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ABSTRACT  Objective:Multiple Sclerosis (MS) is an autoimmune and demyelinating disease that leads to
lesions in the central nervous system. This disease can be tracked and diagnosed using Magnetic Resonance
Imaging (MRI). A multitude of multimodality automatic biomedical approaches are used to segment lesions
that are not beneficial for patients in terms of cost, time, and usability. The authors of the present paper
propose a method employing just one modality (FLAIR image) to segment MS lesions accurately. Methods: A
patch-based Convolutional Neural Network (CNN) is designed, inspired by 3D-ResNet and spatial-channel
attention module, to segment MS lesions. The proposed method consists of three stages: (1) the Contrast-
Limited Adaptive Histogram Equalization (CLAHE) is applied to the original images and concatenated to
the extracted edges to create 4D images; (2) the patches of size 80 x 80 x 80 x 2 are randomly selected
from the 4D images; and (3) the extracted patches are passed into an attention-based CNN which is used
to segment the lesions. Finally, the proposed method was compared to previous studies of the same dataset.
Results:The current study evaluates the model with a test set of ISIB challenge data. Experimental results
illustrate that the proposed approach significantly surpasses existing methods of Dice similarity and Absolute
Volume Difference while the proposed method uses just one modality (FLAIR) to segment the lesions.
Conclusion:The authors have introduced an automated approach to segment the lesions, which is based on,
at most, two modalities as an input. The proposed architecture comprises convolution, deconvolution, and an
SCA-VoxRes module as an attention module. The results show, that the proposed method outperforms well

compared to other methods.
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I. INTRODUCTION

Multiple sclerosis is an autoimmune, chronic, and demyeli-
nating disease of axons that causes lesions in the brain’s white
matter (WM) tissues [1]. Varying from patient to patient,
the most common symptoms of MS are weakness, balance
issues, depression, fatigue, or visual impairment. As the most
prominent visualization method for medical imaging nowa-
days, Magnetic Resonance Imaging (MRI) can visualize and
diagnose this kind of disease [2]. Accurate segmentation of
MS lesions in MR images is one of the most critical tasks in
figuring out and describing the progression of the disease [3].
To do so, manual and automated segmentation methods are
commonly employed to estimate and segment the total num-
ber of lesions and total lesion volume. Although manual
segmentation is considered a desirable standard method [4],

it poses challenges in describing 3-dimensional (3D) MRI
information. This method is time-consuming, annoying, and
prone to intra- and inter-observer variability. These chal-
lenges motivate Deep Learning (DL) and Machine Learn-
ing (ML) researchers to propose and develop a fast and
accurate approach for the segmentation of MS lesions in
MRI [5].

Supervised machine learning algorithms are one group of
automated methods that can acquire knowledge from pre-
viously labeled training data and present high efficiency in
MS lesion segmentation [6]. Generally, traditional supervised
machine learning approaches are dependent on hand-crafted
or low-level features. So far, plenty of supervised techniques
for MS lesion segmentation have been proposed, such as deci-
sion random forests [7], [8], ensemble methods [9], non-local
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means [10], k-nearest neighbors, [11], [12], and combined
inference from patient and healthy populations [13]. Another
group of automated methods is unsupervised, which extracts
patterns from unlabeled data. Therefore, a significant number
of unsupervised methods have also been introduced, which
are based on thresholding methods with post-processing to
remove False Positive (FP) and False Negative (FN) pixels
[14], [15] or probabilistic models [16], [17].

In recent decades researchers have tended to use deep
learning algorithms in biomedical image analysis such as
brain tumors, brain tissue, diabetic retinopathy, and cardiac
image segmentation.

Since 1988, deep learning methods, especially CNNs, have
significantly increased performance in biomedical image
analysis [18]. They require fewer manual features than stan-
dard supervised ML algorithms and can learn by themselves
how to extract features directly from data during the train-
ing procedure [19]. Deep learning-based approaches provide
state-of-the-art results for different problems such as com-
puter vision semantic segmentation [20], as well as Natural
Language Processing (NLP) [21]. They have also gained pop-
ularity in studying biomedical problems, such as cell classi-
fication [22], retinal blood vessel extraction [23], MS lesions
[24], brain tumors [25], neuronal structures [26], and brain
tissue segmentation [27]. For example, in [28], [29], [30],
authors try to segment tumors in 3D MR images using a
modified version of Decoder-Encoder networks. For brain
tissue segmentation Wu et al. [31] proposed a dual encoder
residual U-Net architecture to reduce the risk of losing local
structure and necessary details. In [32], a Relation Trans-
former Block (RTB) and Global Transformer Block (GTB)
are proposed to segment small diabetic retinopathy lesions
accurately. Also, in [33] authors introduce a multi-modal
few-shot Unsupervised Domain Adaptation (UDA) to detail
cardiac Images.

