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ABSTRACT 

Seed dormancy ensures plant survival but many mechanisms remain unclear. A high-throughput 
RNA-seq analysis investigated the mechanisms involved in the establishment of dormancy in 
dimorphic seeds of Xanthium strumarium (L.) developing in one single burr. Results showed that 
DOG1, the main dormancy gene in Arabidopsis thaliana L., was over-represented in the dormant 
seed leading to the formation of two seeds with different cell wall properties. Less expression of 
DME/EMB1649, UBP26, EMF2, MOM, SNL2, and AGO4 in the non-dormant seed was observed, 
which function in the chromatin remodelling of dormancy-associated genes through DNA 
methylation. However, higher levels of ATXR7/SDG25, ELF6, and JMJ16/PKDM7D in the non-
dormant seed that act at the level of histone demethylation and activate germination were found. 
Dramatically lower expression in the splicing factors SUA, PWI, and FY in non-dormant seed may 
indicate that variation in RNA splicing for ABA sensitivity and transcriptional elongation control 
of DOG1 is of importance for inducing seed dormancy. Seed size and germination may be 
influenced by respiratory factors, and alterations in ABA content and auxin distribution and 
responses. TOR (a serine/threonine-protein kinase) is likely at the centre of a regulatory hub 
controlling seed metabolism, maturation, and germination. Over-representation of the respiration-
associated genes (ACO3, PEPC3, and D2HGDH) was detected in non-dormant seed, suggesting 
differential energy supplies in the two seeds. Degradation of ABA biosynthesis and/or proper 
auxin signalling in the large seed may control germinability, and suppression of endoreduplication 
in the small seed may be a mechanism for cell differentiation and cell size determination. 

Keywords: ABA, DOG1, dormancy, germination, phytohormone, respiration, transcriptome, 
Xanthium strumarium. 

Introduction 

Controlling the timing of germination, seed dormancy is vital to enhance the chances of 
plant survival in a changing environment. Even though its biological significance is 
clear, many aspects of molecular mechanisms underlying seed dormancy induction, 
maintenance, and alleviation remain largely elusive. The reason for this arises from 
special complexities for studying seed dormancy and the profound impact of 
environmental conditions (Penfield and MacGregor 2017; Klupczyńska and Pawłowski
2021). Therefore, it seems that a complex genetic and environmental factors are 
involved in seed dormancy and germination, which require further investigation. 

Hormonal regulation may be a highly conserved mechanism of seed dormancy among 
spermatophytes. It has been demonstrated that dormancy is induced by ABA during seed 
development on the parent plant (Graeber et al. 2012). After seed dispersal, germination is 
preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism (Arc 
et al. 2013). It has long been known that a precise spatial and temporal crosstalk 
between ABA and other phytohormones such as GA (Liu et al. 2016), auxin (Liu and 
Schmidt 2012), brassinosteroids (Hu and Yu 2014), ethylene (Wang et al. 2013), 
jasmonic acid (JA) (Singh and Singh 2012) and cytokinin (Shu et al. 2016) is required 
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to regulate seed dormancy and germination. Other 
mechanisms, which might be independent of hormones, or 
specific to the seed dormancy pathway, are also emerging 
from genetic analysis of ‘seed dormancy mutants’. 
For example, the Arabidopsis thaliana L. DELAY OF 
GERMINATION1 (DOG1) gene, whose precise function is 
still unknown, has been identified as a master regulator of 
seed dormancy (Bentsink et al. 2006). Several studies have 
also uncovered the molecular mechanisms up or 
downstream of DOG1 (Graeber et al. 2014; Huo et al. 2016; 
Née et al. 2017). Although several studies have suggested 
that the DOG1-mediated mechanism may be distinct from 
the ABA (reviewed by Shu et al. 2016), a recent report 
demonstrated at least one converge between the two 
mechanisms (Née et al. 2017). Furthermore, chromatin 
remodelling through histone ubiquitination, methylation, 
and acetylation, which could lead to gene silencing or 
transcription elongation, may play a significant role in seed 
dormancy regulation (Nonogaki 2014). Genetic analyses 
have also identified many transcription factors (TFs) 
involved in seed development and dormancy induction 
(Vaistij et al. 2013; Weiste and Dröge-Laser 2014; Née et al. 
2017) that target the promoter of dormancy-associated 
genes. In addition, the regulation of mRNA processing 
and function, including splicing, modification, transport, 
translation, and RNA decay is crucial to the control of gene 
expression (Köster et al. 2017). For instance, Cyrek et al. 
(Cyrek et al. 2016) revealed that mutants in RNA 3 0 

processing factors like fy-2 display weakened seed 
dormancy in parallel with defects in DOG1 proximal 
polyadenylation site selection, suggesting that the short 
DOG1 transcript is functional. 

Despite these categorisations, the simultaneous presence of 
multiple dormancy classes in one seed makes the under-
standing of molecular mechanisms of seed dormancy very 
difficult. Xanthium strumarium (L.) is an annual herb 
belonging to the Asteraceae family, which grows almost all 
over the world. Because of its anti-cancer and anti-tumor 
bioactive properties, this plant is considered to develop new 
drugs against cancer (Vaishnav et al. 2015). X. strumarium 
also produces two seeds in one single burr, each differing 
in size and dormancy status. The relationship between 
seed size and dormancy level has already been studied 
(Rubio de Casas et al. 2017). Seed dormancy and size were 
hypothesised as alternative adaptive strategies, determining 
the environment in which a certain lineage will be 
predominant. Producing a larger non-dormant seed beside a 
small dormant seed in one burr, X. strumarium recruits 
a strong strategy to define a wider window in which 
the maximum seed survival, germination, and seedling 
establishment achieve. Therefore, X. strumarium can be an 
interesting plant to study seed dormancy. In this study, the 
transcriptome profiles of dormant and non-dormant seeds of 
X. strumarium grown on the same parent plant experiencing 
the same environmental conditions were characterised to 

answer this question what regulatory mechanisms underlying 
the differential induction of seed dormancy. This approach 
helps us to better understand more about the fundamental 
biological processes of dormancy in a wider range of 
species, and enables us to further develop new models for 
further research. 

