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Abstract
Agar-coated  Fe3O4 nanoparticles  (Fe3O4@agar) were prepared simply through in situ co-precipitation of  Fe2+ and  Fe3+ ions 
via  NH4OH in an aqueous solution of Agar. Coating of  Ag+ ions on the surface of the latter followed by mild reduction of 
 Ag+ with  NaBH4 gives  Fe3O4@Agar-Ag NPs. The magnetic  Fe3O4@Agar-Ag nanocatalyst was characterized thoroughly by 
FT‐IR, XRD, SEM, TEM, VSM, EDX, TGA, and ICP analyses. Its catalytic activity was assessed in the synthesis of 12-aryl-
8,9,10,12-tetrahydrobenzo[a]xanthene-11-one, 14-aryl-14H-dibenzo[a,j]xanthenes, and 1,8-dioxo-octahydroxanthene deriva-
tives through a one-pot condensation of dimedone, 2-naphthol, and aryl aldehydes in EtOH. This novel method represents 
lots of advantages compared to the previous researches, such as avoiding the toxic catalysts, easy method for isolation of the 
products, satisfying yields, totally clean conditions, and simplicity of the methodology. This catalytic system is attributed to 
an eco-friendly process, high catalytic activity, and facility of recovery using an external magnet.

Graphical abstract

A novel and magnetically recyclable catalyst known as Fe3O4@Agar-Ag NPs as a heterogeneous catalyst were synthesized 
by a simple method. Using this facile, efficient, and eco-friendly Nanocomposite, for the different models of xanthene reac-
tion was represented.
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Introduction

In recent decades, multicomponent reactions had a special 
place in the synthesis of chemical compounds for researchers 
and scientists, since they can display a wide range of excit-
ing properties [1–5]. Xanthene derivatives are considered 
in biological resources such as antitumor, antiviral, anti-
inflammatory, florescence-ratio spectroscopy, and therefore, 
they are considered as high priority structures [6–11]. For 
instance, the Gartanin compound (Fig. 1A) showed signifi-
cant antioxidant activity.[12] Besides, due to their useful 
spectroscopic properties, such compounds are also a natu-
ral source of xanthene dyes, for example, Rhodomyrtone 
(Fig. 1B) extracted from Rhodomyrtus tomentosa and a com-
pound known as BF6 (Fig. 1C) extracted from the leaves of 
Baeckea frutescens are natural xanthene diones with many 
features [8, 13, 14].

Due to their perfect range of applications and proper-
ties of xanthene derivatives, the discovery of a new and 
efficient catalyst with high catalytic activity, recyclability, 
and simple reaction working-up for the preparation is of 
prime interest. Lots of catalysts have been represented for 
the synthesis of xanthene reactions such as  (H4SiW12O40) 
[15],  (H5PW10V2O40/MCM-48) [16],  (HClO4–SiO2 and 
PPA–SiO2) [17] and (Triethylaminium-N-sulfonic acid 
trifluoroacetate {[TEASA][TFA]}) [18]. However, these 
catalysts have many limitations, such as strong acidic con-
ditions, long reaction times, low yields, and harsh reaction 
conditions [19–21]. To avoid these limitations, a recyclable, 
non-toxic, and easily prepared catalyst can be considered 
as a highly effective method, and the catalyst is also totally 
recoverable from the reaction mixture by using an external 
magnet [22–26]. Magnetic nanoparticles are popular for 
special crafty usage in biotechnology, health and environ-
ment, material science, and catalysis. The surface of MNPs 
is typically modified or coated with renewable and different 
polymers and metals to improve their colloidal stability and 
surface functionalization capability [27–34].

Many polymers can provide excellent system in the 
form of coating magnetic nanoparticles and making a sta-
ble network structure [35–37]. Specifically, an increasing 

consideration has been recently focused on the synthesis of 
Agar coated  Fe3O4 NPs [38–40]. Agar resides in the cell 
wall of red algae, and it is composed of a strongly gelling 
seaweed hydrocolloid and commonly used in food industry. 
As an ideal support material, Agar has its particular proper-
ties inclusive of availability, safety, biocompatibility, bio-
degradability, low immunogenicity, and antibacterial prop-
erties, and also, it is used as non-toxic and non-expensive 
linker [41–44]. Organic synthesis catalyzed by metals is 
extremely developed [45–47]. Silver is known as a soft, 
white, transition metal, and it exhibits the highest electri-
cal conductivity and thermal conductivity [48]. Ag NPs are 
appropriate for their properties as substrates in catalysis 
studies, surface incensement, and the biomedical fields [49]. 
Polymer coated metal nanoparticles are known for high sur-
face area, highly available, non-toxic, and stability of pH 
during the reaction.

