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Abstract
In many situations, such as flows passing through a section of the channel widths, the sudden opening of the flow duct either 
on the horizon plane or on the vertical plane, there is a possibility of reverse flow. Couette Flow, which is flowing in chan-
nels with moving walls that move in opposite directions, can simulate these types of flows. For the first time, it is attempted 
to obtain and draw velocity contours and depth-averaged velocities in a rectangular channel with moving walls. The walls 
move at equal velocities and opposite directions to each other. This is done for channels with varying width-to-depth ratios. 
It is predicted that velocity contours and depth-averaged velocities will be very similar to the Couette flow between the two 
plates when the channel depth is greater than the width. The proposed model is used for this purpose by Maghrebi (Adv Water 
Resour 29:1504–1514, 2006. https:// doi. org/ 10. 1016/j. advwa tres. 2005. 11. 007). To simulate reverse flow, it is sufficient to 
consider the shear stresses direction on the walls to be in opposite directions to each other. The linear stress distribution is 
the best assumption to consider the shear stress distribution for the channel bed situated between the two walls. In this case, 
a hypothetical boundary is formed perpendicular to the middle of the cross section of the channel bed. It flows on both sides 
of the boundary having equal velocities but different signs. One of the interesting points in this phenomenon is drawing 
dimensionless isovel contour. The zero average velocity at the channel cross-section results from zero average discharge. 
Large amounts of dimensionless isovel contour occur in the vicinity of the moving walls that is difficult to imagine how the 
isovel contours were formed.

Keywords Couette flow · Isovel contour · Distribution of shear stress · Moving walls

1 Introduction

The flow characteristics in a recirculation zone are three-
dimensional, and many experiments have been performed 
to identify the flow behavior in the recirculation zone (Dey 
and Barbhuiya 2005). Complexity in tidal current with the 
partial reverse flow is high because, in this case, two differ-
ent parts of flow with positive and negative signs can be dis-
tinguished at any one time (Maghrebi and Givehchi 2010).

Investigating the velocity distribution profile in the Cou-
ette flow is one of the essential parts of the Couette flow 
analysis. The shear stresses of the walls during the Couette 
flow play an essential role in the relationships of the velocity 

distribution profile in the Couette flow. As long as the shear 
stresses in the Couette flow are constant, the shear stress 
gradients have no effect on the flow, and thus the Reynolds 
number effect in the Couette flow is seen (Kitoh et al. 2005). 
Hu et al. (2016) performed experimental and numerical 
simulations to reverse flow phenomenon in reverse U tube 
steam generators (UTSGs). When the reverse flow occurs, 
the negative pressure drops between the inlet and outlet ple-
nums and the heat transfer of the UTSG reduce significantly.

In both Poiseuille and Couette flows, the friction coef-
ficient and the overall kinetic energy decrease with increas-
ing Reynolds number. In particular, the friction coefficient 
is approximately the same for the two flows when data are 
made non-dimensional concerning the centerline proper-
ties, supporting the wall law's universality. However, sup-
pose the friction curve is reported as a function of the bulk 
properties. In that case, it is found that Couette flow yields 
less resistance than Poiseuille flow, probably up to a very 
high Reynolds number for a given mass flow rate. Similar 
behavior is observed for the integrated kinetic energy, which 
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abruptly changes from zero to a maximum corresponding to 
the transition threshold. These observations suggest the pos-
sible use of devices based on moving belts for fluid transport 
to minimize frictional losses and the effectiveness of Couette 
flows at low Reynolds number in promoting turbulent diffu-
sion (Orlandi et al., 2015).

