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Abstract

The main challenge in deterministic quantum state transfer (QST) between remote mechanical
resonators is the local decoherence and the transmission losses in the communication channel. In
the path of overcoming this limitation, here we employ a shortcut to adiabatic passage protocol to
devise a fast and reliable evolution path between two remote mechanical modes in separate
optomechanical systems (OMSs). A QST between the two nodes is conceived by engineering their
coupling to an intermediate fiber optical channel. The coupling pulses are operated such that the
dark eigenmode of the system is decoupled from the fiber modes and transitions to the bright
modes are compensated for by counterdiabatic drives. We show that one obtains a QST with high
fidelity for various Gaussian states. The efficiency is compared to that of adiabatic passage (AP)
protocol in the presence of losses and noises. Our results show that while the AP protocol is very
sensitive to the decoherence, the shortcut to adiabaticity provides a robust and fast QST even for
small values of the coupling strength. The performance of both protocols are also investigated for
the case of multimode fiber through numerical and an effective single-model model which is
found by the elimination of off-resonant fiber modes. Our findings may pave the way for using
OMSs in the realization of continuous-variable Gaussian QST.

1. Introduction

A key task in quantum communications and quantum networks is the ability of quantum state transfer
(QST) with high fidelity between two distant objects [1-3]. The quantum teleportation [4, 5] is a
well-known method to accomplish this task, but today QST is a terminology with more general usage. A
quantum network consists of clusters of stationary quantum memories as nodes connected by quantum
channels, such as free space or waveguides. Through a QST protocol, the quantum information stored in
the nodes are transferred from one to another via the channel [6—10]. This task can essentially be
performed probabilistically or deterministically. In the former case a successful QST is conditioned on a
post-selected entangled state between the node and is usually heralded upon a specific measurement
outcome and is followed by a quantum teleportation at the end of the protocol [11]. Meanwhile, in the
latter case the QST is always performed successfully but with a finite fidelity by mapping the state of the
sending node onto an intermediator and then delivering it to the receiving node by properly engineering
their mutual coupling [12].

Among the others, there are two well-known protocols in performing deterministic QST between
remote nodes of a quantum network. The standard protocol which is based on wave packet shaping (WPS),
employs laser drives for exciting the sending and receiving nodes so that the state is mapped into the flying
qubits and subsequently perfectly absorbed at the destination [13, 14]. Another protocol for QST is based
on the stimulated Raman adiabatic passage (AP) which has been developed to surpass the problems of WPS
[15]. During the AP protocol, the quantum states are preserved in a dark state that decouples from the
channel dissipation via driving pulses that are applied in a counterintuitive order [16].
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In the realm of continuous variables [17], optomechanical systems (OMSs) offer an excellent approach
for implementing quantum communications with the mechanical resonators functioning either as a
transducer or the stationary local nodes [18—22]. The QST between such mechanical nodes thus would be a
crucial task. As a preliminary step, the idea of transferring the state of light to a massive mechanical
resonator had been proposed about two decades ago and later implemented experimentally [23-27].
Mechanical resonators in opto-electro-mechanical systems were later proposed to mediate the QST between
electromagnetic modes in different frequencies [28—36]. As the first step in networking with mechanical
resonators, the QST between two mechanical modes and their entanglement has been the subsequent
subject of research [37-45]. Specifically, the QST between remote mechanical modes through quantum
teleportation has been theoretically investigated both in continuous variable [46] and discrete variable
schemes [47, 48]. However, creating highly entangled remote mechanical modes is a challenging task.
Therefore, a reliable and yet fast continuous variable QST protocol remains a rather unexplored area for
mechanical networks.