However, in continuation of our previous works[50–56], 
now we introduce a simple, low cost, highly- effective, non-
toxic, and new catalytic system for the synthesis of xan-
thene derivatives from one-pot condensation of 2-naphthol, 
dimedone (5,5-dimethyl-1,3-cyclohexanedione), and differ-
ent aldehydes with different random products using  Fe3O4@
Agar-Ag NPs catalyst in ethanol as an eco-friendly solvent 
(Schemes 1, 2).

Results and discussion

The preparation and characterization of the  Fe3O4@
Agar‑Ag catalyst

Initially, in order to synthesize novel catalysts and develop 
the practically and environmentally good methodologies for 
the organic reactions, the structure of  Fe3O4@Agar-Ag is 
identified and characterized by different analyses, includ-
ing Fourier transform infrared (FT‐IR), X‐ray diffraction 
(XRD), scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), vibrating sample magnetometry 
(VSM), energy dispersive X-ray (EDX), thermogravimetric 
(TGA), and inductively coupled plasma (ICP) analyses.

Fig. 1  Examples of xanthenes 
in natural compounds

(a) (b) (c)
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In Fig. 2, the FT‐IR spectrum demonstrated the C–O 
absorption of Agar at 1060   cm−1 along with a peak at 
598  cm−1 related to the stretching vibration of the Fe–O 
bond group in  Fe3O4@Agar. This exhibits that magnetic 
 Fe3O4 NPs have been coated by Agar. Conceivable bind-
ings of silver with OH group in  Fe3O4@Agar-Ag NPs have 
been ascribed to the combined intensity of hydroxyl peaks 
at 3435  cm−1. Rupture of the bending bands of hydroxyl at 
1622  cm−1 and 1346  cm−1 also detects the bonding of Ag 
with OH groups. The differences in the area of 1400  cm−1 
and 1000  cm−1 are associated to the perturbation in C–O 
vibrations induced by Agar-Ag complexation (Fig. 2).

The XRD patterns help to study the crystallinity of the 
catalyst,  Fe3O4@Agar NPs, and  Fe3O4@Agar-Ag NPs. 
According to standard pattern COD Card Number [96-900-
2328] and [96-500-0219], which indicate the pure crystalline 

structures of  Fe3O4 and silver, the sharp peaks confirm the 
excellent crystallinity of the prepared samples (Fig. 3). For 
 Fe3O4@Agar NPs, the outcome is in accord with the stand-
ard patterns of inverted cubic spinel magnetite  (Fe3O4) crys-
tal structure. It shows six diffraction peaks at 2θ about 30.8°, 
38.0°, 54.8°, 58.0°, 64.3°, and 77.3° marked by their cor-
responding indices (2 0 2), (3 1 1), (2 2 2), (3 3 3), (4 0 4), 
and (5 3 3), respectively. The small and weak broad bands 
in the range of 20°–27° detect the existence of Agar. Dif-
fraction patterns of the  Fe3O4@Agar-Ag NPs demonstrate 
three additional peaks at 2θ about 38.0°, 44.2°, and 77.3°; 
corresponding to (1 1 1), (2 0 0), and (3 1 1) planes of face-
centered cubic (fcc) silver crystal structure. No impurities 
in the XRD patterns infer the formation of net  Fe3O4 and 
Ag nanoparticles.

Scheme 1  Synthesis of  Fe3O4@Agar-Ag NPs catalyst

Scheme 2  General procedure 
for the synthesis of xanthene 
derivatives

(a)

(b)

(c)
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Fig. 2  FT-IR spectrum of a 
Agar, b  Fe3O4@Agar NPs, c 
 Fe3O4@Agar-Ag NPs, and d 
Recycled catalyst

Fig. 3  X-ray diffraction spec-
troscopy for  Fe3O4@Agar-Ag 
NPs
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The FE–SEM image showed that the nanoparticles were 
still almost nanospherical in its 3D form with nanometer-
sized particles of less than 25 nm in diameter. Figure 4 
shows the morphology of the  Fe3O4@Agar-Ag nanoparticles 
with a core–shell structure. However, it is presumed that this 
particle size causes the catalyst to be more in touch with the 
reactants, which leads to a good yield of the desired product.