A significant number of CNN-based algorithms for
biomedical image segmentation have been proposed. These
approaches can be divided into image-based and patch-based
methods. Details of these approaches are discussed in the
following paragraph.

Image-based methods, extract features from the whole
image as global structure information [34], [35] and are cat-
egorized into 2D-based [34], [36] and 3D-based [35], [37]
segmentation.

In 3D-based methods, features are first extracted from an
original 3D image by employing CNNs through 3D filters.
The model then segments each pixel or voxel to the lesion
or non-lesion. The high chances of overfitting are one of the
disadvantages of the 3D-based method, which usually fits
many parameters when the dataset is small. This is a common
occurrence in biomedical applications [35], [37].

In 2D-based methods, the 3D image is first divided into
2D slices, and then each slice is eventually segmented.
Finally, to reconstruct the 3D prediction, all 2D predictions
are concatenated together. Compared to 3D-based methods,
2D-based approaches are not as accurate due to missing
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part of the contextual information. However, they have fewer
parameters for each layer, lowering the risk of overfitting in
small datasets [36].

Patch-based methods use two different strategies for lesion
segmentation. Utilizing a moving window, the first strategy
creates a local representation for each pixel/voxel. Then,
a CNN is trained to use all the extracted patches to identify
each patch’s central pixel/voxel as either a lesion or a non-
lesion. Considering the repetitive computations on the over-
lapping features of the sliding window, it is worth mentioning
that there is a long training time. Faster than the previous
strategy, the second approach randomly extracts patches from
all over the 3D image. The extracted patches are then used
to train the CNN-based model. Ultimately, the trained model
segments each pixel/voxel of the patch as either a lesion or a
non-lesion [38].

The rest of the current paper is organized into five sections
and a reference section. Section II reviews works related to
the proposed method. Section III explains the dataset used to
train and evaluate the proposed method. Section IV clarifies
the methodology. Section V explains the evaluation metrics
and compares the results of the test dataset against the find-
ings of other methods. Finally, a discussion and summary are
provided in Section VL.

A. MOTIVATION

For automatic MS lesion segmentation, the present paper
proposes a new method based on deep learning which con-
sists of two 3D convolutional network branches. The current
study randomly extracts some large 3D patches to prevent
overfitting due to the small number of data, and the lack of
global structure information. Then a deep neural network is
designed inspired by the 3D version of ResNet [39], which
consists of convolution and deconvolution layers, channel-
based attention, and special-based attention.

The designed network can be employed in each path and
each branch is assigned to a particular MRI modality so that
the maximum benefits of each modality can be individually
utilized. As a result, the present study has introduced a net-
work that can have at most two different modalities (FLAIR
and T1) However, for the first time, stunning results were
achieved with just one modality (FLAR) when compared to
other methods. In summary, the main contributions in this
paper are:

« Introduction of a 3D patch-based method to prevent
overfitting and a lack of global structure information and
to combine the two modalities in order to take advantage
of brain tissue information.

o Proposal of a deep learning-based approach with one
modality (FLAIR) to segment the MS lesion which,
for the first time, due to, the difficulty of providing
variant modalities in terms of cost and time in the clinical
situation.

o Demonstration of the top dice coefficient on the ISBI
dataset using two modalities compared with other two-
modality methods.
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o Design of a 4D channel-wise and spatial attention mod-
ule inspired by channel-based [40] attention and special-
based attention [41].

B. RELATED WORKS

As already stated, a wide range of methods for MS lesion seg-
mentation has been proposed. Recently, convolution neural
network strategies have reported outstanding performance in
medical image processing, especially in MS lesion segmen-
tation. Hence, this discussion of related works is related to
CNN-based methods.

It should be noted that some approaches are patch-based.
A useful illustration is a study by, Ghafoorian et al. [42] in
2015 which proposed a 2D CNN-based model that, increases
the number of training samples and avoids overfitting during
the training process. Similarly, Birenbaum et al. introduced
multiple 2D patch-based CNNs that use in parallel the bene-
fits of the common information within longitudinal data [43].
Roy et al. developed a two-path CNN based on a 2D-patch
which employs different MRI modalities in each path as an
input and finally concatenates the output of each path to
create the final prediction [38]. Afzal et al. proposed a system
that includes two 2D patch-wise CNNs which accurately
segment lesions. Their first CNN network creates a lesion
map while the second enhances efficiency by reducing the
number of false positives [44]. Shachor et al. introduced a
multi-view structure based on 2D patches. Each view of the
2D patches is passed to the model as an input and the patches
output is fused to create the final prediction [45].