Here, we propose and investigate an efficient and fast method for performing the QST between two
remote mechanical modes without entangling them. In our scheme each mechanical resonator is part of an
OMS that their cavity modes are connected via an optical fiber. The mechanical modes are coupled to each
other through the cavity and fiber modes thanks to the optomechanical interactions. The cavity modes are
separately driven by laser pulses with a proper detuning. The shape of drive pulses are engineered such that
the quantum state of one mechanical mode, the sending node, is transferred to the other one, the receiving
node, without exciting the fiber modes. This basically constitutes the AP protocol where the system is
preserved in a dark mode with respect to the mediator, here the fiber, during the transfer. However, to
speed-up the process and evade the destroying effect of local decoherence, we propose to compensate for
the diabatic transitions via shortcut to adiabaticity [49, 50]. In this paper, we thoroughly investigate the
shortcut to adiabatic passage (SAP) protocol for different system parameters in the presence of
environmental effects. In the SAP protocol, according to the transitionless quantum driving algorithm, the
diabatic transitions among the adiabatic eigenmodes are suppressed by adding auxiliary counter-diabatic
processes. This leads to a fast and high fidelity state transfer through the dark mode evolution. In contrast
to the AP protocol which has a challenge in conflicting between transfer speed and efficiency, high fidelity
QST becomes possible even for short operation times and even with small values of the coupling strength in
the SAP protocol.

These protocols are applicable for transferring any quantum state between the mechanical resonators.
Nonetheless, here we put our focus on the Gaussian states. These states are of great interest for their
theoretical and experimental feasibility and yet their wide variety of applications [51]. Therefore, the
performance of the AP and SAP protocols are compared for a range of Gaussian states that are of interest
for continuous variable quantum information processing. We investigate the QST of coherent, squeezed
vacuum, and squeezed coherent states with various amplitudes and squeezing parameters.

Furthermore, in our study we consider both the single- and multi-mode fiber cases. For the latter,
alongside a full numerical analysis an effective single-fiber mode model is analytically derived by adiabatic
elimination of off-resonance fiber modes. The validity of the effective mode is verified by its comparison to
the numerical results. It is worth mentioning that the other two major QST protocols, namely quantum
teleportation and WPS, are not appropriate for the scheme studied in this work. The former requires highly
entangled mechanical resonators which is not easy to establish between remote sites as in our proposed
setup. Meanwhile, the latter is based on populating the optical fiber modes. Therefore, the fiber loss
results-in extra loss and reduction in the QST fidelity.

The paper is organized as follows: in section 2 the setup model and its Hamiltonian is introduced. In
section 3 the system dynamics is described through quantum Langevin equations and the cavity modes are
adiabatically eliminated. Then the formulation of system dynamics and fidelity for the Gaussian states is
discussed. Section 4 is devoted to describing the AP and SAP protocols. In section 5 the numerical results of
the QST through both protocols in the single- and multi-mode fiber cases are presented and discussed for
various situations and states. The work is summarized in section 6.

2. The model

The system under study is composed of two similar nodes each containing an OMS whose cavity modes are
connected via an optical fiber as shown in figure 1(a). The cavity modes intermediate the interaction of
mechanical resonators with the fiber modes.
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Figure 1. (a) Sketch of the basic quantum network studied in this work: the nodes are OMSs that are driven by their respective
laser pulses (P; with i = 1,2) and are connected to each other via an optical fiber. (b) The simplified scheme: the mechanical
resonators #1; and m, are coupled to the fiber modes f, with effective strengths g, and g,, respectively. Schematic presentations for
the AP (c) and shortcut to adiabaticity (d) protocols; in AP the fiber modes are not excited, while in SAP the fiber excitations are
retrieved and directed toward the receiving node during the process by compensating for the diabatic transitions.

2.1. The optomechanical system
The OMS at each node is composed of a mechanical resonator and a cavity which is driven by a laser. The
two interact with each other via radiation pressure [52]. The Hamiltonian reads (h = 1)

Hom = wea'a + wmm'm + Goa'a(m + m') + Hgry, (1)

where Gy is the ‘bare’ optomechanical coupling rate, while w. and wy, are the bosonic cavity and
mechanical mode frequencies, respectively. Here, a (a') and m (m') respectively are the cavity and
mechanical mode annihilation (creation) operators with the commutation relations [a,al] = [m, m'] = 1.
The system is driven by a laser at frequency w; whose corresponding Hamiltonian is given by