TEM image of the catalyst displayed in Fig. 5. The circu-
lar form of any nanoparticle corresponded to the core of the 
catalyst, similar to the FE-SEM image that can be observed 
at a scale of less than 25 nm. Also, TEM images show that 
magnetic nanoparticles of  Fe3O4 have been surrounded by 
the biopolymeric network of Agar. Some gathering of par-
ticles was also observed in the TEM image. It is proposed 
that this accumulate is due to the entrapment of the particles 
in the hollow pore structure of the agar gels.

The magnetic properties of nanoparticles have been meas-
ured with a vibrating sample magnetometer for  Fe3O4@Agar 
(Fig. 6a) and  Fe3O4@Agar-Ag (Fig. 6b) NPs. They were 
constructed in the limited area of − 15,000–15,000 Oe using 
VSM. As shown in Fig. 6, the impregnation magnetization 
of  Fe3O4@Agar-Ag NPs is 35 emu  g−1, lower than that of 
 Fe3O4@Agar (33 emu  g−1). The magnetization diagram 
displays that the  Fe3O4@Agar-Ag NPs have paramagnetic 
properties in which the nanoparticles can be easily separated 
from the reaction melange using an external magnet.

Elemental compositions were determined with EDX 
analysis for  Fe3O4@Agar-Ag NPs (Fig. 7). The EDX pat-
tern supports the excellent dispersion of  Fe3O4@Agar-Ag 
NPs. Chemical characterization of the nanoparticles showed 
that iron, carbon, oxygen, and silver elements are involved. 
This analysis also detected the presence of 11.11 mol% Ag 
in  Fe3O4@Agar-Ag NPs.

TGA of  Fe3O4@Agar-Ag NPs was manipulated in the 
confine of 25–550 ºC (Fig. 8). The first mass loss of  Fe3O4@
Agar-Ag NPs at below 140 ºC is due to the removal of physi-
cally adsorbed water. The second and the significant weight 

Fig. 4  Scanning electron microscopy (SEM) for  Fe3O4@Agar-Ag 
NPs at 200 nm

Fig. 5  Transmission electron microscopy (TEM) for  Fe3O4@Agar-Ag 
NPs at 50 nm

Fig. 6  Vibrating-sample magnetometer (VSM) spectroscopy a 
 Fe3O4@Agar and b  Fe3O4@Agar-Ag NPs
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loss (− 41.226%) of  Fe3O4@Agar-Ag NPs in the range of 
210–460 °C is attributed to Agar as the organic moiety.

In order to determine the optimization of the reaction 
conditions such as solvent, amount of catalyst, and tempera-
ture, benzaldehyde is selected in the model reactions, and 
the results will be represented in Table 1.

According to Table 1, the model reaction was studied 
by examining the various amounts of the catalyst. The effi-
ciency of the catalyst activity with different amounts involv-
ing 0, 5, 10, 15, 20, 25, and 30 mmol% of  Fe3O4@Agar-
Ag NPs was studied. The results demonstrated no or trace 
product observed in the absence of the catalyst or catalyst 
without metal. 20 mmol% showed the optimum amounts 
of the catalyst in which the increasing of this amount did 
not show any significant effect. We also tested the result of 
different temperatures and solvents such as DMSO, EtOH, 
DMF, and  H2O. The product yields increase at reflux condi-
tion with EtOH as solvent.

The reaction of various aldehydes with three model reac-
tions resulted in satisfied yields (Table 2). The first model is 
the general reaction for xanthene using aldehyde (1 mmol), 
5,5-dimethyl-1,3-cyclohexanedione (1 mmol), and 2-naph-
thol (1 mmol) at reflux condition and using ethanol as sol-
vent. The second model reaction contains aldehyde (1 mmol) 
and 2-naphthol (2 mmol) at the same conditions as the first 
model, and the third model reaction also contains aldehyde 
(1 mmol) and 5,5-dimethyl-1,3-cyclohexanedione (2 mmol) 
with the same condition. Aromatic aldehydes containing 
electron-donating groups such as methyl, methoxy, and 
hydroxyl required longer reaction times (10 h), while aro-
matic aldehydes containing electron-withdrawing groups 
such as chloro- or nitro-moiety required shorter reaction 
times (6 h). However, all these three model reactions cata-
lyzed by  Fe3O4@Agar-Ag NPs represent a selective and mild 
method with satisfying yields of products.