Materials and methods 

Plant materials and growth condition 

Seeds of Xanthium strumarium (L.) were collected from the 
research site of Tehran University, Karaj, Iran (35.8°92 021″N, 
50.96°70 044″E) at 1300 m altitude. All the large seeds in each 
burr were precisely excised, washed and surface sterilised 
followed by sowing on two layers of water-saturated filter 
paper (Whatman, GE Healthcare, UK) in Petri dishes and 
kept in an incubator at 23°C in the darkness. After 14 days, 
seedlings were transferred to the growth chamber, planted 
in 4 L pots filled with field soil:peat (1:1 v/v) and grown 
under the controlled condition at 16–18°C (night/day) 
photoperiod with 8 h light and relative humidity of 40% 
for 4 months. Pots were then transferred to a long-day 
greenhouse (16-h photoperiod) at 20–25°C for the 
reproductive phase stimulation. We tagged burrs with 
coloured ribbon from the time of emergence, and samples 
were collected at 3, 10, 20, and 30 days after flowering as 
well as fully matured seeds (Fig. 1). Dormant and 
non-dormant seeds were accurately excised, immediately 
frozen using liquid nitrogen, and stored at −80°C until RNA 
extraction. 

Germination essay 

A standard germination test was performed on fully matured 
non-dormant and dormant seeds in four replications, with 100 
seeds for each replication. Glass containers (210 mm × 
27 mm) were kept at 23°C under an alternating cycle of 
12–12 h (illumination–darkness). Seeds were placed onto 
filter papers fully moistened with sterile distilled water and 
kept in the incubator for 7 days (the time in which the 
number of germinated seeds is unchanged for 3 days). 
Germinated seeds were counted daily and the germination 
percentage was calculated according to the number of 
germinated seeds. 

RNA isolation, library preparation, and 
transcriptome sequencing 

All samples from non-dormant and dormant seeds were 
ground into a fine powder using a mixer mill (MM200, Retsch, 
Germany). Total RNA was extracted by using Invitrogen 
TRIzol Reagent (Invitrogen, California, USA) according to 
the manufacturer’s instructions. The extracted RNAs were 
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Fig. 1. Workflow of our experiment to identify the most important differentially expressed genes between developing non-dormant and 
dormant seeds of X. strumarium. 

mixed based on their concentration to obtain pooled RNAs 
from the developmental stages of each seed, separately. 
Nanodrop Spectrophotometer (NP80 NanoPhotometer, 
IMPLEN, Munich, Germany), and Agilent 2100 (Agilent 
Technologies, Santa Clara, CA, USA) were used for the 
quality and quantity of RNA assessment. All the RNA 
samples had A260/A280 nm ratios between 2 and 2.1 and 
RNA integrity number (RIN) between 7.9 and 9.5. The 
qualified samples were sequenced using an Illumina Hiseq 
2500 analyser (Beijing Genomics Institute, Shenzhen, 
China) with 150-bp paired-end reads on four samples 
(seed × replicate). 

De novo transcriptome assembly 

After the removal of low-quality reads using FastQC (ver. 
0.11.5), high-quality reads were obtained for subsequent 
analysis. The clean reads were generated by removing 
adaptor sequences and low-quality reads deposited in 
NCBI Sequence Read Archive (SRA) Sequence Database 
with accession number PRJNA809034. The ‘Trinity’ 
programme (Grabherr et al. 2011) was used to assemble 
the clean reads and obtain non-redundant unigenes of the 
X. strumarium. In short, reads that overlapped were 
assembled to generate contigs, and then contigs were 
joined into scaffolds that were further assembled through 
gap-filling to generate unigenes. In this study, a default 
k-mer size of 25 bp was  set  for  the  de novo transcriptome 
assembly. All other parameters were set as default values 
and the  length  of  the assembled unigenes used for  further  
study was ≥200  bp. The  CD-HIT-EST  (ver. 4.6.1) (Li and 
Godzik 2006) was further used to cluster the assembled 
contigs based on sequence identity threshold 0.95 to full-
length transcripts generation. The clean reads were 
subsequently mapped on the transcriptome using Bowtie2 
(Liu and Schmidt 2012). 

Identification of DEGs 

The RPKM (Reads Per kb per Million reads) of each unigene in 
dormant and non-dormant samples was calculated by 
normalisation of the number of mapped clean reads per 
unigene. The edgeR programme was used to determine the 
differential expression genes (DEGs) with a log-fold 
expression change (log FC) > 2 or  <−2 using a threshold of 
false discovery rates (FDR < 0.05). 

Transcriptome annotation 

Functional annotations were carried out by comparison of 
assembled transcripts corresponding to DEGs against the 
public databases. The BLASTX tool was employed to search 
the sequence similarity in the NCBI non-redundant protein 
sequences (nr) database using Arabidopsis Qas a reference 
organism. All the BLAST results against the Nr database 
were loaded onto the STRING website for Gene Ontology 
(GO) enrichment analysis and protein-protein interactions 
prediction. Results were prepared using Cytoscape 3.8.1. 
GSEAPreranked test was performed to identify the enriched 
pathways using GSEA software followed by loading results 
into Cytoscape 3.8.1 to provide the enrichment map 
(Reimand et al. 2019). The protein sequences corresponded 
to up-and downregulated genes were separately loaded 
onto to the transcription factors detection. Furthermore, 
loading protein sequences onto http://pfam.xfam.org/ 
search#tabview=tab1 allowed us to predict protein domains. 
Figures were drawn using R (ver. 4.0.2) and Microsoft Excel 
(ver. 2019). 