Pereira et al. (2017) provide direct numerical solutions to 
the Navier–Stokes time-dependent three-dimensional equa-
tions to evolve the three-dimensional finite-amplitude per-
turbations of the Poisson plane and Couette plate planes. It is 
found that plane Poiseuille flow can sustain neutrally stable 
two-dimensional finite-amplitude disturbances at Reynolds 
numbers more significant than about 2800. No neutrally sta-
ble two-dimensional finite-amplitude disturbances of plane 
Couette flow were found. Three-dimensional disturbances 
are shown to have a robust destabilizing effect. It is shown 
that finite-amplitude disturbances can drive the transition to 
turbulence in plane Poiseuille flow and plane Couette flow 
at Reynolds numbers of order 1000. Details of the resulting 
flow fields are presented. It is also shown that plane Poi-
seuille flow cannot sustain turbulence at Reynolds numbers 
below 500.

Shinneeb et al. (2021), in their studies, numerically inves-
tigate the effect of aspect on the velocity field characteris-
tics of the turbulent flow of a straight open-channel flow. 
The transient three-dimensional Navier–Stokes equations 
were numerically solved using a finite-volume approach 
with an improved–delayed detached-eddy simulation turbu-
lence model. The results revealed the formation of a pair of 
counter-rotating recirculation zones near the bottom corners 
of the channel, whose axes are aligned with the main flow 
direction. Each pair consists of a mean recirculation zone 
near the bed (bed recirculation zone), and another one near 
the sidewall (side recirculation zone).

Grosse and Schröder (2009) evaluated the distribution 
of shear stresses in the ducts with the turbulent flow by 
micro-Pillar sensors. Based on the results of these studies, 
the coexistence and overlap of areas with low shear stresses 
and areas with high shear stresses, traces of coherent struc-
tures near the walls are evident. They also observed that 
areas with low shear stresses are like long meandering bands 
intersected by areas with high shear stresses.

Telbany and Reynolds (1980) found that the slope of 
the central part of the velocity distribution profile depends 
mainly on the Reynolds number and the central 40% of the 
channel. The average shear stresses and the intensity of the 
turbulence are almost uniform. Liu et al. (2019) showed that 
extreme events occurring near the walls (such as reverse 
flow) are detected and analyzed based on the shear stress 
patterns of the walls. The few reverse flows identified by the 
distribution of wall shear stress at different Reynolds num-
bers are used as an empirical example of near-wall return 
current events in a turbulent flow.

Hafeez and Ndikilar (2014) discussed the steady laminar 
flow in incompressible viscous fluids between two porous 
parallel plates, which is suction in the upper plate and injec-
tion in the bottom plate. In this case, the flow is driven by a 
pressure gradient and a uniform vertical flow is created, and 
the vertical velocity is uniform throughout the flow field. 
They also discussed a solution for low and high Reynolds 
numbers and plotted velocity profile diagrams for the flow 
between two porous parallel plates. The upper plate is suc-
tion and in the bottom plate is injection.

Nasif et al. (2020) employed a numerical investigation in 
this study to evaluate the influence of channel aspect ratio 
varying between 2.0 and 12.0 on the secondary currents and 
other flow characteristics in an open-channel turbulent flow 
at mildly supercritical Froude numbers. It is shown that the 
streamwise velocity profile across the channel has a strong 
dependence on the channel aspect ratio. This profile has two 
recognizable inflection points for aspect ratios between 3.0 
and 6.0, which move toward the sidewalls as the channel 
aspect ratio increases. A region of inviscid-like flow is seen 
about the central channel plane above a specific vertical 
location for a small channel aspect ratio only. The distribu-
tion of the contour patterns of mean vertical and transverse 
secondary currents is similar for a wide range. It does not 
depend on the channel aspect ratio.

In their studies, Hamilton et al. (1995) used a direct 
numerical simulation of a very limited Couette flow to study 
the dynamics of structures near the turbulent flow walls. 
They find that the computational domain dimensions reach 
the minimum values that stabilize the turbulence with the 
onset of a fully developed turbulent flow. A defined, quasi-
cyclic, orderly trend is observed in the structures close to the 
walls. Komminaho et al. (1996) performed direct numerical 
simulation of turbulent Couette flow at Reynolds number 
750. In their studies, they paid particular attention to select-
ing a large computing box that would accommodate even the 
most large-scale perturbations. Similar to previous findings 
in their studies, large longitudinal structures were observed 
in the central channel areas, and they focused their stud-
ies on the properties of these structures. Thirumaran et al. 
(2018) presented the analytical and numerical solution for 
abruptly stopped axial Couette flow. The stability analysis 
can be carried out to analyze the stability of the flow when 
a minor disturbance is introduced to the flow.