According to the literature, a plausible mechanism for the 
synthesis of xanthene reaction for three models of reaction 
is proposed. [66] (Fig. 9).

To investigate the reusability and leaching of the catalyst, 
the catalyst removed by an external magnet at the end of 
the reaction, washed with water, and ethanol, successively. 
According to the obtained results, the catalyst could main-
tain its catalytic properties up to six times, and no significant 
loss in the yield of the products as well as low Ag leaching 
was observed. (Fig. 10).

The hot filtration test of the catalyst was performed to 
determine the efficiency of the catalyst. The catalyst parti-
cles removed from the reaction by an external magnet after 
2.5 h (50% yield). A reaction monitoring using TLC indi-
cated that practically the reaction rate decreased significantly 
after hot filtration. (Fig. 11).

Later on, to check the performance of the catalyst, 
we have compared the activity of our catalyst with other 
reported ones. Table 3 shows the comparison of the reported 
catalysts that contain limitations and preparation difficulties. 
It is clear from Table 3 that the current method is simpler, 
more efficient and exhibited higher yields for the synthesis 
of xanthene derivatives than the other ones.

Conclusions

In conclusion, a novel and magnetically recyclable catalyst 
known as  Fe3O4@Agar-Ag NPs as a heterogeneous cata-
lyst was synthesized by a simple method. Using this facile, 
efficient, and eco-friendly nanocomposite, for the different 
models of xanthene reaction was represented. The correct 
and accurate synthesis of the catalyst was characterized by 
different analyses. We have exhibited for the first time the 
use of  Fe3O4@Agar-Ag NPs as a highly active and efficient 

Fig. 7  Energy-dispersive X-ray spectroscopy for  Fe3O4@Agar-Ag 
NPs

Fig. 8  Thermogravimetric analysis of  Fe3O4@Agar-Ag NPs
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nanocatalyst for the synthesis of xanthene derivatives via 
a one-pot reaction in an environmentally friendly solvent.

Experimental

Preparation of Agar‑coated magnetic nanoparticles: 
 Fe3O4@Agar NPs

A mixture of  FeCl3.6H2O (6.5 mmol, 1.76 g) and  FeCl2.4H2O 
(3.3 mmol, 0.65 g) dissolved in deionized water (120 ml) 
under intensive and vigorously stirring. Then,  NH4OH solu-
tion (25% w/w, 8 ml) was added to the mixture and stirred for 
3 h at room temperature. Then, the solution of Agar (1 g) in 
water (50 ml) was added dropwise. The mixture stirred for 5 h 
at 70 °C under  N2 atmosphere. The obtained magnetize mix-
ture was separated using magnetic decantation and washed 
with deionized water (2 × 30 ml), and dried at 50 °C for 24 h.

Synthesis of silver nanoparticles coated magnetic 
Agar:  Fe3O4@Agar‑Ag NPs

Moreover,  AgNO3 solution (80 gr.  L−1) was added dropwise 
over a period of 30 min at room temperature. The mixture 
was stirred for extra 3 h. Then,  NaBH4 was added to the 

mixture gently within 4 h with stirring.  Fe3O4@Agar-Ag was 
obtained by washing with water several times and drying in 
a vacuum desiccator at room temperature.

General procedure for the synthesis of 12−
aryl−8,9,10,12−tetrahydrobenzo[a]xanthene−11−
ones derivatives

A mixture of aromatic aldehyde (1.0 mmol), β-naphthol 
(1.0 mmol), 5,5-dimethyl-1,3-cyclohexanedione (1.0 mmol) 
and  Fe3O4@Agar-Ag NPs (20 mmol%) in EtOH (2 mL) was 
stirred in an oil bath at reflux conditions. The progress of the 
reaction was monitored by TLC, and after the completion 
of the reaction, the catalyst was separated from the mixture 
using an external magnet. The resulting solid was filtered 
off and recrystallized by ethanol. The catalyst was washed 
several times with ethyl acetate and ethanol, and dried in a 
vacuum desiccator to reuse for the next reaction.