In addition, there are some approaches to segment lesions
based on 3D patches. Vaidya et al. presented a 3D patch-
based CNN for segmenting lesions, after which a WM mask
is applied to the output prediction to reduce the FP rate and
attain high performance [46]. Valverde et al. [24] proposed
a cascaded 3D CNN approach whose first model is trained
with extracted 3D patches and its second model is then used
to reduce the FP of the first model. In addition, Valverde et al.
developed a model to analyze the effect of intensity domain
adaptation on CNN-based models [47]. Andermatt et al.
introduced a method based on multi-dimensional gated recur-
rent units and used 3D patches to train the model [48].
Salem et al. [49] presented a CNN-based model to create
synthesis lesions in MR images as a way to deal with one
of the biggest challenges in medical image processing, that is,
a small number of data. They reported acceptable results even
though only one image is used as a dataset to train Valverde’s
proposed model [24]. Hashemi er al. [50] proposed a 3D
patch-based CNN method that employs the idea of a densely
connected network. They also introduced a new loss function
to deal with imbalanced data.

Furthermore, some approaches have used the whole image
as an input. Brosch er al. proposed a whole brain-based
segmentation method utilizing 3D CNN which takes advan-
tage of some shortcut connections between layers so as to
extract the low- and high-level features from the shallow-
est to the deepest layers. By doing so, the model learns
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information and features about the locations and structure of
MS lesions [35]. Kang et al. proposed an attention context
U-NET based on 3D images [37]. Aslani et al. designed a
deep 2D encoder-decoder CNN for the segmentation of MS
lesions [51]. Another paper of theirs introduced, a method
based on a 2D CNN for slice-by-slice segmentation of lesions
in 3D data. Lesions are separately segmented on each slice,
and then each segmented slice is concatenated to create a 3D
lesion mask [36].

Although all of the proposed patch-based techniques per-
form well in terms of segmentation, they all lack global
structural details. Simply put, the segmentation process does
not take into account the brain’s overall structure or the exact
location of lesions. In contrast, whole brain-based segmen-
tation methods need a large number of data to train the
model, which is regrettably a commonplace requirement in
biomedical applications that is difficult to meet.

Il. METHODS AND PROCEDURES

A. MATERIAL

To evaluate and compare the proposed method’s performance
to that of other state-of-the-art approaches, the present paper
employs the ISBI' 2015 Longitudinal MS Lesion Segmen-
tation Challenge dataset, which is publicly available on the
challenge website. Further details are provided in the upcom-
ing section.

1) ISBI 2015 LONGITUDINAL MS LESION SEGMENTATION
CHALLENGE:

The ISBI dataset includes 19 subjects which are divided into
a test set with 14 subjects and training set with five subjects.
For each subject, there are varieties of time-points in the
range of 4 to 6, for each of which T1-w, T2-w, PDW, and
FLAIR image modalities are prepared. The size of each image
is 182 x 256 x 182 and the voxel resolution is one millime-
ter. Two different raters (R1 and R2) manually segment the
images, so the data set has two ground truth lesion masks.
The ground truth is publicly available for training images,
but not for test images. However, the proposed method’s per-
formance over the test set is evaluated by submitting binary
masks to the challenge website? [52].

B. METHOD

The process of constructing the model consists of three
stages: first, the preprocessing data, second, the patch extrac-
tion from images, and last, lesion prediction using the trained
model. The following discusses all processes of the proposed
method in detail.

1) DATA PREPROCESSING

The present study utilizes the preprocessed version of the
images available on the challenge website. Preprocessing
algorithms that are already applied to images of the dataset

Hnternational Symposium on Biomedical Imaging.
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FIGURE 1. Impact of a preprocessing algorithm on the fourth screening of
the sixth training sample. From left to right, a slice of the 3D original
image, the preprocessed version of the image, and the extracted edge by
the Laplacian filters.
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FIGURE 2. Samples of extracted patches from the dataset images. The
first and third patches are centered on the lesion voxel from left to right,
while the others are centered on the non-lesion voxel.

are skull-stripped by the Brain Extraction Tool (BET) [53]
and N3 intensity normalization [54] and rigidly registered to
the MNIICBM 152 template [55].