The perturbation theory has shown that the logarithmic 
law of velocity distribution is one of the theoretical results 
created to describe velocity profiles, which is essentially 
applicable to the overlap region less than 20% of the flow 
depth. Compared to the logarithmic law, the power law of 
velocity distribution, often provided by empirical methods, 
can be applied to a greater part of the flow domain. For 
the study of open-channel flows, the power law is usu-
ally considered a simple but completely empirical formula 
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for representing velocity profiles. The power law index of 
velocity can be analytically correlated with the Reynolds 
number and the equivalent roughness height. Still, it often 
appears to be related to the friction factor. The findings of 
this study have corresponded with the fact that one-sixth 
power is superior in engineering (Cheng 2007). Barenb-
latt and Prostokishin (1993) collected all of Nikuradse's 
(1932) classical data on velocity distribution and surface 
friction for comparison. The informative matching of the 
predictions to the experimental data indicates that the 
effect of molecular viscosity on the main body of fully 
developed shear flows essential, even at very high Reyn-
olds numbers.

Maghrebi and Rahimpour (2005) presented a simple 
model for predicting isovel contours in ducts and open chan-
nels. They hypothesized that each element of the channel 
boundary would affect the arbitrary point velocity of the 
channel and then calculate the effect of the entire boundary 
by integrating on the wetted perimeter of the channel. In 
their paper, the logarithmic velocity distribution and power 
law were used to apply any other velocity distribution law. 
They used their model to calculate normalized isovel con-
tours. Maghrebi (2006) presented a successful application 
of the Biot-Savart law in hydraulics. He used the similarities 
between the magnetic field of a wire current and the cross-
section contours to obtain the pattern of velocity contours. A 
new approach has been developed based on harmonic mean 
distances to predict the dimensionless isovel contours in 
open channels with rectangular cross sections. The effects of 
free surface on the dimensionless isovel contours are inves-
tigated. Various combinations of free surface weight factor 
and aspect ratio simulate dimensionless isovel contours in 
rectangular cross sections. Discharge can be estimated based 
on a single point of velocity measurement and the dimen-
sionless normalized isovels (Rahimpour 2017).

Study on the isovel contour in open channels and ducts 
has already been done in other researches, and examples 
of these studies have been provided. However, this paper 
uses a model previously proposed by Maghrebi and Givehchi 
(2010) to simulate downstream flow asymmetrically opening 
through a sluice gate across the river, isovel contour in chan-
nels whose walls move at equal velocities but different signs 
are produced and studied. For such studies, it is necessary 
to examine the flow between two infinite and parallel plates 
that move at equal velocities but opposite directions and 
called Couette flow. One of the aspects to be considered in 
such flows is the zero average discharge in the cross section. 
As the average discharge is zero, the average velocity will be 
equal to zero, leading to the creation of high-velocity con-
tour lines on the sides near the moving walls. A distinctive 
aspect of the present work with the studies that Maghrebi 
and Givehchi (2010) conducted is that the channel bed on 
which the walls are placed is stable in this study.