9,9‑Dimethyl‑12‑phenyl‑8,9,10,12‑tetrahydro‑11H‑benzo[a]
xanthen‑11‑one (1):

Yield = 97%, 1H NMR (300 Hz,  CDCl3): δ (ppm) 1.01, 1.16 
(6H, s,  CH3), 2.25–2.39 (2H, m,  CH2), 2.61 (2H, s,  CH2), 
5.76 (1H, s, CH), 7.09–7.50 (8H, m, CH), 7.09–8.05 (11H, 

Table 1  The optimization of the model reaction conditions

Bold indicates theoptimized reaction conditions
a Catalyst:  Fe3O4@Agar-Ag NPs
b Catalyst:  Fe3O4@Agar NPs
c Catalyst:  Fe3O4 NPs
d Catalyst: Ag

 

Entry Catalyst (mmol%) Temperature (oC) solvent Time (h) Yield (%)

1 0a 110 DMSO 15 0
2 5a 110 DMSO 15 40
3 10a 80 water 15 57
4 15a 100 DMF 15 68
5 20a 120 DMF 12 80
6 20a Reflux Ethanol 6 97
7 25a Reflux Ethanol 6 96
8 25a 110 DMSO 10 87
9 30a Reflux Ethanol 10 90
10 20b Reflux Ethanol 20 35
11 20c Reflux Ethanol 20 40
12 20d Reflux Ethanol 20 58



 Molecular Diversity

1 3

m, Ar–H). 13C NMR (75 MHz,  CDCl3): δ (ppm) 27.1, 29.3, 
32.2, 34.7, 41.4, 50.9, 114.3, 117.0, 117.7, 123.7, 124.9, 
126.2, 127.0, 128.2, 128.4. 128.4, 128.8, 131.4, 131.5, 
144.7, 147.7, 163.9, 196.9. MS (70 eV, EI), m/z (%) 354 
 (M+), 340  (M+–O), 324  (M+–C2H6), 277  (M+–C6H5).

12‑(4‑Isopropylphenyl)‑9,9‑dimethyl‑8,9,10,12‑tetrahy‑
dro‑11H‑benzo[a]xanthen‑11‑one (4)

Yield = 84%, 1H NMR (300 Hz,  CDCl3): δ (ppm) 1.02 (3H, s, 
 CH3), 1.15 (6H, d,  CH3) 1.17 (3H, s,  CH3) 2.31 (2H, s,  CH2), 
2.61 (2H,  CH2), 2.72–2.83 (1H, m, CH), 5.71 (1H, s, CH), 
7.03–8.08 (10H, m, Ar–H). 13C NMR (75 MHz,  CDCl3): δ 
(ppm) 23.8, 27.4, 29.2, 30.9, 33.5, 41.4, 50.9, 110.1, 117.1, 
121.3, 122.2, 123.8, 124.8, 126.2, 126.9, 127.3, 128.1, 128.3, 
128.6, 131.4, 146.4, 157.2, 163.8, 197. MS (70 eV, EI), m/z 
(%) 396  (M+), 382  (M+–O), 277  (M+–C6H11).

General procedure for the synthesis of 14−
aryl−14H−dibenzo[a,j]xanthenes derivatives:

A mixture of aromatic aldehyde (1.0 mmol), 2 − naphthol 
(2.0 mmol), and  Fe3O4@Agar-Ag NPs (20 mmol%) in EtOH 
(2 mL) was stirred in an oil bath at reflux conditions. The 
progress of the reaction was monitored by TLC, and after the 
completion of the reaction, the catalyst was separated from 
the mixture using an external magnet. The resulting solid 
was filtered off and recrystallized by ethanol.

Synthesis of 14‑(p‑ tolyl)‑14H‑dibenzo[a,j]xanthene (11)

Yield = 90%, 1H NMR (300 Hz,  CDCl3): δ (ppm) 2.17 (3H, 
d,  CH3), 6.50 (1H, s, CH), 6.98–7.00 (2H, d, CH), 7.41–7.53 
(6H, m, CH), 7.59–7.64 (3H, t, CH), 7.81–7.87(4H, m, CH), 
8.42–8.45 (2H, d, CH). 13C NMR (75 MHz,  CDCl3): δ (ppm) 