KpP(t) e
|

Hyw =1 @It 4 he, (2)

where P(t) is the input laser power and &, is the rate of cavity decay into the pumping port. The cavity
photons can also decay into the fiber at the rate ¢ or they are absorbed or diffracted inside the cavity as a
consequence of the intrinsic loss effects, which we describe by the rate «., see figure 1(a). Note that in the
Hamiltonian (2) we are explicitly assuming a time dependent input power because in the following a pulsed
scheme is studied. Since the bare coupling rate G is typically small one employs high drive powers to
compensate for it. As a consequence, the nonlinear nature of the optomechanical interaction becomes
negligible. An effective bilinear optomechanical Hamiltonian is then attained by substituting a — (a) + ¢ in
equation (1), neglecting the term proportional to c'c(m + m'), and dropping the drive. Here, ¢ describes
quantum fluctuations of the cavity filed around its mean classical value (a). In the frame rotating at the
laser frequency this effective OMS Hamiltonian reads [52].

ﬁom = Accle+ wamtm + G(t)(c + cT)(m + mT), (3)

where A. = w. — wj is the cavity mode detuning from the laser frequency, while G(#) = Gy(a(t)) is the
effective optomechanical coupling with (a) oc v/P the classical amplitude of the cavity mode [53].
Therefore, the effective optomechanical coupling becomes time dependent through the laser drive power.
The bilinear interaction in the above Hamiltonian involves two types of interactions: the beam-splitter

ctm 4+ cm' and the two-mode squeezing cm + c'm'. The former is suitable for transferring state of the
mechanical mode to the cavity and vice versa [26], while the latter can create entangled optomechanical
states [54]. In the resolved sideband regime x < wy,, where k = k¢ + K + K is the total cavity decay rate,
the dominant process is determined by setting the laser detuning: A, = 4wy, for the beam-splitter and

A. = —wp, for the two-mode squeezing.
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2.2. The fiber modes
The fiber modes are treated as harmonic oscillators. The Hamiltonian is then given by

—+o0 —+o0
Hgp, = Z waffy = Z (wo + nSesp)f s (4)

where w, = wy + ndgsg and f, (f]) are the frequency and the annihilation (creation) operator of nth mode
of the fiber, respectively. Here, wy is frequency of the ‘resonant’ fiber mode f, the one that has closest
frequency to the laser drive wj. In the rightmost part of the above equation we have expressed the fiber
mode frequencies with their separation from the ‘resonant mode’ in terms of the free spectral range

Opsr = mc/1 (with ¢ speed of light in the fiber and L length of the fiber). In a frame rotating with the driving
laser frequency one has

—+o0
Hgy = > (Ao + ndese)f fir (5)

n=-—00

where Ay = wy — wy is detuning of laser from the resonant fiber mode.
The fiber modes are coupled to the cavities at the nodes. The cavity—fiber interaction is given by the

following Hamiltonian [15].
—+o00

Hiw =ix Y la+ (=D)"alff + hec, (6)

n=-—00

where y = \/ cke/L = \/ Keopsr /7 is the cavity—fiber interaction strength. The odd fiber modes couple to
cavity modes in the sending node with a relative phase difference of 7 because of their odd number of
maxima in the intensity profile. The phase factor (—1)" in the Hamiltonian describes such phase
differences. Here, we have assumed that the resonant mode is even.

Furthermore, we assume that the OMSs at both sites are identical and for the sake of simplicity we set
wp = we. Therefore, the Hamiltonian in equation (6) remains intact by moving to the laser frequency
reference frame H. int = Hing.

3. System dynamics

The full system Hamiltonian in the laser rotating frame is given by
H = Hom + Hs + Hinos (7)
where the first term refers to the OMS at both sites:
Hom = ZACC}LC,' + wmm;[mi + Gi(t)(¢; + cj)(mi + mj). (8)

i=1,2

3.1. Langevin equations
The Langevin equations that give the system dynamics are found by

. o~ 1 i

; = —i[m;, H] — 2 Im i + /Ymmi, (9a)

& = —ilci, H] — Koci + v/2koc!™, (9b)
1

fu = —ilfy, H] — ey + /27, (9¢)

where kg = k¢ + kp accounts for intrinsic loss and channels of decay of the cavity other than the fiber,
while 7,, and 7 account for the mechanical damping and fiber loss rates, respectively. Here, m'", ¢, and fi»
are the zero-mean Gaussian input noise operators with the following nonzero correlation functions