2  Material and Methods

The most straightforward Couette flow is the flow between 
two infinite and parallel plates with b distance from each 
other, one of the walls being stable and the other wall mov-
ing at a constant velocity U. In this situation, Navier–Stokes 
equations are used to calculate the flow velocity profile. This 
Equation is as follows when the walls are on the left and 
right of flow (Munson et al. 2013):

where z is the common location coordinate, and u(z) denotes 
the velocity distribution. This equation indicates that the 
flow is one-dimensional. (�p∕�x) indicates the pressure gra-
dient, and the c1 and c2 are the constants of the equation. 
Equation constants can be obtained by applying boundary 
conditions (u = 0 at z = 0, u = U at z = b). Constants c1 and 
c2 are:

By placing c1 and c2 in Eq. (1), we have:

Assuming the pressure gradient is zero (�p∕�x = 0) , the only 
factor that drives the flow is the displacement of the right 
side of the moving plate at constant speed U, and Eq. (4) is 
simplified as follows. The flow velocity profile will be linear 
(Munson et al. 2013):

It should be emphasized that the following derivation is 
based on a channel with a flat bed. Couette flow fully devel-
oped when two walls are b apart from each other, and the left 
wall is fixed, and the right wall moves at constant velocity 
U, as shown in Fig. 1.

2.1  Cross‑Sectional Isovel Contours

After examining the Couette flow between two infinite and 
parallel plates, where one of the walls is stationary, and 
the other is moving at a constant velocity U, a special 
condition of Couette flow between two infinite and parallel 
plates is examined in which two walls with constant veloc-
ity U move in opposite directions. As shown in Fig. 2, 
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the net average flow rate across any cross section is zero. 
Accordingly, the average velocity computed as V=Q/A is 
zero, where A is the cross-section area. Therefore, the val-
ues of velocity contours in the channel section, obtained 
by dividing the point velocities by the average velocities, 
will be ambiguous and tend to infinity. For this situation, 
the velocity distribution is calculated from the following 
equation (Spurk 1997):

where u∗ is the shear stress, � is the von Karman constant, 
0.4 for clean water, b is the half distance between the two 
walls, z is the distance measured from the left wall, and ν 
is the kinematic viscosity of the fluid. The velocity distri-
bution profiles of the turbulent Couette flow for different 

(6)
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1

�
ln

(

bz

b − z

)

Reynolds numbers, indicated by relation (Re = 2bU∕�) , can 
be obtained from:

Equation (7) for the laminar and turbulent flow is plotted in 
Fig. 2. If the Reynolds number is less than 1500, the velocity 
distribution profile will be linear (Fig. 2a). The velocity dis-
tribution profile is nonlinear if the flow regime is disturbed 
(Fig. 2b). Figure 2a can also be plotted using the (u = Uz∕b) 
relation.

The Couette flow is a hypothetical flow in which the role of 
the bed between two moving plates is not considered. How-
ever, such a flow can be quickly produced for a gas fluid that 
fills the space between two moving plates at the same veloci-
ties in different directions. But to produce a real flow of fluid 
between two plates, there is a need to have a stable bed. After 
discussing the relationship of the Couette flow between the 
two moving plates, it is now a situation that, in many aspects, 
is similar to the Couette flow between the two parallel plates 
but with differences. In addition to the sidewalls between 
two parallel plates in the Couette flow, there is also a stable 
bed, and practically the Couette flow between the two plates, 
changing to flow into a rectangular channel whose walls are 
at equal velocities and opposite directions.In this paper, it is 
assumed that each element of the channel boundary affects the 
arbitrary velocity point such as M in the cross section of the 
channel. Then the total boundary effects on arbitrary point M 
are obtained by integrating along the wetted perimeter of the 
cross section (Maghrebi and Rahimpour 2005). It was sug-
gested that (Fig. 3):
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Fig. 1  Layer flow velocity profile between two infinite and parallel 
plates is stable, and the other is moving at a constant velocity U 

Fig. 2  Velocity distribution 
profiles for Couette flow as 
both walls move at a constant 
U speed a laminar flow and b 
turbulent flow
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where u is the streamwise velocity vector at a point in 
the cross section, f(r) is the velocity function of the flow 
expressed on a flat plate with infinite width as a function of 
radial position, ds is an element of the wetted perimeter of 
the channel and c1 is constants related to the roughness of 
the channel walls.