The current work applies more preprocessing algorithms
to enhance the local contrast of the images and to avoid
the distorting differences in the ranges of values. Contrast-
Limited Adaptive Histogram Equalization (CLAHE) [56] is
applied to achieve this objective. Then, the edges extracted
by the Laplacian detectors (To help the model for extracting
higher-level features and also find a boundary of the white
matter tissue in the T1 image) are concatenated to enhance the
image, and the 4D data is created. Finally, before passing the
data into the network, the intensities of each image are nor-
malized with a zero mean and unit variance. Figure 1 presents
an illustrated example of one slice of an extracted edge and
the enhanced image.

2) PATCH EXTRACTION

Extraction of patches from the images begins after data prepa-
ration. The input of the model is a bunch of patches of images.
Approximately 60% of the selected patches, 80 x 80 x 80 x
2 in size, are centralized on the lesion voxel. The rest of the
patches are centered on the non-lesion voxel. Figure 2 depicts
some of the extracted patches.

3) NETWORK ARCHITECTURE

This section presents the proposed architecture outline.
Inspired by the spatial attention [41] and channel attention
[40] strategies, the present study integrates an adapted ver-
sion of these two attentions into 3D ResNet architecture
to capture a better contextual image representation. Subse-
quently, decision-level fusion [57] is employed to learn the
complementary information independently from the different
modalities.

a: Base model
Inspired by the 3D ResNet, the architecture of a base
model for MS lesion segmentation is illustrated in
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Batch Normalization SCA VoxRes Module

ReLU

Input Patch

FIGURE 3. Overview of the proposed Base Model (CNN-based
architecture to extract features for lesion segmentation) as described in
Section Il. Data is presented in input by 4D patches (The first dimension is
the number of input channels, and then are the depth, height, and width,
respectively), and the model generates the feature maps with

224 features for each voxel input patch. Finally, the output of the Base
Model is used as input to the segmentation layer, which is responsible for
the segmentation of each voxel to lesion or non-lesion.

Figure 3. The model consists of convolutional, deconvo-
lutional, batch normalization (BN), and rectified linear
unit (ReLU) layers, as well as six stacked residual modules
(i.e., SCA-VoxRes modules) with a total of 25 volumetric
convolutional/deconvolutional layers. As shown in Figure 4,
each SCA-VoxRes module includes two convolutions, two
BN/ReLU layers, and an SCA module. In this module, the
transformed feature and input feature are added together by
the skip connection. This connection can propagate informa-
tion directly to the forward and backward passes. In addition,
the SCA module includes spatial and channel-wise attention,
which will be explained in upcoming sections.

It should be pointed out that filters and operations are
implemented in a 3D shape to learn and extract a more robust
volumetric feature representation [67]. Due to their computa-
tion efficiency and representation capability, the small kernels
(i.e., 3 x 3 x 3) are employed in the convolutional layers.
To reduce the resolution of the input image and features,
three convolutional layers are employed with a stride of 2.
As a result, a sizeable receptive field network is obtained to
extract more contextual information to improve discrimina-
tion capability. Four BN layers are inserted into the network
to overcome the internal covariance shift in the training pro-
cess and improve network performance. This network uses
rectified linear units as the activation function for nonlinear
transformation. Lastly, the extracted features in the 3rd, 5th,
9th, and 15th layers are deconvolved and concatenated to use
as an input for the segmentation step.

b: Spatial and channel-wise attention
Diagnosis of the brain’s white matter lesions is very chal-
lenging due to similar pixels/voxels in brain tissue and the
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FIGURE 4. SCA-VoxRes Module. The input should be in the size of (C, D,
H, W), where C is the number of channels, D is the depth, and H and W
are height and width, respectively.