(mi (), m(¢)) = ndd(¢ — 1), (10a)
(mi (0, m™ (1)) = (ny + 1)650(t — 1), (10b)
(™), (1)) = 0;0(¢ — 1), (10¢)
(fin ), A1) = Guwd(t — 1), (10d)
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where ny, is the thermal occupation number of the mechanical modes. All other correlators are vanishing.
In the interaction picture of Hy = (wmm mj + Acc] cl) +3>, Aof f,» the equations in (9) read

}/.ni = — 7;/nl- — lG |: —i(Ac—wm)t + C el Ac“rwm)f] + ,ymmi_n,

¢ = —Ko¢ — 1G; [mi e ilwm—Adt 4 mj eilwmtAd) } XZ( 1) 1 e i(Bo=Adr 4 2/{06;'-“,

fo = — (34 indesp)fy + X1 + (—1)"c e’ " 2% f (11)

where in the second equation we have included the factor (—1)"~! with i = 1,2 for taking into account
the phase difference in coupling of the cavity mode ¢, to the even and odd fiber modes. In the two-mode
squeezing regime (A. = +wy,) one could entangle the mechanical modes, which is useful for QST via
teleportation. This regime is extensively studied in reference [46] and it is straightforward to apply their
results to our proposed scheme. Our analyses suggest that creating high entanglement between the
mechanical resonators, which is necessary for a high fidelity continuous variable QST, is very demanding in
the scheme studied in this paper. Instead, we are interested in the beam-splitter regime which is the relevant
case for the protocols studied in this work. Therefore, we set A. = —wp, and by assuming G; < wr, neglect
the counter-rotating terms to arrive at

fit; = —%mm,- — iGic; + v/mm", (12a)
¢ = —Ko¢ — iGim; — XZ(—I)”“_U]; + V2koc", (12b)
fn = —(y¢+ indesp)fy + xlar + (—=1)"c2] + v/ 2¢fin. (12¢)

We remind that since we have assumed wy = w,, hence, one has Ay = A.. These equations can, in
principle, be solve for the system dynamics. Nonetheless, in the following we simplify the problem by
adiabatically eliminating the cavity modes.

3.2. Elimination of the cavity modes
The cavity modes are employed to mediate the interaction of mechanical resonators (the nodes) to the fiber
modes (the channel). Assuming that there is a time-scale separation between the cavity dynamics and that
of the fiber and mechanical modes, we adiabatically eliminate the cavity modes to attain an effective
mechanical-fiber dynamics. The cavity modes have larger decay rate compared to the fiber loss and the
mechanical mode damping rates; kg >> 7y,,,, V¢ Therefore, if the decay rate is also larger than the coupling
strengths of cavity to the fiber and mechanical modes (k¢ > G;, x) the time-scale separation in the
dynamics is justified.

If the above mentioned condition is satisfied, the cavity mode reaches its steady-state much faster than
the fiber and mechanical modes. Hence, one sets the left-hand side in (12b) equal to zero and finds the
following equation for the steady-state cavity mode operators

G X n(i=1) \/7 i
G~ 1H m; Z( 1) o+ g, (i=12). (13)

By plugging these back in (12a) and (12c) one arrives at the following effective equations for the fiber and
mechanical modes

L (m  GEY X Ny ,

rinj = (2 +H0>’”’ 1,%612( D"V 4+ &, (142)

fu = — (3 + indrs)fs — ,?Z Frak — 1—[Glm1 +(=1)"Gymy] + @uy (14b)
keZ

where G? /Ky is the damping rate induced in the mechanical through the optical cavity [55, 56]. Here, we
have introduced the following noise operators

& =/ Amm — i\/ZG%/KOCi»n, (15a)

©n E\/nyff,i“ + 2X2/H0[ci1“ + (—1)”ci2“]. (15b)
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We notice that the cavity modes induce a coupling among the even and odd fiber modes, respectively. This
bilinear interaction is eliminated by applying a unitary transformation, see e.g. [57]. In other words, one
diagonalizes the fiber modes subspace through f, — F, = >, U, 1 f with the transformation matrix U,
arriving at