The velocity vector direction on the left side of Eq. (1) is 
the same as the multiplication vector direction () on the right 
side of the equation, which is perpendicular to the downstream 
flow section. The turbulent flow of a fluid into open pipes or 
channels can be estimated using the power-law velocity profile 
equation (Chen 1991):

where u is the flow velocity, u∗ is the shear velocity calcu-
lated from relation (u∗ =

√

�0
/

�), c is a constant that 
depends on Reynolds number, y is the vertical distance from 
the boundaries, and ks is the height equivalent to the 
Nikuradse roughness and m, appearing in the power of 
Eq. (9), it varies between 4 and 12, depending on the turbu-
lence (Yen 2002).

By replacing the radial distance r instead of the vertical dis-
tance y in Eq. 9, the following Equation will obtain (Maghrebi 
2006):

where c2 is a constant that depends on the nature of the flow; 
here, the nature of flow is related to the intensity of turbu-
lence. So Eq. (8) will be as follows:
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where � is the angle between the position vector and the 
boundary element vector and u(z, y) is the local point veloc-
ity at an arbitrary position of the channel section (Fig. 4).

It can be assumed that when the channel walls move at 
equal velocities but opposite directions, the shear stresses on 
the walls also have equal values but opposite signs. At the 
corners of the channel bed where the channel walls intersect 
with the bed, the shear stresses are precisely equal to the 
shear stresses on the walls. Still, since the shear stresses 
of the walls have opposite signs, at the channel bed, shear 
stresses also change from positive value to negative value. In 
this paper, the changes in shear stresses of the channel bed 
are considered linear. Therefore, the distribution of shear 
stresses of the bed changes linearly from −�0 at the junction 
of the bed with the left side wall to �0 at the junction of the 
bed with the right sidewall.

3  Results and Discussion

Assuming linearity of shear stress variations in the channel 
bed, isovel contours can be obtained in such channels. Then 
perform simple but important analyzes of its various states. 
By performing these analyses, comparing the flow state in 
a channel whose walls are moving at equal velocities but 
opposite signs, with the flow condition in the channel with 
stable walls, can be done. Based on these comparisons, bet-
ter decisions about the rivers with the reverse flow can be 
made. Figure 5 shows the status of the isovel contours in 
channels whose walls move at equal velocities but different 
signs for different width-to-depth ratios.

The nature of Couette flow is mainly related to the Reyn-
olds number, which in turn related to the turbulent intensity. 
The flow is expected to be very turbulent when the chan-
nel walls move with equal velocities in opposite directions. 
By calculating the Reynolds number (Re=ρUb/µ), it can be 

Fig. 3  The effect of boundaries on the velocity of the arbitrary point 
such as M at the channel cross section Fig. 4  Shear stress state in a rectangular channel with moving wall
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Fig. 5  Status of isovel contours for rectangular channels with moving walls for different width-to-depth ratios
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seen that the Reynolds numbers are in the range of 2.5×105 
and 2×106. Therefore, the flow regime will be fully turbu-
lent. For specific aspect ratio AR=1, the following quanti-
ties have been adopted: b=0.5 m, U=1 m/s and ν=µ/ρ=10-6 
 m2/s. Also, it should be mentioned that the channel flow rate 
is zero for all aspect ratios.

Figure 5a shows isovel contours when the width-to-depth 
ratio of the channel is 4 for the channel whose walls are 
moving at equal velocities but with opposite signs. Because 
the velocities of the moving walls are equal but opposite, 
the average velocities at the section are very small and close 
to zero but never zero. Since the amount of isovel contours 
are obtained by dividing the point velocities by the aver-
age velocities, these contours have huge amounts. Since 
the velocities of the moving walls are equal but in opposite 
directions, in the middle of the channel width, the velocity 
contours are equal to zero. This zero boundary continues 
the middle of the channel width to walls. It intersects the 
wall with a 0.7 distance from flow depth to the flow surface. 
In this figure, the state of the isovel contours and direction 
of the velocity vector and water flow can be divided into 
four zones. These zones are pairwise symmetric, and their 
only difference is in the velocity vectors direction, but the 
velocity vectors are equal in the symmetric zones. Contours 
with a value equal to zero are the boundaries that divide the 
section into four zones. In this figure, the contours with the 
most values are near the flow surface. For example, the low-
est point of velocity contours, which are -1400 and 1400, has 
0.23 depths from the water surface, and their highest points 
are at the water surface. These contours also have 0.03 to 0.2 
distance from the width of the section to the walls.