F: Input ReLU Convolution Transpose

Sigmoid Reshape
Global Pooling
: Uk @ WA B WARER

A: Size =D xH x W x C B:Size =D xHx W » C C: Size =D xHx W x C
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FIGURE 5. Spatial Channel Attention (SCA) module based on 4D input. D,
H, W, C are depth, height, width, and channel. As well, as N is equal to Dx
Hx W x.

resulting intensity. Furthermore, in CNN-based approaches,
convolution operators represent a local receptive field. Con-
sequently, the features extracted from pixels with the same
label may somewhat differ, and these differences cause intra-
class inconsistency and affect the accuracy of the model. For
this reason, an attention module is developed, as illustrated
in Figure 5, which is based on a combination of spatial
and channel-wise attention for exploring global contextual
information.

i) Channel-wise attention
The objective of channel-wise attention is to enhance the
network feature representation capability and emphasize
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interdependent feature map-specific semantics by exploiting
the interdependencies between the channels of the feature
maps. The structure of channel-wise attention is illustrated
in Figure 5. First, the channel-wise attention map, X €
RIXIx1xC Hig directly calculated by an average pooling and
two fully connected layers from the original features, F €
RP*HXWXC ‘Then, the channel-wise attention map is multi-
plied by the input feature to scale each channel of the feature
map.

ii) Spatial attention

The extraction of discriminatory representation is essential
for the segmentation of WM lesions, and this can be achieved
by capturing long-range contextual information. Thus, a spa-
tial attention mechanism can encode a global representation
with a broader field of view into local features. As illustrated
in Figure.5, the input feature map, F € RP*H*WxC g fed
into the three one-by-one convolution layers to generate three
new feature maps, called A, B, C, while they are the same
size, RP*HxWxC Next, A and B are reshaped to RV*C,
where N = D x H x W is the number of voxels. Later,
the spatial attention map, E € RN*N s calculated by the
matrix multiplication of B and the transpose of A, followed
by applying a SoftMax function to the result. In the next
step, the feature map, C € RPxHXWXC =g reshaped to
the RV *C matrix. Then, matrix multiplication is performed
between C € RV*C and E € RV*V | and this reshapes the
result to RP*H*WxC Finally, the output of spatial attention
is calculated by Equation 1.

n
Oj =) (E;G)+F (1
i=1

where w refers to a learnable parameter. The output of spatial
attention can be obtained from Equation 1, as each voxel is a
weighted sum of the features.

4) TWO-PATH ARCHITECTURE

In medical image processing applications, datasets provide
different imaging modalities for analyzing various tissue
structures robustly. For example, in the ISBI dataset, four
modalities are available such as T1w, T2w, PDW, and FLAIR.
The most significant reason for providing multi-modality
images is because the information of the modalities comple-
ments each other. Therefore, utilizing the basic model, the
current study designed a decision-level fusion architecture
with two individual paths. Figure 6 presents this architecture.
First, two modalities, T1w and FLAIR, are individually pro-
cessed, and two different feature maps are extracted. Second,
the extracted feature maps from both paths are concatenated
together and then used as an input for classification. This
strategy allows for individual feature learning for each modal-
ity before aggregating the feature maps.

C. LOSS FUNCTION
One of the significant problems in medical image processing
algorithms is dealing with unbalanced data. Since 3D images
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Predicted Lesions
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Size = 224x80x80x80 Size = 224x80x80x80

Base Model Base Model

Flair Patch T1 Patch
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Size = 2x§ Size = 2x8(

FIGURE 6. The architecture of the Two-path Network integrates the
feature maps, which the Base Model prepares, and segments them using
a one-by-one convolution layer.

have fewer lesion voxels than non-lesion voxels, an imbal-
ance in data is faced. Therefore, if the used loss function
cannot deal with this problem, the model converges to the
minority class. In other words, samples in a class with a small
number (minority class) cannot be classified accurately by
using the model. The proposed method uses a combination
of Tversky [50] and Focal [58] loss functions to handle the
imbalanced data. As illustrated in Equation 2, the Tversky
loss function allows the assignment of different weights to
False Negative (FN) and False Positive (FP) to improve the
recall rate.

TverskyLoss
-y
-
25\7:1 Dic8ict &

ngzl Dic8ic + o vazl Dic— 8gic + B Zé\]:] Dic8ic + ¢
2

where p;. is the probability that pixel i is of lesion class ¢
and p;z is the probability that pixel i is of non-lesion class g,
and the same can be said for g;. and g;z which are related to
the grand truth. In addition, hyperparameters « and 8 can be
tuned by assigning a number in the [0, 1] range.

The Tversky loss function limitation is the low conver-
gence speed due to the segmentation of small ROIs. This does
not contribute significantly to losses. However, to overcome
this problem, the current work utilizes the Focal Tversky loss
function, which has a parameter, y, to control the segmen-
tation of small ROIs. Equation 3 defines the Focal Tversky
Loss.