. 0 G? . X i
m; = — (71“ * ff_:)) mi — IK_OGiZ,(_l)n(l UUn,n’Fn’ +£i>
mn

_— . - X ' (i—1) 7 7—1
F,=—(T,+iQ,)F, —i& —1 U_Gm;+ @, 16
(T + i) i Ei E/ (=1 na G+ (16)

where the fiber normal mode loss rates I',, and frequencies §2,, are introduced and the normal fiber mode
noise operators read &, = >, Un_’i,cpn/. In the working regime of our interest where x < kg, we find that
the cavity induced coupling among the fiber modes is negligible compared to their frequency differences
(ndpsrko > x°). Hence, we set U ~ I, where I is the identity matrix. Therefore, the normal fiber modes are
the same as the ‘bare’ modes F, = f,, as well as their resonance frequencies €2, ~ ndpsg and the
corresponding noise operators ¢, ~ ¢,,. This is also numerically approved by diagonalizing the fiber
subspace. Nonetheless, the loss rates are modified as ', = ¢ + x*/ko = 7. By applying this approximation
to the above equations we get

= —7; m; — izgi,nf;; + &, (17a)
fu = =G+ indesp)fy — 1Y _gintmi + s (17b)

where we have introduced the total mechanical damping rates ¥; = /2 + G?/ ko and the effective
fiber—mechanical coupling strengths as

XGi(t)
Ko '

8in = gi,n(t) ~ (_1)11(1’71) (18)

In figure 1(b) a schematic for this effective model is given.

3.3. Dynamics of Gaussian states
The effective Langevin equation (17) are linear and the noise processes are Markovian with zero-mean
Gaussian correlation functions. In spite of that, analyzing the time evolution of an arbitrary state by their
solution is cumbersome. However, these linear equations are well-suited for describing dynamics of a
system in which all mechanical and fiber modes are initially in a Gaussian state. The Gaussian states span a
wide range of states that are of interest for the ease of theoretical analysis and the experimental feasibility of
their preparation, manipulation, and detection [51]. In terms of the Hermitian canonical operators g,
and pl(z)—that are related to the creation and annihilation operators through m, ) = (qu2) + ip12))/ V2
and its Hermitian conjugate—such states are fully characterized by their first moments vector d; = (Q;) and
the symmetrized covariance matrix Vi = 1({Qj — dj, Qi — di}), where {, } is the anticommutator and
Q=I[q1,p1>--»Xu> Yus ..., q2, P2]7 is the vector of mechanical and fiber quadrature operators. Here,
f, = (X, +1iY,)/V/2 gives the quadrature operators of the nth fiber mode. Hence, a perfect QST for a
Gaussian state is performed, provided the vector of mean values d; as well as all elements of the covariance
matrix V; of the sending mode at time t = f; are transferred to the receiving site at the end of protocol
t = tg.

Time evolution of the displacement vector and the covariance matrix is readily found from the Langevin
equations in (17). Since the noise operators have zero-mean values one arrives at the following equations
that fully describe the system dynamics

d = Md, (192)
V=MV+VMT+D, (19b)




New J. Phys. 24 (2022) 053048 M Rezaei et al

where M is the drift matrix, which in terms of quadrature operators is given by

__A’Vil 0 0 Qin 0 0 7
0 _7741 . —&1,n 0 . 0 0
M= 0 gin - —%f  nlpsg ... 0 n
—Qin 0 ... —ndpsp —ﬁf e D 0
0 0 e 0 Dn e —A’}//z 0
L O 0 S —Dn 0 . 0 —ﬁz_

Meanwhile, the diffusion matrix, i.e. the matrix of noise correlators reads D = D ® I, with I, the 2 x 2
identity matrix and

[(YmPm +751) ... 0 0 0 ... 0 T
'2
0 Ye 0 X 0
Ko
D= 0 0 A 0 0
2
0 X e 0
Ro
L 0 .00 0 ... (Ymh +72)