Quantitative real-time PCR (qRT-PCR) analysis 

For qRT-PCR, cDNA was synthesised from 1 μL of each RNA 
sample using Omniscript reverse transcriptase (Qiagen, 
Germany). The sequence information from the RNA-seq 
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data was utilised for primer design using the Primer-BLAST 
online programme (https://www.ncbi.nlm.nih.gov/tools/ 
primer-blast). qRT-PCR assays were performed on a 
LightCycler 96 Real-Time PCR System (Roche Life Science,  
Germany) with SYBR Premix EX TaqII (Takara Bio Inb, 
Japan), and for four biological replicates of each 
developmental stage (seed × developmental time × 
replicate) to assess the expression levels of five DEGs 
involved in seed dormancy- and development-associated 
processes along with TUBULIN BETA CHAIN 4 (TUB4) as  
a reference gene. The TUB4 gene was recognised as an 
optimal reference gene in different crops and wild plants 
during fruit and seed development (Wei et al. 2013; Ferraz 
dos Santos et al. 2016; Liu et al. 2016; Pereira et al. 2017; 
Jaiswal et al. 2019; Zhou et al. 2019). The equation 2−ΔΔCT 

was used for the calculation of relative transcription levels 
(Livak and Schmittgen 2001). 

Results 

Dimorphic seeds of X. strumarium differed in 
germinability 

The germination test highlighted a delayed radicle protrusion 
and less germination percentage in the small seed (P < 0.05; 
Fig. 2). There were no significant differences germination 
between non-dormant and dormant seeds after Day 4. The 
~86% germination in large seed was ~58% more than the 
small one at the end of the test period (Fig. 2). 

De novo assembly of transcriptome revealed the 
differences between two seeds 

We detected 189.22 million clean reads and the Trinity 
assembler allowed us to produce 191 192 high-quality 
contigs with a length of 201 to 13 863 with an average of 

Fig. 2. Germination percentage of fully matured large (non-dormant) 
and small (dormant) seeds of X. strumarium (means of four independent 
replication ±5%). 

989.69 bp. Fig. 3a pinpointed the distribution of identified 
contigs based on their size, and the similarity/dissimilarity 
of sample libraries from large and small seeds was shown in 
Fig. 3b. Differentially heatmap representing the DEGs with 
high fold changes (>2) between large and small seeds of X. 
strumarium in the four clusters with distinct expression 
patterns was depicted in Fig. 3c. Based on our volcano plot 
analysis and the comparison of DEGs affected by different 
seed types, we identified differentially expressed genes in 
the large compared to the small seeds (Fig. 3d). The 
comparison between the large and small seeds identified 
324 sequences with different expression levels (Fig. 4a), 
including 188 under-represented and 136 over-represented 
transcripts in the large compared to the small seed (Fig. 4b). 
As detailed in Fig. 4b, the most frequently upregulated and 
downregulated sequences in large seed were those having a 
log2FC = ±(8–10). 

Most of the enriched gene ontologies were seed-
specific 

BLASTX searches followed by introducing over- and under-
represented sequences to STRING database were adopted 
for identification of proteins corresponding to the detected 
sequences and subsequent classification into three major 
categories: (1) biological process; (2) molecular function; 
and (3) cellular component (Fig. 5a, b). We observed 46, 1, 
and 13 GO terms that positively enriched in the 83, 75, and 
83 sequences of biological process, molecular function, and 
cellular component, respectively (Fig. 5a). While there were 
97, 12, and 91 under-represented sequences that belonged 
to 34, 15, and 9 GO terms of biological process, molecular 
function, and cellular process, respectively (Fig. 5b). The 
analysis revealed that 300 of 324 detected sequences were 
assigned on at least one protein. In the biological process 
category, upregulated and downregulated transcripts in 
non-dormant seed belonged to 46 and 34 GOs, respectively 
(Fig. 5c). As regards the molecular function, the only GO 
was 1,3-beta-D-glucan synthase under-represented in non-
dormant seed (Fig. 5c), while the upregulated transcripts 
were mainly associated with binding processes (Fig. 5c). 
Moreover, CALLOSE SYNTHASEs and GLUCAN SYNTHASE-
LIKE involved in molecular functions were negatively 
enriched in the non-dormant seed. Gene ontology showed 
that most of the enriched GOs (~85%) were seed-specific, 
indicating their special roles in the physiological processes 
of the dimorphic seeds of X. strumarium. For example, the 
non-dormant seed was specifically enriched for transcripts 
involved in response to the hormone, cellular response to 
stress, regulation of cell cycle, cellular respiration, and 
regulation of lipid and ABA biosynthesis processes, while 
dormant seed highly upregulated genes for response to 
post-embryonic development, cell wall organisation, seed 
development, cellular carbohydrate metabolic process, and 
regulation of cell shape (Fig. 6). 
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Fig. 3. Results of detected sequences analysis; (a) distribution of identified transcripts according to sequence length; (b) heatmap of 
sample-to-sample distance clustering, illustrating similarities and dissimilarities between individual samples; (c) heatmap of differentially 
expressed genes between dormant and nondormant developing seeds of X. strumarium; (d) volcano plot showing the total distribution 
of differentially expressed genes according to log2 fold-change versus log10 P-value of identified differentially expressed genes in 
developing non-dormant compared with the dormant seed of X. strumarium. 

DOG1 was over-represented in the dormant seed 
of X. strumarium 

Less abundance of the DOG1 mRNAs (log2FC = −3.7), the 
central regulator of seed dormancy in A. thaliana, were  
detected in the non-dormant seed (Fig. 6b). Gene 
interaction network (Fig. 7) highlighted an interaction 
between DOG1 and a 12S globulin storage protein involved 
in seed maturation, CRUCIFERIN 2 (CRU2), which showed 
less expression in the non-dormant seed (log2FC = −5.33). 