D. TRAIN AND TEST DETAILS

At the beginning of the training procedure, the data should be
split to make the train, test, and validation dataset. The ISBI
dataset includes two sets of images. Consisting of 21 images
from five subjects, the first set of images with available
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Epoch

FIGURE 7. The decrease of loss function during the training step on the

ISBI dataset. Due to overfitting, the best model is selected for the test

step based on the validation set loss. According to the plot, the best
model is at epoch 80.

ground truth is randomly divided into validation and training
sets. Sixty images are considered as a train set and five images
as a validation set. In addition, the second set of images is
used as a test set.

One of the main challenges for gradient-based optimiza-
tion methods is choosing an optimal starting point for the
learning rate. Classical methods employ a fixed number for
the learning rate in all stages of training. However, adjust-
ing the learning rate during the training procedure is better
by reducing it according to a predefined schedule function.
In this paper, exponential decay is used as the schedule
function. In our experiments, the Adam [59] optimizer out-
performs performed better than other optimizers, such as
AdaGrad [60], AdaDelta [61], and RMSprop [62]. So, Adam
is selected as an optimizer.

The input image is divided into 80 x 80 x 80 image
patches to test the model. The model predicts the label for
each part, and, in the end, all predictions are integrated as the
label of the given image.

E. IMPLEMENTATION DETAILS
The proposed method is implemented in Python with the
Pytorch framework. The experiments are performed on
Google Colaboratory® with 12 GB RAM. The two-path net-
work is trained end-to-end and, to do so, 4D patches are ran-
domly extracted from the 4D data as described in Section II.
Then, the Focal Tversky loss function deals with the imbal-
anced data problem, as explained in Section II, with o = 0.7,
B =03,y =4/3.

In addition, to optimize the network parameters and find
the best model, the current work utilizes validation data and

3colab.resear(zh.google.com
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FIGURE 8. Output segmentation by the present study on two ISBI training
dataset subjects (the first row is Subject 2 and the second row is Subject
3) compared to the ground truth provided by Rater 1 and Rater 2. From
left to right, the first column is the original FLAIR image, the second
column is after the preprocessing method, the third column is the
segmentation result of the proposed method, and the following two
columns are the ground truth provided by Rater 1 and Rater 2.

saves the model with the best validation data results. The
model is trained in 100 epochs with the Adam optimizer
at an initial learning rate of 0.0001. The exponential decay
function reduces the learning rate in each epoch. According
to Figure 7, the best performance obtained is at epoch 80. The
training computation time of 100 epochs is approximately
12 hours.

Ill. EXPERIMENTAL SETUPS AND RESULT

The ISBI 2015 dataset evaluates the proposed network, and
a direct comparison is made with plenty of state-of-the-art
approaches. The main reason for choosing this dataset is
the challenge posed by lesions regarding size, shape, and
location. Therefore, future sections shall discuss evaluation
criteria and outcomes.

A. EVALUATION METRICS
Generally, with the usage of the model, the metrics between
the ground truth and the predicted image measure the evalu-
ation metrics of segmentation methods. Hence, the following
describes the evaluation metrics employed by the current
research. With the assumption that .#4 represents the ground
truth created by one of the experts and .# is the output
generated by the model, each of the evaluation metrics is
defined as [52]:

Dice Similarity Coefficient (DSC): Dice is a commonly
used volume metric for measuring the similarity between the
ground truth and the model’s output.

2| My O MR
DSC (MR, Mp) = ——— 4

| Ap| + | AR
Lesion True Positive Rate (LTPR): With the assumption of
the list of lesions, Zz, as the 18-connected components of

Mg and a similar definition for .%,, the lesion-wise ratio of
true positives, LTPR, is defined as:

|-LR N ZAl
| %R N L) + |$R ﬂfAC|

LTPR (Mr, M) = (5)

where .,S,”AC is the complement of .%y.
Lesion False Positive Rate (LFPR): LFPR is the lesion-
wise ratio of false positives, which is given as:
|25 02|
B ARZ A
Absolute Volume Difference (AVD): The total volume of

the absolute difference is divided by the total volume of the
ground truth.

LEPR (MR, My) = (6)

max (| 4R\, |#4]) — min (|.ZR|, |#4])

AVD (MR, Mp) = r

(N

Although providing more information (anatomical and tissue-
based features) for learning-based methods can lead to getting
effective and accurate learning, the goal of this paper is not
only to achieve high accuracy but also to provide a system
with a minimum of modality and at the same time high
accuracy. Therefore, the number of input modalities acts as
one of the evaluation metrics, because, as the number of input
modalities lowers, the method becomes more beneficial for
patients in terms of cost, time, and usability.