3.4. Fidelity of Gaussian states

In order to quantify the QST efficiency we employ the Gaussian state quantum fidelity to compute the
overlap of the initial mechanical state at the sending node p; = p, (t = ;) with the state of the mechanical
mode at the receiving node at the end of process p; = p,(t = t;). This quantity is computed by

1
Fpi» pr) = Fo(Vi, V) exp {—45dT(Vi + Vf)15d} ) (20)

with dd = df — d; [58]. The first factor only depends on the covariance matrices and can be expressed in
terms of the symplectic invariants T = det(V; + Vi) and A = 4 det(V; + iw) det(V + iw). Here, the

symplectic matrix is
170 1
= - . 21
“72 (—1 o) @D

For the single-mode states that we are interested in this work one arrives at

Fo(Vi, Vp) = (22)

IR

In the rest of this paper we use equation (20) for quantifying the efficiency of the state transfer protocols.
The studied states are coherent squeezed states |, r) where « is in general a complex number denoting
displacement of the state in the phase space. The degree of squeezing of the phase space distribution is
encoded in r, where without loss of generality is taken a real number.

4. Transfer protocols

We employ the simple single-mode case to provide an intuitive picture for the formulation of the protocols
studied in this work. The compact form of the Langevin equations in equation (17) reads

u(t) = —iM(t)u(t) + n(t), (23)

where 1 and n are the vector of mode and noise operators, respectively, and M is the dynamical matrix or
matrix of coefficients. For a single-mode fiber, where only the resonant fiber mode couples to the
mechanical nodes, one gets u = (m, fo, m2)T, n = (&1, o, )T, and




10P Publishing

New J. Phys. 24 (2022) 053048 M Rezaei et al

—lal gl 0
M = &1 —ive 14) > (24)
0 gZ —1?2

where we have used g; = g;, for shorthand.

4.1. Adiabatic passage
To begin, we first describe the AP which is a well-known universal protocol for deterministic QST in
discrete variable systems [15]. In the AP protocol, the laser drives are applied at the nodes in a
counterintuitive order, such that the receiving node excitation g, (t) precedes that of the sending node g, (1).
This requirement implies that lim,_,;, % =0and limt_,tf% = 00, which by introducing the mixing angle
Y= arctan(%) translates into ¥(#;) = 0 and J(¢;) = 7 [16]. We remind that according to equation (18) the
fiber—mechanical coupling rates are proportional to the linearized optomechanical coupling rates
g:(t) o< Gj(t). Therefore, the desired timing and form of interaction pulses g; is basically controlled via the
laser drives P;.

In analogy to the dark and bright states in atom systems, in our simple three-mode model the system
eigenmodes comprise the dark mode Ay and two bright modes A whose relation to the original modes in
the case of vanishing loss and damping rates (7;) = 7 = 0) are found as the following

1
Ay = % (m1 sin 9 + m, cos U —|—]6) , (25a)
Ay = my cos ¥ — m;y sin 9, (25b)
A_ = L(ml sin ¥ 4 m; cos ¥ — fy). (25¢)

V2

These ‘adiabatic modes’ are the instantaneous eigenmodes of the system. The AP mechanism is then easily
understood by looking at equation (25): The goal is to transfer a quantum state from sending mechanical
mode m; to the receiving mechanical mode m, through the dark mode A, that does not involve the fiber
mode f,. The AP protocol requires large operation times for ensuring a slow evolution and/or strong driving
pulses to maintain the system in the dark mode A, during the process. Generically, if the process duration
or driving pulses strength is large enough, the system evolves along either of its adiabatic eigenmodes A;
without any intermode transitions. Therefore, slow nature of the AP protocol is its main weakness. Because
it then suffers from dissipations and decoherence in the sending and receiving nodes as well as the loss in
the channel. On the other hand, if the process is accelerated for minimizing the losses, due to the diabatic
transitions the time evolution path does not follow the adiabatic eigenmode A; anymore. Such transitions,
in turn, can be compensated for by introducing extra drives to the system as is detailed next.