Different chromatin remodelling was observed in 
two seeds of X. strumarium 

Less expression of DEMETER (DME), also known as 
EMB1649, (log2FC = −8.8; Fig. 6b) and UBIQUITIN-
SPECIFIC PROTEASE 26 (UBP26) (log2FC = −9.92) in the 

non-dormant seed (Fig. 6b) was observed. In the case of 
UBP26, qRT-PCR showed that there was a distinct 
difference for UBP26 between samples from non-dormant 
and dormant seeds in different developmental times. 
Although relative expression levels of non-dormant seed 
revealed a more abundance at early developmental stages, a 
significant increase was observed in dormant seed at the late 
stage of seed development (Fig. 8). Histone deubiquitination 
by UBP26 action maintains the H3K9 methylation induced by 
the histone methyltransferase KYP (KRYPTONITE), a negative 
regulator of dormancy, leading to DNA methylation resulting 
in gene silencing in heterochromatin (Zheng et al. 2012). DME 
also is a transcription activator, acting to remove methylated 
bases, by a glycosylase/lyase mechanism, from maternal genes 
in the central cell of the embryo sac. dme-2 mutants display 
delayed seed germination, aberrant cellular proliferation, 
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Fig. 4. Total number (a) and boxplot of distribution (b) of differentially expressed genes of developing non-
dormant in comparison with dormant seeds of X. strumarium. 

and differentiation (Kim et al. 2021). Furthermore, 
EMBRYONIC FLOWER 2 (EMF2) (log2FC = −8.17; Fig. 6b), 
MAINTENANCE OF METHYLATION (MOM) (log2FC = 
−8.48), a methylation activator, and ARGONAUTE4 (AGO4) 
(log2FC = −8.94) showed less expression levels in the 
non-dormant seeds. EMF2 encodes a Polycomb group that 
maintains gene silencing via histone modification (Kim et al. 
2010). AGO4 also is a translation regulator, which acts for gene 
silencing by RNA-directed DNA methylation through H3K9 
methylation and affects the expression of dormancy genes 
(Qi et al. 2006; Nonogaki 2014). However, we found higher 
levels of SET DOMAIN PROTEIN 25 (SDG25) transcripts 
(log2FC = 6), encoding ARABIDOPSIS TRITHORAX-
RELATED7 (ATXR7), and EARLY FLOWERING 6 (ELF6), a 
transcription factor that functions in chromatin remodelling 
through H3K9 demethylase activity, in the non-dormant 
seed. Another over-represented chromatin remodelling 
gene in the non-dormant seeds was JUMONJI DOMAIN-
CONTAINING PROTEIN 16 (JMJ16), also known as 
PKDM7D, (log2FC = 8.1), interacts with EMF2, ELF6, and  
ATXR7/SDG25 (Fig. 7). In addition to activation of 
dormancy-related genes, repression of seed germination 
genes, a further regulation for dormancy maintenance, was 
found in the non-dormant seed (Shu et al. 2016). SIN3-LIKE 
2 (SNL2) that positively regulates seed dormancy, interacted 
with DOG1 (Fig. 7), and showed under-representation 
(log2FC = −8.26) in the non-dormant seed. ETHYLENE 
RESPONSE FACTOR 110 (ERF110) transcripts, which is one 

of the members of the ERFs subfamily and appears to be 
controlled by ethylene at both the transcriptional and 
posttranscriptional level (Heyman et al. 2018), represented a 
similar expression pattern (log2FC = −2.07). All together, 
these confirmed the important role of epigenetic regula-
tions in dormancy induction during seed development of 
X. strumarium. 

Genes involved in cellular respiration showed 
higher transcription in non-dormant seed 

We found a positive enrichment of energy production 
and cellular respiration in the non-dormant seed (Fig. 6a). 
Over-representation of three respiration-associated genes, 
ACOTINATE HYDRATASE 3 (ACO3) (log  FC  = 8.12), 
PHOSPHOENOLPYRUVATE CARBOXYLASE 3 (PEPC3) 
(log FC = 8.42), and D-2-HYDROXYGLUTARATE 
DEHYDROGENASE (D2HGDH) (log  FC  = 8.48), was 
detected in the non-dormant seed, suggesting differences 
in energy supplies between two seeds. In the case of 
ACO3, the qRT-PCR showed that the relative expression 
levels of non-dormant seed accounted for a greater 
abundance at early stages of seed development and 
maturation than dormant seed (Fig. 8). We also showed a 
higher expression level of KIN 10 in the non-dormant seed 
(log2FC = 2.28; Fig. 6a). Sensing and signalling deprivation 
of sugar and energy, KIN10 targets a remarkably broad 
array of genes that orchestrate transcription networks, 
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Fig. 5. Distribution of upregulated (a) and downregulated (b) genes in developing non-dormant versus dormant seeds of X. strumarium. 
Three categories identified: (1) biological process (BP); (2) molecular function (MF); and (3) cellular process (CC). Top 10 significantly 
(FDR < 0.05) enriched GOs of upregulated and down regulated genes in developing non-dormant and dormant seeds of X. strumarium. 

promote catabolism and suppress anabolism (Baena-
González et al. 2007). 

ABA and auxin biosynthesis and signalling were 
differently regulated between the two seeds 

Results showed enrichment of the ABA regulatory pathway 
for over-represented transcripts in non-dormant seed 
(Fig. 6a). Our data revealed a higher accumulation of 
SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 
(SAUL1) (log FC = 8.31; Fig. 6a), also known as 
ARABIDOPSIS THALIANA PLANT U-BOX 44 (PUB44), and 
TARGET OF RAPAMYCIN (TOR) (log FC = 9.87; Fig. 6a) 
transcripts in the non-dormant seed. Moreover, data 
analysis confirmed the interaction between TOR and 
SNF1-RELATED PROTEIN KINASE 1.1 (SnRK1.1), also 
known as KIN10, which showed a higher expression level 
in the non-dormant seed (Fig. 7). Two auxin response 
regulators ARABIDOPSIS THALIANA RNA LIGASE (RNL) 
(log2FC = 3.26; Fig. 6a) and ARABIDOPSIS THALIANA 