B. RESULTS
The proposed method’s efficiency on the ISBI dataset is
evaluated by a process that is carried out in two stages.

In the first stage, the evaluation is with training data,
in which the ground truth of the images is available.
Table 1 provides the results of the comparison to those of
other methods. As seen in the table, the current study’s
approach outperforms other methods in terms of DSC and
LTPR. For images of high and low lesion loads, Figure 8 com-
pares the present paper’s segmentation results to ground
truths.

In the second stage, ground truths are not available in the
ISBI test set (with 14 subjects) used to evaluate the proposed
method and the evaluation metrics are calculated utilizing the
challenge web service. The current work trains its model with
the training data’s four subjects, one of which serves as the
validation data. Then, the segmentation of the test set is pre-
dicted and, finally, the 3D segmentation results are submitted
to the challenge web service for evaluation. Table 2 presents
the results of the ISBI test set and compares these to those
of other published papers. Clearly, in some of the evaluation

FocalTverskyLoss = Z 1— (
C
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TABLE 1. The first ISBI data results of the proposed model in comparison
to those of other models. In this experiment, the ISBI dataset includes
images with available ground truth. The mean values of DSC, LTPR, and
LFPR for different methods are shown.

Method R1 R2
Dice LTPR LFPR Dice LTPR LFPR
R1 - - - 0.7320 0.6550 0.1740
R2 0.7320 0.8260 0.3550 - - -
DCEN. [35] 0.6844 0.7455 0.5455 0.6444 0.6333 0.5288
(Trained by R1)
DCEN [35] 0.6833 0.7833 0.6455 0.6588 0.6933 0.6199
(Trained by R2)
DED CNN [51] 0.6980 0.7460 0.4820 0.6510 0.6410 0.4506
(Trained by R1)
DED CNN [51] 0.6940 07840 0.4970 0.6640 0.6950 0.4420
(Trained by R2)
Multi-Branch 0.7649 0.6697 0.1202 0.6989 0.5356 0.1227
CNN [36]
(Trained by R1)
Multi-Branch 0.7646 0.7002 0.2022 0.7128 0.5723 0.1896
CNN [36]
(Trained by R2)
Proposed-Method | 0.7982 0.8013 0.3676 0.7978 0.7295 0.2628
(Two Modality)
Proposed-Method 0.7865 0.8017 0.3923 0.7856 0.7298 0.2945
(One Modalities)

TABLE 2. The results of the proposed method on the official ISBI test set
when compared to the results of other methods. The metrics with the
best and second-best performances are indicated by bold and underlined
values, respectively.

Method Modalities Dice LTPR | LFPR | AVD
Asmsl [48] 4 (T1, T2, FLAIR, 0.6298 | 0.4871 | 0.2013 0.4045
PD)
ACU-NET [37] 4 (T1, T2, FLAIR, 0.6345 | 0.4787 | 0.1299 | 0.3949
PD)
Multi-View CNN 4 (T1, T2, FLAIR, 0.6271 | 0.5678 | 0.4975 0.3585
[43] PD)
IMAGINE [50] 4 (T1, T2, FLAIR, 0.5841 | 0.4558 | 0.0866 | 0.4972
PD)
Cascaded CNN 3 (T1, T2, FLAIR) 0.6304 | 0.3669 0.1529 0.3384
[24]
Multi-Branch 3 (Tl1, T2, FLAIR) 0.6114 | 0.4103 0.1393 0.4537
CNN [36]

DED CNN [51] 3 (T1, T2, FLAIR) 0.4864 | 0.3034 | 0.1708 | 0.4768
SDA U-NET [49] 3(T1, T2, FLAIR) 0.6305 | 0.3670 | 0.1529 0.3585
FLEXCONN [38] 2 (T1, FLAIR) 0.5243 - 0.1103 | 0.5207

One-shot [47] 2 (T1, FLAIR) 0.5774 | 0.2967 0.1885 0.3848
Proposed Method 2 (T1, FLAIR) 0.6430 | 0.4543 | 0.3524 | 0.3524
Proposed Method 1 (FLAIR) 0.6321 | 0.4547 0.3868 | 0.3880

metrics, the present study’s results for the two modalities are
superior to those of other studies. Even in the single modality
(the FLAIR image), the current paper’s results are satisfactory
when compared to the findings of other approaches.