4.2. Shortcut to adiabatic passage

Here, we propose a mechanism based on the SAP technique to speed up the process and yet retain the high
QST efficiency. In principle, one needs to revert the diabatic processes among the adiabatic eigenmodes
during the transfer [59]. For this, we modify the dynamic matrix M(#) in equation (23) such that the
non-adiabatic transitions are eliminated [50]. This allows us to perform a rapid and high fidelity QST
between the mechanical resonators in the system even with weak driving pulses. This, indeed, is performed
by adding an auxiliary counter-diabatic process to the system whose contribution to the dynamics is
described by the following dynamical matrix

Ma(t) =Y Al (26)
k

where the summation is over all eigenmodes of the system and the dot indicates the time derivative. By
substituting equation (25) in (26) the counter-diabatic dynamical matrix M4 for the three-mode system
reads

0 0 ig,
My = 0 o 01, (27)
—ig, 0 0

where g, = (§192 — £1£2)/ (g} + g3) is the coupling rate of the mechanical modes to each other, e.g. via an
auxiliary driving field. For its realization, one should employ an extra field that couples to both mechanical
modes at the sending and receiving nodes, which can be experimentally challenging for two remote
resonators.
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We instead propose an experimentally feasible approach for implementing the counter-diabatic
processes. For this, we absorb M4(?) into the reference pulses and avoid the need for an additional long
range coupling. The system dynamics satisfies SU(3) Lie algebra, i.e., in the absence of damping and losses
the total drift matrix reads Myt = M + M = 161 + £2G6 — £.0s, where G with (k = 1,.. ., 8) are the
Gell-Mann matrices. By applying the unitary transformation

1 0 0
U(t)= (0 cos o(t) 1isin ¢(t) (28)
0 isin ¢(t) cos ¢(t)
on M, we arrive at

Mui(t) = 5161 + 2:G6 — 2uGs, (29)

where the following parameters are introduced

g1 =41 Cos ¢ — g, sin ¢, (30a)
L=0+0o (30b)
o= g1 Sin ¢ + g, cos ¢. (30¢)

By setting g, = 0 one finds ¢ = —arctan(g,/g,) and

&1 =1/8 +8 (31a)
L=g+¢ (31b)

Therefore, the SAP protocol can be realized simply by modifying the local coupling pulses to g; and g, [60].

In the following, we perform a numerical analysis on the SAP protocol by properly modifying the drift
M and diffusion D matrices in equation (19) and the two following equations and show that it allows for a
fast and high fidelity state transfer between two mechanical modes by only reshaping the original driving
pulses. Note that the driving pulses g; and g, no longer need to satisfy the adiabaticity conditions such as
large duration time or strong amplitude.

5. Results and discussion

We now study the QST by the shortcut to the adiabaticity method introduced and studied in the previous
section and compatre its efficiency to the AP. For performing the QST, we choose the laser driving pulses
such that the time-dependent optomechanical coupling rates read

G;(t) = — )Xy sech {é(t - %T)} sin {%s(t)} , (32a)

Gy(t) = +Aq sech [é(t - %T)} cos [%s(t)} , (32b)

where s(t) = 1 + tanh[%(t - %T)] with T the drive pulse duration and o its semi-width at the
half-maximum. The effective fiber—mechanical coupling strengths are then immediately found by

equation (18). Here, )\ is the maximum coupling in the pulse. In figure 2(a) the typical form of the original
pulses for an adiabatic state transfer and the modified pulse shapes suited for the SAP protocol are shown.
In the following analysis we shall employ these pulses having # = 0 and # = T. We also assume that the
receiving mode is initially cooled to its ground state, which essentially can be performed by some
mechanism, e.g., sideband cooling [52].

