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Abstract—The Radon transform on the two-dimensional
space, called X-ray transform, is reviewed. Some methods to
reconstruct an X-ray image from its sinogram are investigated.
Important details are lost when the shearlet transform is used
to retrieve an image from its noisy Rdadon data. We present
a new theorem to relate the shearlet and Radon transforms
to come up with this challenge. An optimum threshold to use
is obtained. The algorithm of fast finite shearlet transform is
improved, and numerical results show the notable superiority
of the proposed method over other existing algorithms.

Index Terms—X-ray transform, shearlet transform, image
reconstruction, noisy data

I. Introduction
Almost after a half of a century later, Soviet and

American writers [Stein (1972); Vainshtein and Orlove
(1972);] West and Cormac (1973) cite Radon’s paper in
1917 as a basis for re-constructing projections[4]. Fritz
John then revived the subject in important papers during
the 1930s and found significant applications in differential
equations. Now, the Radon transform in Euclidean space
is a suitable method for a large group of reconstruction
problems. The X-ray transform is a special case for Radon
transform, see [1], [2]. The X-ray images, called CT-scan
show the interior parts of a body in different shades of
black and white. X-rays are emitted to objects from an
under control source with known initial energy. During the
process, part of the radiation is absorbed and Different
tissues absorb different amounts of the radiation. The
main problem is to determine attenuation function from a
noisy Radon dataset. In recent years, useful mathematical
tools such as wavelet, curvelet and shearlet transform are
presented so some new ideas in inverse problems, noise
removing and approximation theory are implemeneted. If
a ray satisfies the Beer-Lambert conditions and passes a
distance x through a homogeneous tissue, in which case
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I
I0

= e−µ·x, where µ is the desired attenuation coefficient
of the tissue. Using this formula for a beam which passes
throught the path L, we have

p = (Rµ)(ρ, ϕ) = − log(
I

I0
) =

∫
L

µ(x, y)ds, (1)

where ρ is the distance of the line to the origin,ϕ is the
specified angle and R denotes the Radon transform. In (1),
p is called a projection. Varying the value of ϕ make a pro-
file matrix that can be shown as a sinogram. The Fourier-
Slice Theorem plays a key role in the reconstructing an
image from its corresponding sinogram. Let f ∈ L1(R2).
For each ω ∈ R and θ ∈ [0, 2π] then

F2f(ω cos θ, ω sin θ) = F1(Rf)(ω, θ), (2)
where F2 is the two-dimensional Fourier transform and F1

is the Fourier transform corresponding to the variable of
s. Let B be the back projection operator then for the
function Rf(t, θ) ∈ L1([0, 2π]× R) we have

BRf(x, y) =
1

π

∫ π

0

Rf(x cos θ + y sin θ, θ)dθ, (3)

The following theorem is the bedrock for the method of
F.B.P. .

theorem 1: Let f ∈ L1(R2) ∩ L2(R2) then

f(x, y) =
1

2
B{F−1

1 [|ω|F1(Rf)(ω, θ)]}(x, y). (4)

In (4), retrieving an image f just by applying the back
projection operator on acquired data is impossible due to
|ω|. However it acts as a special filter for Rf . Suppose that
ϕ is a function with the limited frequency band, assuming
g = F1ϕ then

f(x, y) ≈ 1

2
B(F−1

1 g ∗Rf)(x, y).

General rule for the the most of low-pass filters of g is
g(ω) = |ω| ·F(ω)πL(ω), where πL is the indicator function
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of the interval [−L,L]. One can see the definition of the
shearlet transform in detail in [4]. The following theorem
is the basis for the proposed algorithm.

theorem 2: Let f ∈ L2(R2) then

SHψf(a, s, b) =

∫ π

0

∫ ∞

−∞
F1(Rf(ω, θ))

ψ̂a,s,b(ω cos θ, ω sin θ)|ω|dωdθ. (5)

II. Discretization of Transforms
When 2M+1 parallel and equal distance (at a distance

of d) beams are emitted at in p different directions of θk
then

θk = {kπ
p
; 0 ≤ k ≤ p− 1}, tj = {jd := −M ≤ j ≤M}.

Assuming the function f ∈ L1(R2) and p,M ∈ N, the
discrete Radon transform of f along the lines ltj ,θk is
defined as RDf [j, k] = Rf(tj , θk). In Fig. 1, a phantom
image and its matrix data [RDf [j, k]] has been shown.
This image is used as a standard image to test various
algorithms in the field of medical image processing, see
[5]. For a discrete N - periodic function g, the discrete
form for Fourier transform and its inverse see [3], [4]. To
get the discrete form for the back projection operator, in
(3)-we use sigma instead of the integral sign and 0 ≤ k ≤
p − 1 instead of 0 ≤ θ ≤ π and we replace dθ, by kπ

p .
The discrete function g is considered. The discrete back
projection operator in (3) is defined as follows

Bg(x, y) =
1

N

N−1∑
k=0

g(x cos
kπ

N
+ y sin

kπ

N
,
kπ

N
)

Finally, the reconstruction formula f(x, y) ≃ 1
2B(F−1

1 g ∗
Rf)(x, y) is discretized as

f(x, y) ≈ 1

2N

N−1∑
k=0

h(x cos
kπ

N
+ y sin

kπ

N
,
kπ

N
),

where h = F1g ∗Rf . Fig. 2 shows the result of retrieving
the phantom with and without the filtering. In 2016 Mu
et al. have modified the F. B. P. method to retrieve an
image from its noisy data, see [6]. In theorem 1, the sets Θ
and Ω result from the discretization of the intervals [0, π]
and (−∞,+∞) Then (5) can be written as

SHψf(a, s, b) =Σθ∈ΘΣω∈ΩF1(Rf(ω, θ))

ψ̂a,s,b(ω cos θ, ω sin θ)|ω|.

The inverted discrete shearlet transform is applied to
recover a phantom image from its noisy Radon data.

III. Numerical Result
We have data about Rf only in the polar coordinate

systems, so to find the value of f at the points (xm, yn) we
need interpolation. In table II, the results of combining
different types of filters and interpolation methods are
presented.

[A] [B]
Fig. 1. (A) Phantom image and (B) sinogram

[A] [B]
Fig. 2. (A) Retrieving phantom without filtering and (B) recon-
structed sinogram with filtering and interpolation

The results of the comparision of proposed algorithm
with the other three investigated methods are shown
in Table I. We applied all algorithms to reconstruct a
phantom image from its Radon data in the presence of the
Gaussian noise with mean µ = 0 and variance σ2 = 0.0025.
the results show that the modified method of F. B. P. by
Mu and his colleagues, M. F. B. P., is more accurate and
faster in performance than the F. B. P. method. Although
the F. F. SH. method has better results than M. F. B. P.
but our proposed method-based on the theorem 1 is the
best among them see table I.

IV. Concolusion
In table II the numerical results of using some different

filters and interpolation methods in the B. P. method
indicates that promoting the recovery accuracy is not
significant by changing the method of interpolation or the
type of filters. So one should think to modify the method.
Three different ways to reconstruct an image from noisy
Radon data are investigated. Numerical results show that
our proposed method based on the new theorem 1 is the
best among them see table I.

TABLE I
Comparision of the proposed method with other algorithms

Reconstructing image Corr. MSE PSNR
F. B. P. 0.98059 0.00183 68

M. F. B. P. 0.98042 0.00184 73
F. F. SH. 0.97066 0.00276 81

P. F. F. SH. 0.95357 0.00244 84
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