As mentioned in Section II.A, there are two different
ground truths for each training sample and this difference
indicates the challenge of accurately labeling lesion areas.
In the proposed method, the knowledge of both experts is
employed to train the model. As seen in Table 2, in com-
parison to other studies, the proposed method has a high
LFPR. However, the visualization of the results shows that
most FP pixels are in the connected neighborhood of TP
pixels. In other words, the algorithm is unlikely to predict
non-lesion pixels as lesions unless these pixels are connected
to a lesion area, thus producing a slight increase in the lesion
area. As shown in Figure 9, the created false positive pixels
are all connected in the vicinity of actual positive pixels,
which slightly expands the area of the lesion.

1800411

FIGURE 9. Output segmentation of the introduced model compared to
two ground truths. Left to right are the FLAIR image, the results compared
to the first expert, and the results compared to the second expert. In all
images, true positives are denoted in white pixels, false positives in red
pixels, and false negatives in green pixels.

FIGURE 10. Attention maps generated by M3d-CAM. From left to right,
the first column original Flair image, the second column is the attention
map for the model without an SCA module, and the third column is the
attention map for the model with an SCA module.

Also, to show the efficiency of the SCA module, we use
Explainable Artificial Intelligence (XAI) to visualize the
features which are understandable for humans and experts
[63]. Several XAI models for 2D or 3D segmentation and
classification have been proposed until now [64] [65]. This
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FIGURE 11. Demonstrate the tested models’ boxplot with all measures on
the ISBI dataset.

paper uses a PyTorch library M3d-CAM to generate 3D
attention maps [66]. Figure 10 shows some samples of the
attention maps. It is obvious when the SCA module is used
the unimportant parts are filtered especially in the first slices
where the pixels have high gray levels and are more similar
to the lesion pixels.

The boxplots of the DSC, LFPR, LTPR and AVD eval-
uation metrics for different approaches are illustrated in
Figure 11. The Figure shows our proposed method performs
well in terms of DSC and AVD compare to other state-of-
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FIGURE 12. Comparing the lesion volumes produced by automatic and
manual segmentation on the ISBI dataset. Each point is related to a single
lesion.

the-art methods. As it is evident, the DSC is in the range of
[0.3, 0.85] and most of the samples are over 0.6. In addition,
although the mean of the LFPR is high for the proposed
method, there are no samples in which the LFPR is over 0.7,
and most of the samples are located under 0.45.

Figure 12 shows the relationship between the ground truth
and predicted volumes of lesions (each point per lesion).
In terms of qualitative evaluation, it can be seen that most
of the methods tend to underestimate lesions as many of
the points are under the red line significantly when the size
of lesions is increasing. On the contrary, the FLEXCONN
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method which is proposed by Roy et al. [38] tends to
overestimate the lesion sizes. However, with quantitative
analysis, the proposed method estimated lesion size the slope
closest to unity (0.76) and the highest Pearson correlation
coefficient (0.94). So, it means the proposed method provides
a more robust global agreement between predicted lesion
volumes and ground-truth lesion volumes. It is worth men-
tioning, that a better deal does not mean the model has better
accuracy.

IV. DISCUSSION AND CONCLUSION

The present paper introduces an automated lesion segmen-
tation approach that is based on one modality as an input
which is rare in the state-of-the-art. The proposed architecture
is an end-to-end 3D patch-wise composed of convolution,
deconvolution, and an SCA-VoxRes module as an attention
module.

In medical image processing, it is common to overcome
the limitation of the single modality approach by combining
different MRI modalities. Holding that patients cannot afford
the cost of combining modalities in medical image segmen-
tation, the current research presents a single modality-based
architecture that is more accurate and robust than other multi-
modality methods.

Furthermore, patch size is the limitation of patch-based
CNNs which suffer from a lack of spatial information for
the lesion. Therefore, the proposed method uses an attention
module to capture long-range contextual information as a
way of attaining spatial information. Consequently, the patch-
based CNNs do not lack data, because many random patches
can be extracted from 3D data.

Although there are several advantages to the proposed
method the limitation of the proposed method should be taken
into account. The most important limitation of the proposed
method is the high range of LFPR which is due to the
existence of two different grand truths in the dataset. In this
case, when the model is training, it should try to optimize
the loss function according to the logical-or of two grand
truths. On the other hand, this research tried to propose a
method based on features like using one modal as input and
introducing an attention module to improve the robustness of
the output segmentation which is more suitable for clinical
diagnosis. However, lack of access to clinical data caused
we could not show the advantages and disadvantages of the
proposed method well, but the proposed method with the
public data outperforms well even when the FLAIR is an
input.
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