section, we intend to study Hawaiian groups of weak join of some family of spaces such as Hawaiian 
earrings. We present Hawaiian groups of weak join as the direct product of direct sum of a family of quotient 
of homotopy groups of consecutive retractions. As a consequence, we see that higher Hawaiian groups of 
the infinite dimensional Hawaiian earring is isomorphic to the direct product of a family of quotient groups.

Theorem 4.1. Let Xi be locally strongly contractible at point xi. Also let (X, x∗) =
∨̃

i∈N(Xi, xi) be the weak 
join space of the family {(Xi, xi)}i∈N . Then for n ≥ 2

Hn(X,x∗) ∼=
∏
m∈N

⊕
ℵ0

πn(
∨̃

i≥mXi, x∗)

πn(
∨̃

i≥m+1Xi, x∗)
. (2)

Proof. First we define some notations to simplify the formulas. Put Ym :=
∨̃

i≥mXi, and Pm := πn(Ym, x∗)
for m ∈ N. Consider

ψ : Hn(X,x∗) →
∏
m∈N

∏
k∈N

Pm

Pm+1
, by ψ([f ]) =

{
{[Rm ◦ f |Sn

k
]Pm+1}k∈N

}
m∈N ,

where Rm : X → Ym is the identity on Xi for i ≥ m and sends Xi to the x∗ for i < m. Since Ym+1 is 
a retract of Ym by the natural retraction, Pm+1 is a subgroup of Pm, and thus the correspondence makes 
sense. Moreover, ψ is a composition of homomorphisms, and so is itself a homomorphism. Since Xi is locally 
strongly contractible at xi, for i ∈ N, there exists a nested local basis {V i

j }j∈N at xi such that the inclusion 
mapping V i

j ↪→ V i
j−1 is homotopic to the constant map at xi in V i

j−1 by a homotopy, Hi
j. Let {Um}m∈N

be the local basis at x∗ obtained by Um = (
∨

i<mV i
m) ∨ (Ym). This family is a local basis at point x∗, for 

if U ⊆ X is an open set, then there exist K ∈ N and natural numbers j1, · · · , jK−1 such that Xi ⊆ U (for 
i ≥ K) and V i

ji
⊆ U ∩Xi (for i < K), because {V i

j }j∈N is a local basis for Xi and U ∩Xi is an open set 
in Xi for all i ∈ N. Now putting m = max{K, j1, . . . , jK−1} implies that Um ⊆ U . Also for m ≥ 2, the 
inclusion Um ↪→ Um−1 is homotopic to Rm|Um

in Um−1 by a homotopy obtained by joining homotopies 
Hi

m’s for i < m, and identity for the others.

i) The homomorphism ψ is an injection.
Let [f ] be an element of Hn(X, x∗) so that ψ([f ]) = e. Then [Rm ◦ f |Sn

k
] ∈ Pm+1 for every m, k ∈ N

or equivalently Rm ◦ f |Sn
k

is homotopic, in Ym, to a mapping with image included in Ym+1. Since 
f : (HEn, θ) → (X, x∗) is continuous, for m ∈ N, there exists the minimum natural number Km such 
that if k ≥ Km, then im(f |Sn

k
) ⊆ Um+1. Note that since Um+1 ⊆ Um for each m ∈ N, the sequence 

{Km}m∈N is an increasing sequence. Fix k ≥ Km. So f |Sn is homotopic to the corresponding contracted 

k
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map on the space Ym+1 in Um because [Rm ◦ f |Sn
k
] ∈ πn(Ym+1). By induction, for l ∈ N, let f |Sn

k
in 

Um is homotopic to n-loop gl whose image is contained in Ym+l−1. Since [Rm+l−1 ◦ f |Sn
k
] ∈ Pm+l and 

[f |Sn
k
] = [gl] in Um, we have [Rm+l−1 ◦ gl] ∈ Pm+l. Thus there exist n-loop gl+1 in Ym+l, and homotopy 

mapping Gl such that Gl : gl 	 gl+1 in Ym+l−1. Note that by transitivity of the relation of homotopy, 
gl+1 	 f |Sn

k
in Um. By gluing homotopies, Gl’s, we prove that f |Sn

k
is nullhomotopic in Um as follows. 