Figure 5b shows the state of the isovel contours where the 
width-to-depth ratio of the channel is 2. In this figure, the 
contours equal to zero forms the boundaries, which, as in the 
previous figure, divide the channel section into four zones. 
Because the effect of bed on shear stresses in this state is less 
than in the previous figure, the upper regions have a smaller 
area than Fig. 5a. These boundaries (contours of which are 
equal to zero) start from the channel walls and continue to 
the middle of the channel width and intersect the wall with a 
0.57 distance from flow depth to the flow surface. Contours 
with 1300 are in the 0.05 to 0.2 channel width to the walls. 
The lowest point of these contours has a 0.15 depth distance 
from the flow surface, and the highest point is at the water 
surface. In this figure, contours with maximum values are in 
the bottom corners of the channel.

Figure 5c shows isovel contours when the width-to-
depth ratio of the channel is 1.5. Contours with a value 
equal to zero are the boundaries that divide the section into 
four zones. These boundaries start from the channel walls 
and continue to the middle of the channel width, and at 
the point which is 0.43 flow depth below the flow surface, 
intersect the channel walls. It is also observed that the area 

of the upper regions is smaller than Fig. 5a, b because the 
effect of bed on shear stresses in this state is greater than 
in the previous figures. Contours with an amount of 1200 
are in the range of 0.087 to 0.19 channel widths to the 
walls, and their lowest point is 0.25 channel depths away 
from the flow surface. Their highest point is at the surface 
of the flow. The contours with maximum amount are at 
the bottom corners and on both sides of the channel sec-
tion and are 2100, but their velocity vectors have opposite 
directions. These maximum contours start from the chan-
nel wall and curve up to 0.05 channel widths to the walls.

Figure 5d shows the status of isovel contours when the 
width-to-depth ratio is 1. The zero boundaries, where the 
point velocities are equal to zero, divide the section into 
four symmetrically paired zones. Contours equal to zero 
continue from the walls to the center of the channel and 
reach the channel walls at the point of 0.43 flow depth 
below the flow surface. Since the channel bed effect is 
dramatic, the lower zero boundary regions have a larger 
surface area. The isovel contours form closed loops in the 
0.07–0.25 depth range of the channel depth to the surface. 
Each of these closed loops is in the range of 0.15–0.24 
channel widths to its walls. The point and mean velocities 
on the two sides of the zero boundaries in the middle of 
the channel are equal. Still, the velocity vectors on both 
sides of the boundary have opposite directions. So the only 
difference in the velocity contours around this boundary 
is their signs, and in Fig. 5e are shown the status of the 
isovel contours when the ratio of width to depth is 0.67; 
As can be seen, in the middle of the channel width, these 
contours are zero, and on both sides of the boundary, the 
values of these contours have large numbers because of 
very small mean velocities near zero. In this figure, the 
contours and directions of velocity vectors and water flow 
can be divided into four zones. These zones are pairwise 
symmetric, and their only difference is in the velocity vec-
tors and water flow, but the value of velocity vectors is 
equal in the symmetric zones. Contours with a value equal 
to zero are the boundaries that divide the section into four 
zones. Velocity contours have maximum values at the top 
and bottom of these boundaries. The zero boundary of 
the left section at the flow surface is 0.23 channel widths 
from the left wall of the channel, and the zero boundary 
of the right channel is 0.23 channel widths from the right 
wall, indicating that the velocity contours are symmetric. 
According to the figure, the maximum velocity vectors 
are in the range of 0.08 to 0.23 flow depth from the water 
surface. We also have maximum velocity vectors at a dis-
tance slightly below zero boundaries. Because the channel 
height is relatively large to its width, the bed of the section 
has less impact on the upper regions, and the area of the 
upper regions of the zero boundary on both sides of the 
channel is smaller than the two lower regions.
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The form of the isovel contours in Fig. 5f is different 
from the form of the isovel contours in the previous figures; 
the cause of this difference can be traced to the bed shear 
stresses. Given that the walls are moving at equal velocities 
but opposite directions, the point velocities are zero pre-
cisely in the middle of the channel. Thus, the values of the 
contours are equal to zero. Because the walls move in the 
opposite direction, velocity and flow vectors have opposite 
signs on both sides of the contour with a value equal to 
zero. Since these walls move at equal velocities, the amount 
of velocity vectors on both sides of the contour is zero and 
equal to each other. Because the bed shear stresses have less 
effect on the upper flow regions, the velocity contours are 
almost flat rather than curved lines. The effect of bed shear 
stresses on the flow in the lower corners of the channel is 
greater than in the upper regions of the channel section. For 
this reason, the values of velocity contours in the lower cor-
ners of the section are much larger than in the other regions 
of the channel.