ATP-BINDING CASSETTE B19 (ABCB19) (log2FC = 8.12; 
Fig. 6a) were also enriched in the non-dormant seeds. We 
found interactions between RNL with AGO4 and AUXIN 
RESPONSE FACTOR 10 (ARF10), which showed less 
(log2FC = −8.26) transcript level in the non-dormant seed 
(Fig. 7). In addition, under-representation (log2FC = −4.32) 
of a modulator of auxin levels, UDP-GLUCOSYL 
TRANSFERASE7B1 (UGT7B1), was found in the non-
dormant. All together, these indicated that biosynthesis and 
signalling pathways of two hormones ABA and auxin may 
differently regulate between the two seeds of X. strumarium. 

mRNA processing was a mechanism associated 
with seed dormancy 

In our study, mRNA processing in non-dormant seed was 
negatively enriched compared to the dormant seed. We 
found dramatically fewer expression levels in three splicing 
factors SUPPRESSOR OF ABI3–5 (SUA) (log2FC = −10.18) 
as well as PWI (log2FC = −10.94), and AT3G12640 
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Fig. 6. Detected transcripts involved in significantly (FDR < 0.05) enriched development- and 
dormancy-associated GOs for (a) over-represented and (b) under-represented transcripts in 
non-dormant seed in comparison with the dormant seed of X. strumarium. The table below 
describes the GOs mentioned in (a) and (b) in detail. 
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Fig. 7. Gene network showing the interaction between significant (FDR < 0.05) upregulated and downregulated genes in developing 
non-dormant compared to the dormant seed of X. strumarium. Disconnected nodes were removed from the figure. 

Fig. 8. Relative expression levels of development involved genes for qRT-PCR experiment at five-time intervals from dormant 
and non-dormant developing seeds of X. strumarium. Data are relative expression in non-dormant versus dormant seeds. Sampling 
stages are shown by 1 to 5, which represent 3, 10, 20, and 30 days after burr emergence, and fully matures seeds, respectively. 
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(log2FC = −10.9), both containing RNA binding (RRM/RBD/ 
RNP motifs) family protein in the non-dormant seed. qRT-PCR 
also showed that there was a significant difference for 
AT3G12640 between samples from non-dormant and 
dormant seeds in different developmental times; however, 
relative expression levels of non-dormant seed revealed a 
less abundance at late developmental stages compared to 
the dormant seed. The expression of FY, encoding flowering 
time control protein FY with a direct effect on DOG1 
transcripts polyadenylation, also revealed a less expression 
in non-dormant seed (log FC = −8.4; Fig. 6b). These results 
suggest that RNA splicing factors may have a key role in 
dormancy induction to X. strumarium seeds. 

Mechanisms involved in the cell cycle may differ 
in dimorphic seeds of X. strumarium 

The expression of YODA/YDA (log2FC = 8.6), Somatic 
embryogenesis receptor kinase 2 (SERK2) (log2FC = 7.8), and 
ENDOPLASMIC RETICULUM MORPHOLOGY 2 (ERMO2)/ 
SEC24a (log2FC = 9.08; Fig. 6a) increased differentially 
in non-dormant seed of X. strumarium (Fig. 6a). ERMO2 
functions in setting up mechanisms involved in cell 
proliferation and mediating the membrane fusion through 
SNARE binding (Ebine et al. 2008), and SERK-mediated 
signals regulate division patterns of vascular precursors and 
ground tissue stem cells, likely via the YDA-MKK4/5 cascade, 
during embryo development. Furthermore, the abundance of 
COP9 SIGNALOSOME COMPLEX SUBUNIT 3 (CSN3) 
(log2FC = 9.56), also known as FUS11, as well as DP-E2F-
like1 (DEL1/E2Fe) (log2FC = 8.5) were significantly higher 
in the non-dormant seed. Similarly, we observed a higher 
expression of ENHANCER OF VARIEGATION3 (EGY1) 
(log2FC = 10.14), which is a probable zinc metalloprotease 
and interacts with ABA, in the non-dormant seed. qRT-PCR 
also showed that relative expression levels of EGY1 in the 
non-dormant seed were more abundant at early develop-
mental stages compared to the dormant seed (Fig. 8). 
However, the DMR6-LIKE OXYGENASE 2 (DLO2), belonging 
to 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein (2-ODD), transcript level was less 
in non-dormant seed (log2FC = −7.31) and confirmed by 
qRT-PCR results (Fig. 8). All together, this indicates that 
cell cycle and expansion control may differ in dimorphic 
seeds of X. strumarium. 

Validation by qRT-PCR 

Technical and biological variations in the data were checked 
by performing qRT-PCR of four independent biological 
replicates for five developmental times of both dormant and 
non-dormant seeds of X. strumarium. We selected five DEGs 
including UBP26, ACO3, DLO2, EGY1, and AT36122640. 
qRT-PCR results were highly consistent with those of RNA 
sequencing and there was a simple linear regression (R2 = 0.8) 

based on log2FC obtained from RNAseq data (X), and the sum 
of values of different developmental stages from qRT-PCR (Y). 
Furthermore, qRT-PCR showed that although there were 
differences in relative expression levels between different 
seed types, and distinct developmental times, most of the 
selected genes (AT3G12640, EGY1, UBP26, and ACO3) 
were expressed at late stages (stages 4 and/or 5; Fig. 8) 
of seed development in dormant seed, suggesting a delay 
in developmental processes of the dormant seed of 
X. strumarium compared to the non-dormant seed. 

Discussion 

The differences between germinability of two fresh seeds of 
X. strumarium confirms different dormancy status, which is 
in line with previous results (Katoh and Esashi 1975). 
An 85% seed-specific GOs also highlighted a great difference 
in the triggered developmental processes between the two 
seeds. A compilation of different mechanisms ranging from 
dormancy-specific genes activation, epigenetic and hormonal 
regulations, cell wall modifications, and mRNA processing 
had differentially been activated between the two seeds. 
These mechanisms have previously been well described in 
A. thaliana (Sugliani et al. 2010; Graeber et al. 2012, 2014; 
Nonogaki 2014). 