Define G : Sn
k × I → Um by the rule

⎧⎨
⎩G|Sn

k×[1− 1
2l−1 ,1− 1

2l
] = Gl(−, hl)

G|Sn
k×{1} = x∗,

where l is a natural number and hl is the linear mapping taking the interval [1 − 1
2l−1 , 1 − 1

2l ] to I = [0, 1]. 
By gluing lemma, G is continuous on all points of its domain except the case that the second component 
equals 1. Then it suffices to verify continuity at the points whose second components equal 1. Since 
Sn
k × I and X are first countable spaces, we can verify the continuity of G by convergent sequences. Let 

{(as, ts)}s∈N be a convergent sequence with ts → 1 and as → a, where a ∈ Sn
k is arbitrary. For each 

s ∈ N, there exists ls ∈ N such that ts ∈ [1 − 1
2ls−1 , 1 − 1

2ls
]. Since ts → 1, then ls → ∞. We know that 

im(Gls) ⊆ Ym+ls−1. Thus G(as, ts) = Gls(as, ts) → x∗ and so we are done. Hence G is continuous and 
also

G(a, 0) = G|Sn
k×[0, 12 ](a, 0) = G1 ◦ h1(a, 0) = f |Sn

k
(a),

G(a, 1) = G|Sn
k×{1}(a, 1) = x∗,

G(θ, t) = Gl(θ, hl(t)) = x∗.

Thus G : f |Sn
k

	 cx∗ in Um. Note that U1 = Y1 = X. Thus K1 = 1 and then {Km}m∈N is an 
increasing sequence starting at K1 = 1. Also, for each k with Km ≤ k < Km+1, f |Sn

k
is nullhomotopic 

in Um. Therefore all f |Sn
k
’s are nullhomotopic with a sequence of nullconvergent homotopies. Now by 

Lemma 1.2, f is nullhomotopic and hence ψ is injective.
ii) The image of ψ equals the direct product, that is ψ(Hn(X, x∗)) =

∏
m∈N Fm where Fm =

⊕
ℵ0

Pm

Pm+1
.

Let 
{
{[fm

k ]Pm+1}k∈N
}
m∈N ∈ ψ

(
Hn(X, x∗)

)
. Then there is f : (HEn, θ) → (X, x∗) such that fm

k =
Rm ◦ f |Sn

k
. Since f is continuous, for each m ∈ N, there exists Km ∈ N such that if k ≥ Km then 

im(f |Sn
k
) ⊆ Um. Fix m ∈ N. We want to show that [f |Sn

k
] ∈ Pm+1 for k ≥ Km+2. Since k ≥ Km+2, 

there exists n-loop g in Um+2 such that i ◦ g = f |Sn
k
. Let i : Um+2 → X, j : Um+2 → Um+1 and 

k : Um+1 → X be the inclusion maps. Since j is homotopic to Rm+2|Um+2 and i = k ◦ j, f |Sn
k

=
i ◦ g = k ◦ j ◦ g 	 k ◦ Rm+2|Um+2 ◦ g. Since im(Rm+2) ⊆ Ym+2 ⊆ Ym+1, f |Sn

k
= k ◦ Rm+2|Um+2 ◦ g is 

homotopic to an n-loop whose image is contained in Ym+1. That is [f |Sn
k
] belongs to πn(Ym+1) = Pm+1

as desired. Then [fm
k ] = [Rm ◦f |Sn

k
] ∈ Pm+1 for k ≥ Km+2, which implies that [fm

k ]Pm+1 is the identity 
except possibly for k < Km+2. That is {[fm

k ]Pm+1}k∈N ∈
⊕

ℵ0
Pm

Pm+1
= Fm. Since m is arbitrary, 

{[fm
k ]Pm+1}k∈N ∈

⊕
ℵ0

Pm

Pm+1
= Fm for each m ∈ N. Thus 

{
{[fm

k ]Pm+1}k∈N
}
m∈N ∈

∏
m∈N Fm. 

Therefore, ψ
(
Hn(X, x∗)

)
⊆

∏
m∈N Fm.

To prove the converse inclusion, let 
{
{[fm

k ]Pm+1}k∈N
}
m∈N ∈

∏
m∈N Fm. Define f : HEn → X by

f |Sn
k

= fk = fmk

k ·Rmk+1 ◦
(
fmk

k

)−1 · fmk+1
k ·Rmk+2 ◦

(
fmk+1
k

)−1 · . . . , (3)

where mk ∈ N is the minimum number for which [fmk

k ]Pmk+1 is not the identity element. Note that 
to simplify the equalities, the inclusion maps are omitted. If there is not such a natural number, 
define mk = ∞ and f |Sn

k
as the constant map at the base point. Recall that · denotes the concate-

nation of n-loops. For an infinite number of n-loops, one can divide the unit n-cube into infinitely 
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many n-cubes whose diameters tend to zero (see [5]). Since [fm
k ] ∈ πn(Ym, x∗), the definition makes 

sense. That is fk is a well-defined continuous n-loop at x∗ because whenever m becomes greater, 
im(fm

k ) ⊆ Ym becomes smaller. To prove continuity of f , by Lemma 1.2, it suffices to show that for each {
{[fm

k ]Pm+1}k∈N
}
m∈N ∈

∏
m∈N Fm, the sequence {fk}k∈N defined in equation (3), is nullconvergent. 