Figure 6 is produced and plotted to compare the aver-
age depth velocities in open and closed channels when their 
walls move at equal velocities but different signs, better and 
faster.

In this figure, the highest rate of change is for the chan-
nel with a width-to-depth ratio equal to 0.5, which varies 
in the range of − 6000 to 6,000, and the lowest rate of 
change is for the channel with a width-to-depth ratio equal 
to 4, and it varies from − 200 to 200. Therefore, it can be 

concluded that the greater the width-to-depth ratio of the 
channel, the smaller the depth-averaged velocities due to 
the greater the effect of the channel bed on the velocity 
vectors at different points. Conversely, as the width-to-
depth ratio becomes smaller, the effect of the channel bed 
section on the velocity vectors becomes smaller. There-
fore, the depth-averaged velocities have larger values.

In Fig. 6, the graph indicated that solid triangles are for 
a closed rectangular channel with a width-to-depth ratio of 
1 with walls moving at equal velocity and opposite direc-
tions to each other. In this case, in addition to changes in 
shear stresses of the bed, the changes in shear stresses of 
the channel roof also affect the amount of velocity vectors 
at different points in the channel; Therefore, the depth-
averaged velocities, in this case, is smaller than in the open 
rectangular channel with the same width-to-depth ratio. 
In the above figure, the graph indicated with solid balls is 
for the depth-averaged velocities in the open channel and 
the width-to-depth ratio 1. It is observed that in this case, 
the depth-averaged velocities vary in the range of − 1500 
to 1500, and the variation range of the closed rectangular 
channel with the width-to-depth ratio of 1 and the walls 
moving at equal velocities and opposite directions to each 
other are between − 700 and 700. Therefore, it can be 
concluded that the effect of channel roof shear stresses in 
closed rectangular channels with moving walls causes the 
depth-averaged velocities to be smaller.

Fig. 6  The graph of average velocities variations in channels with moving walls for different width-depth ratios



Iranian Journal of Science and Technology, Transactions of Civil Engineering 

1 3

The following figure shows the status of velocity con-
tours in a closed channel, in which its width-to-depth ratio 
is one and its walls move at equal velocities but with dif-
ferent signs.

Due to the study that has already been conducted in this 
area, we know that for closed channels with stable walls, 
the velocity contours are concentric ellipses (Fig. 7a). 
In Fig. 7a, the values assigned to the contours are small 
because the walls are stationary, and the average velocities 
have much larger values than the average velocities when 
the walls move. Since in this study, the channel walls move 
at equal velocities but different signs, it is expected that 
the velocity contour with a value of zero will be formed 
exactly in the middle of the channel width and divide the 
section into two zones, which on both sides of this bound-
ary, velocity vectors have opposite directions. As shown 
in Fig. 7b, on the two sides of the middle boundary of the 
channel section, the velocity contours are in the form of 
concentric ellipses, and there is a good match with the 
velocity contours when the walls are stable.