DOG1 functions in the regulation of dormancy in 
seeds of X. strumarium 

We noticed less expression of DOG1 in the non-dormant seed. 
Although several studies have been carried out on DOG1 
(Bentsink et al. 2006; Huo et al. 2016; Née et al. 2017), the 
molecular and biochemical functions of its protein remain 
largely unknown. Since the level of DOG1 protein showed 
no difference between the two seeds of X. strumarium in 
our study (unpubl. data), it seems that the DOG1 transcript 
level plays a fundamental role in dormancy regulation. A 
previous report also indicates for lack of correlation between 
the amount of DOG1 protein and seed dormancy in A. thaliana 
(Nakabayashi et al. 2012), and probably support the 
assumption that FY-mediated DOG1 processing, which 
leads to producing two functional and non-functional 
isoforms of DOG1, has differentially taken place between 
the two seeds (Cyrek et al. 2016). 

DOG1 acts as both ABA-independent (Graeber et al. 2014) 
and ABA-dependent (Née et al. 2017; Nishimura et al. 2018) 
manner to establish the seed dormancy. We observed a 
reduction in CRU2 transcripts abundance in the non-
dormant seed, which interacted with DOG1. CRU2 has been 
known to be the most abundant stored protein in seeds of 
A. thaliana that functions in structural components of oil 
bodies. The higher CRU2 level in ABA-treated seeds of 
A. thaliana suggests that ABA contributes to the inhibition 
of CRU2 degradation (Ghelis et al. 2008). Although no 
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change has been observed in the accumulation of this protein 
in the seeds of dog1–1 A. thaliana mutants, DOG1 probably 
acts for the accumulation of N-rich compounds and 
amplification of ABA signalling (Dekkers et al. 2016). 
Therefore, our results confirm the likely effect of ABA 
signalling on high CRU2 expression in the dormant seeds 
and also, at least in part, reflect a link between the DOG1 
function and ABA (Figs 9 and 10). 

Dormancy control by DOG1 through regulation of genes 
required for the biomechanical weakening of the coat 
encasing the embryo has previously been reported in 
Lepidium sativum (L.) (Graeber et al. 2014). Considering the 
higher abundance of callus biosynthesis-related transcripts 
and positive enrichment of the pathways related to cell 
wall organisation in dormant seed including CALLOSE 
SYNTHASEs and  GLUCAN SYNTHASE-LIKE, we reasoned  
there are different cell wall properties between the dimorphic 
seeds of X. strumarium. There are two reasons why the callus 
deposition and following restriction of cell wall widening are 
important in our study: (1) determination of final seed size; 
and (2) suppression of radicle protrusion after imbibition. 
The importance of cell wall-associated processes of two 
dimorphic seeds became clear when the enrichment of the 
amylopectin biosynthetic process was detected for under-
represented transcripts of the non-dormant seed, suggesting 
the formation of two seeds with different cell wall properties 
probably through DOG1-mediated processes may result in 
different dormancy status of X. strumarium. 

Coordinated epigenetic modifications and their 
relevance to the dormancy 

To date, many epigenetic modifications have been reported to 
regulate seed dormancy (reviewed in Klupczyńska and 
Pawłowski 2021). In this study, the importance of DNA 
methylation in the regulation of seed dormancy has been 
corroborated by the interaction of DME with MAINTENANCE 
OF METHYLATION (MOM) and ARGONAUTE 4 (AGO4). 
DME plays an important role in gene imprinting in the 
endosperm, male fertility (Schoft et al. 2011), and seed 
viability through likely demethylation of the maternal allele 
of target genes (Choi et al. 2002; Morales-Ruiz et al. 2006). 
For example, it demethylates a group of Polycomb group 
regulators of seed development (Köhler et al. 2003). AGO4 
is a translation regulator which acts for gene silencing by 
RNA-directed DNA methylation through H3K9 methylation 
and affects the expression of dormancy genes (Qi et al. 
2006; Nonogaki 2014). Although little information is 
available for silencing of seed dormancy genes through 
RNA-directed DNA methylation (RdDM), possible involve-
ment of AGO4 in seed dormancy regulation has been 
suggested from studies of cereal seed dormancy. AGO1003, 
an ARGONAUTE gene in barley (Hordeum vulgare L.), is 
expressed differentially in the embryos of dormant and 
non-dormant seeds and is thought to function as a negative 
regulator of seed dormancy (Singh and Singh 2012). 
Moreover, mutations in UBP26/SUP32 encoding a 
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Fig. 9. Enrichment map of significantly (P < 0.05) enriched pathways for upregulated and downregulated genes of developing 
non-dormant and dormant seeds of X. strumarium. Blue and red circles show positively and negatively enriched pathways, respectively. 
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Fig. 10. Schematic representation of processes involved in dormancy induction to seeds of X. strumarium. 

ubiquitin-specific protease executing H2B deubiquitination, 
cause a dramatic increase in monoubiquitinated H2B 
(Sridhar et al. 2007). Since the ubp26 mutant shows enhanced 
seed dormancy, indicating H2B monoubiquitination may 
influence seed dormancy via histone H3K9 methylation 
and DNA methylation (Zheng et al. 2012). In plants, 
Polycomb group proteins (PcG), like EMF2, are known to 
repress seed master regulator and maturation genes during 
germination via chromatin modifications (Xu et al. 2018). 
Kim et al. (2010) reported the role of EMFs in dormancy 
genes silencing through H3K27me3. The interaction 
between EMF2 and long noncoding RNAs not only results 
in H3K27me3 but also inactivates seed dormancy 
and maturation genes such as DOG1 and ABI3 (Chen 
et al. 2020). 