Equivalently, we must show that the sequence {mk}k∈N converges to infinity. That is for every M ∈ N, 
there is K ∈ N such that if k ≥ K, then mk > M . For each M ∈ N, put K = max{k; mk ≤ M} + 1. 
Since the set {k; mk ≤ M} is finite, the natural number K exists. If {k; mk ≤ M} is infinite, then for 
some m, 1 ≤ m ≤ M , [fm

k ]Pm+1 is not the identity for an infinite subset A of {k ∈ N}. This is a con-
tradiction because {[fm

k ]Pm+1}k∈N ∈ Fm =
⊕

ℵ0
Pm

Pm+1
for each m ∈ N and it implies that [fm

k ]Pm+1
is the identity element for each k ∈ N except a finite number. Therefore the set {k; mk ≤ M} is 
finite. Now if k ≥ K, then k > max{k; mk ≤ M}. That is mk > M . Hence for M ∈ N, there ex-
ists K ∈ N such that if k ≥ K then mk > M . Therefore {mk}k∈N converges to infinity. To verify 
ψ([f ]) =

{
{[fm

k ]Pm+1}k∈N
}
m∈N , by the definition of homomorphism ψ, we must check the equality 

[Rm ◦ f |Sn
k
]Pm+1 = [fm

k ]Pm+1 for each m, k ∈ N. Fix k ∈ N and fk = f |Sn
k
. First assume that m < mk. 

Since m + 1 ≤ mk, Ymk
⊆ Ym+1, and then

im(fk) = im(fmk

k ·Rmk+1 ◦
(
fmk

k

)−1 · fmk+1
k ·Rmk+2 ◦

(
fmk+1
k

)−1 · . . .) ⊆ Ymk
⊆ Ym+1.

Thus [fk] can be considered as an element of Pm+1 = πn(Ym+1, x∗), and then [Rm ◦ fk]Pm+1 equals 
the identity element. Moreover, [fm

k ]Pm+1 equals the identity for m < mk because mk is the minimum 
number for which [fm

k ]Pm+1 is not the identity. If m = mk, then

[Rm ◦ fk] = [Rmk
◦ fk]

= [Rmk
◦
(
fmk

k ·Rmk+1 ◦
(
fmk

k

)−1 · fmk+1
k ·Rmk+2 ◦

(
fmk+1
k

)−1 · . . .
)

]

= [Rmk
◦ fmk

k ·Rmk
◦Rmk+1 ◦

(
fmk

k

)−1 ·Rmk
◦ fmk+1

k · . . .]

= [Rmk
◦ fmk

k ][Rmk
◦Rmk+1 ◦

(
fmk

k

)−1 ·Rmk
◦ fmk+1

k · . . .]

= [Rmk
◦ fmk

k ][Rmk+1 ◦
(
fmk

k

)−1 · fmk+1
k ·Rmk+2 ◦

(
fmk+1
k

)−1 · . . .],

and thus

[Rm ◦ fk]Pm+1 = [Rmk
◦ fk]Pmk+1

= [Rmk
◦ fmk

k ][Rmk+1 ◦
(
fmk

k

)−1 · fmk+1
k . . .]Pmk+1

= [Rmk
◦ fmk

k ]Pmk+1

= [fm
k ]Pm+1,

as desired. Now let m = mk + l for some l = 1, 2, . . .. Since Rmk+l ◦Rmk+b = Rmk+l for b ≤ l, we have

[Rm ◦ fk] = [Rmk+l ◦ fk]

= [Rmk+l ◦
(
fmk

k ·Rmk+1 ◦
(
fmk

k

)−1 · fmk+1
k ·Rmk+2 ◦

(
fmk+1
k

)−1 · . . .
)

]

= [Rmk+l ◦ fmk

k ·Rmk+l ◦Rmk+1 ◦
(
fmk

k

)−1 ·Rmk+l ◦ fmk+1
k ·

Rmk+l ◦Rmk+2 ◦
(
fmk+1
k

)−1 · . . . ·Rmk+l ◦ fmk+l
k ·

Rmk+l ◦Rmk+l+1 ◦
(
fmk+l

)−1 · . . .]
k
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= [Rmk+l ◦ fmk

k ·Rmk+l ◦
(
fmk

k

)−1 ·Rmk+l ◦ fmk+1
k ·Rmk+l ◦

(
fmk+1
k

)−1·

Rmk+l ◦ fmk+2
k · . . . ·Rmk+l ◦ fmk+l

k ·Rmk+l+1 ◦
(
fmk+l
k

)−1 · . . .]