According to Figure 7b, the channel walls move with 
equal velocities but in opposite directions. Therefore, dis-
charge through the cross section of the channel will be close 
to zero. Consequently, the average velocity of the flow pass-
ing through the channel cross section will be close to zero. 
Isovel contours are dimensionless and obtained by dividing 
point velocities by mean velocity. Given that the average 
speed is very close to zero, so the magnitude of isovel con-
tours is very large.

4  Conclusion

The application of reverse flow is observed in many hydrau-
lic phenomena; therefore, the study of reverse flow behavior 
is inevitable. For example, the asymmetric opening sluice 
gates in rivers (Maghrebi and Givehchi 2010) are simulated 
by moving walls. The hydraulic jump can be mentioned as 
a simple but widely used application of reverse flow. The 
upstream supercritical flow suddenly turns into the subcriti-
cal flow (Subramanya 2009). This phenomenon reduces 

Fig. 7  The status of velocity contours in a duct and b closed rectangular channel with moving walls (the walls move at equal velocity and oppo-
site direction)



 Iranian Journal of Science and Technology, Transactions of Civil Engineering

1 3

water energy in the flow through dams, spillways, and 
other hydraulic structures. As a result, conducting studies 
on reverse flows can be useful and effective in maintaining 
hydraulic structures.

By studying the state of velocity contours in rectangular 
channels with walls moving at equal velocities but different 
directions, it is concluded that the shear stresses of the bed 
are the main cause of the difference of velocity contours in 
such channels with velocity contour in Couette flow between 
the two flat and parallel plates. As the width-to-depth ratio 
in the channel increases, the form of velocity contours in 
rectangular channels with walls moving at equal velocities, 
but different signs change more than the form of velocity 
contours in the Couette flow between the two flat and par-
allel plates. Suppose the walls move at equal and different 
velocities, both within the rectangular channel and between 
the two flat and parallel plates. In that case, a contour with 
zero value is formed precisely in the middle of the section 
width. The velocity contours in channels whose width-to-
depth ratio is small will be very similar to the velocity con-
tours of the Couette flow between the two parallel plates. 
But as the width-to-depth ratio increases, velocity contours 
change. As the width-to-depth ratio increases, the velocity 
contours change from straight and vertical to curved lines. 
The greater the width-to-depth ratio, the greater the radius 
of curvature of the velocity contours and in very high width-
to-depth ratio change to straight horizontal lines. This also 
happens for contours with the zero value, and as the width-
to-depth ratio increases, the contours with the zero value that 
are very small in width-to-depth ratios become curved lines. 
These contours can be the boundaries within the channel 
section, which are divided into four zones. Because the walls 
move at the same velocity, these areas are perfectly sym-
metrical. At small width-to-depth ratios, the two lower sym-
metric zones have a larger area of the channel section. As the 
width-to-depth ratio increases, the area of the lower regions 
will be smaller, and the area of the section that belongs to 
the upper symmetrical will be more significant. It is also 
observed that with decreasing width-to-depth ratios, the 
velocity and flow vectors directions are changing. At high 
width-to-depth ratios, the dominant flow direction on the 
right is downstream. In the lower two symmetric corners, we 
see the reverse flow, but in the small depth-to-depth ratios, 
the dominant direction on the right side of the section is 
upstream.

When the channel walls move at equal velocity but with 
different signs, the average discharge at the channel section 
is equal to zero; in this case, the average velocity will be 
zero. The velocity contours are also obtained by dividing 
the velocity vector by the average velocity; in this case, the 
velocity contours become ambiguous values. Their drawing 
would be practically impossible, but this article has shown 
that the average velocities will be small but never be zero. 

Therefore, velocity contours have a very large value and can 
be plotted.
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