Trithorax group (TrxG) proteins like ATXR7/SDG25 
activate gene expression through depositing active histone 
marks, H3K4me3 and H3K36me3 at target chromatin, which 
often overlap with PcG target chromatin, thus antagonising 
PcG function (Kim and Sung 2014).  For example, loss of  
ATXR7 function in H3K4 methylation, previously reported 
by Tamada et al. (2009) results in the elimination of seed 
dormancy in Arabidopsis (Liu et al. 2011). PcG silencing can 

be additionally counteracted by histone demethylases 
such as ELF6 and PKDM7D that actively remove H3K27me3 
and H3K4me2/3 marks, respectively (Qian et al. 2015), 
suggesting that over-expression of histone demethylation 
activity can also be correlated with the activation of 
germination genes during seed development. It has been 
confirmed that SNL2 acts redundantly with SNL1 for seed 
dormancy regulation. Increased acetylation of H3K9/18 and 
H3K14 was observed in the snl1 snl2 double mutant (Wang 
et al. 2013). SNL suppresses transcription of ethylene 
biosynthesis (ACOs) and signalling (ERFs) genes,  positive  
regulators of seed germination, and also ABA-inactivating 
genes, CYP707As, via creating a transcription-inactive site 
on chromatin. This interaction may be related to the alteration 
in the ERF110 transcripts level in the non-dormant seed. This 
AP2 family member plays a mysterious role in dormancy 
induction and germination suppression through both GA 
suppression and ABA signalling regulation (Li et al. 2012). 
Taken together, these observations demonstrated that the 
chromatin remodelling functions, through the regulation 
of dormancy genes such as DOG1 and ABI3 as well as 
the differential expression of germination genes, result in 
dimorphic seeds of X. strumarium. 

L 



www.publish.csiro.au/fp Functional Plant Biology 

mRNA processing for ABA sensitivity and 
elongation control of DOG1 

Our study revealed a sharp under-representation in some RNA 
splicing factors such as SUA, PWI, and FY in the non-dormant 
seed, which function in seed dormancy. SUA affects seed 
maturity through the regulation of ABI3 alternative splicing 
(Sugliani et al. 2010). Its activity results in two ABI3 
transcript isoforms, ABI3-α and ABI3-β that encode full-
length and truncated ABI3 proteins, respectively (Sugliani 
et al. 2010). Therefore, we hypothesised that low SUA 
expression in the non-dormant seed may result in the 
reduction of the full-length ABI3 isoform level, which plays 
a critical role in dormancy regulation and ABA sensitivity. 
The role of PWI (RBM25) in RNA splicing and regulation of 
the ABA response in Arabidopsis mutants has previously 
been reported. Zhan et al. (2015) displayed a defect in 
alternative splicing of PP2C in Arabidopsis mutants of 
rbm25. The PP2Cs are negative regulators of the ABA 
signalling pathway through their interaction with SnRK2s 
(Rodrigues et al. 2013). This result indicates that variation 
in RNA splicing of genes like PP2C is of particular 
importance for X. strumarium seeds’ response to ABA and 
that the splicing factor RBM25 has a critical role in this 
response. FY is also a component of the Cleavage and 
Polyadenylation Specificity Factor (CPSF) complex that acts 
to polyadenylation. Mutation in FY disrupts poly (A) signal 
recognition, which determines the cleavage site in the mRNA 
(Yu et al. 2019). Faster germination of freshly harvested seeds 
of Arabidopsis fy-1 mutant while having a higher content of 
ABA suggests both ABA fy-1 hyposensitivity and decreasing 
in the ABI5 level (Jiang et al. 2012). In addition, evidence 
is present in the literature that indicates FY is required for 
proper DOG1 protein expression and shows that the fy-2 
mutant is defective in DOG1 RNA processing, which leads 
to the suppression of translation (Cyrek et al. 2016). This 
finding led us to speculate that FY downregulation in the 
large seed of X. strumarium may be a potential regulatory 
mechanism to reduce the amount of shDOG1mRNA level in 
this seed, resulting in a weak dormancy level in the large 
seed compared to the small seed. 

Hormonal regulatory circuitry in dimorphic 
seeds of X. strumarium 

In this study, different expression levels of phytohormones 
biosynthesis and signalling genes such as SAUL1, TOR, 
SnRK1, RNL, ARF10, ABCB19, and UGT74B1 point to the 
pivotal role of hormonal regulations of seed dormancy. TOR, 
which is a serine/threonine-protein kinase, is also over-
represented in the non-dormant seed. In plants, SnRK1 has 
been appeared to indirectly interact with TOR via regulatory-
associated protein of TOR (RAPTOR) phosphorylation based 
on the cellular energy status (Broeckx et al. 2016). Despite the 
identified positive regulation of ABA biosynthesis, TOR 

interaction with ABA depends on the environmental growth 
conditions (Fu et al. 2020). When the plant is subjected to 
growth-promoting conditions, active TOR phosphorylates 
ABA receptors, PYR/PYLs, to inhibit ABA signalling and 
shift resources toward growth. On the contrary, under 
stressful conditions, RAPTOR will be phosphorylated by 
ABA-activated SnRK2s to suppress TOR activity and makes 
growth sacrifices for plant survival (Fu et al. 2020). Therefore, 
to identify the real function of TOR in two seeds of 
X. strumarium, cellular metabolism and carbohydrate 
availability should be considered. Over-representation of 
respiration-involving genes such as ACO3, PEPC3, D2HGDH, 
and CI51 can be positively related to higher cellular 
metabolism and energy supply in the non-dormant seeds. 
This may affect the final seed weight or seed size and 
justify differential interactions between TOR and ABA in 
the two seeds of X. strumarium. Production of seeds with 
delayed germination has been reported in raptor1b mutant, 
which may be a result of higher ABA, auxin, and JA levels 
(Salem et al. 2017). Therefore, we theorise that seed size 
and germination in X. strumarium is influenced by respiratory 
factors, and TOR may be at the centre of a regulatory hub 
controlling seed metabolism, and germination through 
hormonal regulatory. 