= [Rmk+l ◦ fmk+l
k ][Rmk+l+1 ◦

(
fmk+l
k

)−1 · . . .],

and thus,

[Rm ◦ fk]Pm+1 = [Rmk+l ◦ fk]Pmk+l+1

= [Rmk+l ◦ fmk+l
k ][Rmk+l+1 ◦

(
fmk+l
k

)−1 · . . .]Pmk+l+1

= [Rmk+l ◦ fmk+l
k ]Pmk+l+1

= [Rm ◦ fm
k ]Pm+1

= [fm
k ]Pm+1,

and we are done. That is for each m, k ∈ N, [Rm ◦ fk]Pm+1 = [fm
k ]Pm+1. Therefore ψ([f ]) ={

{[fm
k ]Pm+1}k∈N

}
m∈N . Hence 

∏
m∈N Fm ⊆ ψ

(
Hn(X, x∗)

)
and then 

∏
m∈N Fm = ψ

(
Hn(X, x∗)

)
.

Consequently, we have isomorphism ψ : Hn(X, x∗) →
∏

m∈N Fm, where Fm =
⊕

ℵ0

πn(
∨̃

i≥mXi,x∗)
πn(

∨̃
i≥m+1Xi,x∗)

, and 

then Hn(X, x∗) ∼=
∏

m∈N
⊕

ℵ0

πn(
∨̃

i≥mXi,x∗)
πn(

∨̃
i≥m+1Xi,x∗)

. �
Note that Theorem 4.1 is a generalization of [2, Theorem 2.10] as follows.

Theorem 4.2 ([2]). Let n ≥ 2. Suppose that Xi is an (n − 1)-connected Tikhonov space which is locally 
strongly contractible at the base point xi for i ∈ N. If (X, x∗) =

∨̃
i∈N(Xi, xi), then

Hn(X,x∗) ∼=
∏
i∈N

⊕
ℵ0

πn(Xi, xi).

By [5, Theorem 1.1], πn(
∨̃

i≥mXi, x∗) ∼=
∏

i≥m πn(Xi, xi) for all m ∈ N, and also 
πn(

∨̃
i≥mXi,x∗)

πn(
∨̃

i≥m+1Xi,x∗)
∼=

πn(Xm, xm). Therefore

Hn(X,x∗) ∼=
∏
m∈N

⊕
ℵ0

πn(
∨̃

i≥mXi, x∗)

πn(
∨̃

i≥m+1Xi, x∗)
∼=

∏
m∈N

⊕
ℵ0

πn(Xm, xm).

In [2, Corollary 2.11], as a consequence of Theorem 4.2, we establish the nth Hawaiian group of the 
m-dimensional Hawaiian earring up to isomorphism as follows. For m, n ≥ 2, if n < m, then Hn(HEm, x)
is trivial for arbitrary point x ∈ HEm, and if θ �= a ∈ HEm, then

Hm(HEm, θ) ∼=
∏
ℵ0

⊕
ℵ0

Z, Hm(HEm, a) ∼=
⊕
ℵ0

∏
ℵ0

Z.

In the following corollary we study the case n > m. Since HEm =
∨̃

i∈NSm
i satisfies the hypotheses of 

Theorem 4.1, Corollary 4.3 is an immediate consequence of Theorem 4.1, when we replace Xi with Sm
k in 

the isomorphism (2).
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Corollary 4.3. Let m, n ∈ N and n > m. Then for n ≥ 2

Hn(HEm, θ) ∼=
∏
i∈N

⊕
ℵ0

πn(
∨̃

k≥iS
m
k , θ)

πn(
∨̃

k≥i+1S
m
k , θ)

.

Some homotopy and Hawaiian groups of finite dimensional Hawaiian earrings were studied in [4] and 
[2] respectively. These techniques use (n − 1)-connectedness of n-spheres of the n-dimensional Hawaiian 
earring. But since dimension of spheres of the infinite dimensional Hawaiian earring is not bounded, (n −1)-
connectedness does not hold except for n = 1, that is the first homotopy and Hawaiian groups which were 
investigated in previous sections. Now by Lemma 2.1, HE∞ 	

∨̃
i∈NSri

i where ri is the ith term of sequence 
(1), and then HE∞ satisfies the hypotheses of Theorem 4.1. Therefore, replace Xi with Sri

i in isomorphism 
(2) and obtain the corollary stated below.

Corollary 4.4. Let ri be the ith term of sequence

1, 2, 1, 2, 3, . . . , 1, . . . , n, 1, . . . , n, n + 1, . . . , (1)

and n ≥ 2. Then

Hn(HE∞, θ) ∼=
∏
m∈N

⊕
ℵ0

πn(
∨̃

i≥mSri
i , θ)

πn(
∨̃

i≥m+1S
ri
i , θ)

.
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