Table 2  (a) The reaction 
of xanthene using 
aldehyde(1 mmol), 
dimedone(1 mmol), and 
2-naphthol(1 mmol), (b) 
The reaction for xanthene 
using aldehyde(1 mmol) 
and 2-naphthol(2 mmol), (c) 
The reaction for xanthene 
using aldehyde(1 mmol) and 
dimedone(2 mmol)

Mp (Lit.)
oCMp (found) oCTOF 

(h–1)TONYield (%)
/Time (h)ProductAldehydeEntry

(153 –
155)[19](144 –148)0.804.8597/61

(191–
193)[58](190 –194)0.654.590/72

(205–
207)[19](203 –205)0.434.3587/103

(160 –
162)[59](160 –164)0.424.284/104
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20.8, 37.6, 117.4, 118.0, 122.7, 124.2, 126.7, 128.1, 128.7, 
128.7, 129.1, 131.1, 131.4, 135.9, 142.1, 148.7. MS (70 eV, 
EI), m/z (%) 372  (M+), 357  (M+–CH3), 281  (M+–C7H7).

General procedure for the synthesis of 1, 8‒dioxo‒
octahydroxanthenes derivatives

A mixture of aromatic aldehyde (1.0 mmol), 5,5-dimethyl-
1,3-cyclohexanedione (2 mmol), and  Fe3O4@Agar-Ag NPs 
(20 mmol%) in EtOH (2 mL) was stirred in an oil bath at 
reflux. The progress of the reaction was monitored by TLC, 
and after the completion of the reaction, the catalyst extracts 
from the mixture using an external magnet. Then, the cata-
lyst was washed several times with ethyl acetate/ethanol, 

and dried in a vacuum desiccator to reuse for the next reac-
tion. The resulting solid was filtered off and recrystallized 
by ethanol.

3,3,6,6‑Tetramethyl‑9‑phenyl‑3,4,5,6,7,9‑hexahy‑
dro‑1H‑xanthene‑1,8(2H)‑dione (14)

Yield = 96%, 1H NMR (300 Hz,  CDCl3): δ (ppm) 1.08 (6H, 
s,  CH3), 1.27 (6H, s,  CH3), 2.38- 2.50 (8H, m,  CH2), 5.59 
(1H, s, CH), 7.12–7.33 (5H, m, Ar–H). 13C NMR (75 MHz, 
 CDCl3): δ (ppm) 27.3, 27.4, 29.3, 29.6, 29.3, 29.6, 31.4, 
32.2, 32.7, 40.8, 46.5, 47.1, 50.7, 115.5, 125.8, 126.3, 126.8, 
128.1, 128.2, 128.4, 138.1, 144.1, 162.3, 189.4, 190.5. MS 
(70 eV, EI), m/z (%) 350  (M+), 273  (M+–C6H5).

Table 2  (continued)

(175–
177)[60](173 –177)0.794.7595/65

(201–
203)[61](200 –203)0.554.4589/86

(170 –
172)[62](169 –173)0.4480/107

(218–
220)[60](220 –222)0.4480/108

(176–
177)[62](174 –177)0.464.284/99
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Table 2  (continued)

Mp (Lit.)
oC

Mp (found)
oCTOF (h–1)TONYield (%) /

Time(h)ProductAldehydeEntry

(183)[63](178 –182)0.784.794/610

(228)[63](220–223)0.454.590/1011

(287)[63](285–288)0.564.
5591/812

(312)[63](310–313)0.774.6593/613
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Table 2  (continued)

Mp (Lit.) oCMp 
(found) oC

TOF 
(h–1)TONYield (%) /Time(h)ProductAldehydeEntry

(205–
207)[64](201–204 )0.804.896/614

(218–220 
)[64](217–220)0.634.4589/715

(230–232)[64](229–234)0.514.1583/816

(251–253)[65](250–253)0.424.284/1017
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Table 2  (continued)

Reaction conditions: Aldehyde (1 mmol), dimedone (2 mmol), Ethanol (96%) (2 ml), nanocatalyst (20 mmol%), 
Temperature reflux condition, Time 6-8 h. 

(221 – 
223)[64] (220–224) 0.77 4.65 93/6 

 

 

18 

(170–172)[66] (170–174) 0.62 4.4 88/7 

 

 

19 

(241–243)[67] (240–242) 0.64 4.5 90/7 

 

 

20 

Fig.9  The possible mechanism for the synthesis of xanthenes
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