SAUL1 belongs to the E3 Plant U-box (PUB) family 
and plays important role in the regulation of cell death, 
developmental responses, and hormonal responses. The 
regulation of ABA biosynthesis through AAO3, SAUL1, and 
26S proteasome degradation has previously been reported 
(Raab et al. 2009). AAO3 catalyses the abscisic aldehyde 
oxidation to ABA at the final step of ABA biosynthesis. Since 
saul1 mutation affects ABA content, but not ABA signalling 
(Raab et al. 2009), SAUL1-mediated AAO3 degradation can 
be a mechanism for the ABA content and seed dormancy 
regulation. Therefore, over-expression of SAUL1 in the non-
dormant seed of X. strumarium may be related to the lower 
ABA content. 

A reduced presence of RNL involved in tRNA splicing was 
also observed in the dormant seed. There is some evidence 
that auxin-related abnormalities associated with reduced 
abundance of PIN-formed (PIN) auxin transport proteins 
were observed after the downregulation of the RNA ligase 
RNL (Leitner et al. 2015). Furthermore, there is some 
evidence showing the role of ABCB19 and auxin 
distribution in cotyledon development. Analysis of gene 
expression pattern in abcb19 revealed a significantly 
diminished auxin distribution as well as a growth rate 
reduction correlated with reduced auxin levels in 
cotyledons of abcb19, indicating that cotyledon expansion 
depends on ABCB19-mediated auxin import (Lewis et al. 
2009). The role of UDP-glycosyltransferases in the 
modulation of auxin levels (Mateo-Bonmatí et al. 2021) and 
also UGT74B1 in IAA homeostasis during Arabidopsis 
development (Grubb et al. 2004) has previously been 
revealed. Conjugation of IAA to low-weight molecules such 
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as UDP-glucose is an auxin inactivation mechanism (Grubb 
et al. 2004). We speculate the growth, and germination 
differences between two seeds of X. strumarium may have 
been linked to alterations in ABA content and auxin 
distribution and responses. While ABA produced by the 
embryo is fundamental for the promotion of seed dormancy 
(Sohindji et al. 2020), auxin transport defines local 
variations in hormone levels, which are perceived and 
transmitted to induce hormonally controlled adjustments in 
gene expression and activity (Leitner et al. 2015). In 
addition, an increase in CSN3/FUS11 transcripts was also 
observed in the large seeds that displayed significantly 
more germinability. Germination assays using wild-type 
and mutant seedlings of csn5a-2 showed that removal of 
CSN function displayed deeper dormancy (Franciosini et al. 
2015). The degradation of ABA receptors such as RGL2 and 
ABI5 by CULLIN4-RING E3 ubiquitin ligases (CRL4s) seems 
to be a mechanism by which CSN promotes seed germination 
(Irigoyen et al. 2014; Jin et al. 2018). It has also been reported 
that the csn3–3 mutation confers several phenotypes 
indicative of impaired auxin signalling including auxin 
resistant root growth and diminished auxin-responsive gene 
expression (Huang et al. 2013), suggesting CSN3 functions 
in a distinct protein complex that is required for proper 
auxin signalling. All together, this indicates degradation of 
ABA biosynthesis and/or proper auxin signalling in non-
dormant seeds of X. strumarium may control germinability. 

Control of proliferation, and endoreduplication 
in two seeds of X. strumarium 

An over-represented factor in non-dormant seed was YODA/ 
YDA, which encodes a ubiquitously expressed MAPKK Kinase 
and functions in the regulation of asymmetric divisions in the 
zygote and the formation of normal suspensor independently 
from auxin (Lukowitz et al. 2004). In loss-of-function mutants, 
the zygote does not elongate properly, and the cells of the 
basal lineage are eventually incorporated into the embryo 
instead of differentiating the extra-embryonic suspensor 
(Lukowitz et al. 2004). Therefore, less YDA expression in 
the dormant seed may indicate that there is some difference 
in the embryonic patterning processes between two 
dimorphic seeds. We also revealed an over-representation 
of both ERMO2/SEC24a and DEL1/E2Fe in the non-
dormant seed. ERMO2 encodes the COPII protein Sec24a 
that participates in ER-to-Golgi anterograde transport and 
acts in setting up cell proliferation, cell size determining 
via endoreduplication suppression, and mediating the 
membrane fusion (Ebine et al. 2008). Moreover, 
Arabidopsis DEL1 encodes an E2F-DP-like DNA binding 
protein that was previously shown to be mostly expressed 
in dividing cells and to inhibit endoreduplication (Vlieghe 
et al. 2005). We suggest that the suppression of 
endoreduplication in the small seed of X. strumarium may 
be a mechanism for cell differentiation and cell size 

determination. However, future investigations should 
compare this result through microscopic and molecular 
studies with a focus on the early developmental stage. 

Conclusion 

Our research is the first study on the molecular mecha-
nisms underlying seed dormancy in dimorphic seeds of 
X. strumarium. It confirmed that a compilation of different 
mechanisms (dormancy-specific genes activation, epigenetic 
and hormonal regulations, cell wall modifications, and 
mRNA processing) were differentially activated between 
two seeds. We revealed the positive regulation of seed 
dormancy by DOG1, the main dormancy gene in Arabidopsis 
leading to the formation of two seeds with different cell wall 
properties. This study also demonstrated that the chromatin 
remodelling functions in the regulation of dormancy genes 
such as DOG1 as well as activation of germination-
associated genes through DNA methylation and histone 
demethylation, respectively. We also indicated that variation 
in RNA splicing for ABA sensitivity and transcriptional 
elongation control of DOG1 is of particular importance 
for X. strumarium seeds. Our results also showed that seed 
size and germination may be influenced by respiratory 
factors, and alterations in ABA content and auxin 
distribution and responses. TOR probably is at the centre of 
a regulatory hub controlling seed metabolism, maturation, 
and germination. We also theorised that the suppression 
of endoreduplication in the small seed of X. strumarium 
may be a mechanism for cell differentiation and cell 
size determination. However, future investigations should 
compare these results through molecular studies with a 
focus on the different developmental stages. 
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