In the following sections we employ parameters from the typical OMSs in the telecom wavelengths, i.e.
wc/2m = 193 THz, where the commercial optical fibers have their lowest loss rates v; /27 = 1.5 kHz.
Photonic crystal OMSs and microresonators are known to have state of the art properties around the
telecom frequencies [61, 62]. The mechanical vibrations in such setups are high quality modes with
frequencies in the range of a few hundreds of megahertz to a few gigahertz. Hence, we consider wy, /27 = 1
GHz and ~,, /27 = 1 kHz in our numerics [63, 64]. The optomechanical coupling rate in such setups can
reach to values as high as Ay = max{G«)(#)} = 27 x 50 MHz, see e.g. references [65, 66]. In this work we
always set the cavity decay rate to ko = 5\¢. Furthermore, the branching ratio is chosen such that one
always has ko = 5. These choices of the parameters guarantee the validity of the cavity adiabatic
elimination performed in section 3.2 and ensure that the system operates at the resolved sideband regime.
The system parameters employed in our work are summarized in table 1.
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Figure 2. (a) The original (solid) and modified (dashed) pulse shapes used for performing AP and SAP protocols. Also, the
auxiliary pulse for performing a direct counter diabatic drive is shown as the dotted line. The vertical axis is normalized to Ay and
the parameters are T = 500 ns and o = 0.17. (b) Time evolution for the fidelity of the transferred coherent squeezed state

| = 1,7 = 1) by these two protocols. The dotted line corresponds to the case where counter diabatic pulses applied directly
through equation (27). Here, we have used \o/2m = 10 MHz, dgsg = 5k, and ng, = 0.

Table 1. Parameters of the system.

Parameter Symbol Value Unit
Mechanical frequency Wi 1(2m) GHz
Mechanical damping rate Y 1(2m) kHz
Cavity frequency we 193(2m) THz
Optomechanical coupling rate o 0-100(27) MHz
Fiber loss rate Ve 1.5(2m) kHz
Branching ratio n 0.025-0.557 —

5.1. Single-mode fiber

First, we consider the simple case of a single-mode fiber and study various aspects of the QST protocols.
The single-mode fiber regime is guaranteed for short distances where dgsr > x. Therefore, we set

dpsr = 5k. By employing the pulse shapes introduced above and shown in figure 2(a), we numerically solve
for the dynamics of the system through equation (19) and compute fidelity of the state at the receiving
mechanical mode with respect to the initial state of the sending mechanical mode using equation (20). The
instantaneous fidelity for transfer of a squeezed coherent state with |« = 1,7 = 1) as a representative
Gaussian state under the AP and SAP protocols are shown in figure 2(b) for pulses with duration T = 500
ns, width 0 = 0.17, and strength Ao /27 = 10 MHz. For this coupling strength value a branching ratio of
1 = 0.025 gives x = 5k and dpsg = 5k as required for the validity of our single-mode theory. This also
corresponds to the fiber length of L ~ 0.58 m.

The receiving mode is initially in a vacuum state. Hence, its overlap with the target state is nonvanishing
(F =~ 0.52). Nonetheless, the final fidelity dramatically depends on the shape of the pulses: while the fidelity
by SAP approaches 96%, the AP only tops to about 60% for the considered parameters. It is also useful to
check efficiency of the ‘original’ SAP protocol where the counterdiabatic drives are applied independently as
in equation (27). The dotted line in figure 2(b) shows the result and clearly indicates that it outperforms the
modified SAP protocol. This is mainly due to omitting the irreversible processes in obtaining the effective
SAP coupling pulses g;(2). However, as mentioned before, the original protocol requires
mechanical-mechanical strong coupling that can be a challenging experimental task, specially for remote
sites. Therefore, from now on we only consider the modified SAP protocol where the pulses are only applied
locally.

We now turn to study the effect of pulse duration and strength on the performance of the protocols.
Here, and in the rest of the paper we set the pulse width to the tenth of pulse duration o = 0.1T without
loss of generality. In figure 3(a) the variations of fidelity F in quantum transfer of the state o = 1,r = 1)
from m; to the m, mode is plotted with respect to the pulse length for the two protocols. We observe that a
longer pulse does not guarantee a better outcome. In fact, at longer times the decoherence at the nodes and
in the channel degrades the transferred state. Here, we have assumed different environmental temperatures
at the nodes, whose effect appears as the equilibrium occupation numbers #ng, = {0, 10, 100}. Evidently, the
thermal noise increases the decoherence at the nodes, limiting the transfer fidelity. We remind that the
optical frequencies considered in this work are not appreciably affected by the temperature. Figure 3(a)
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Figure 3. The QST fidelity through a single-mode fiber: (a) variations with respect to the pulse duration for the coupling rate
Ao/2m = 10 MHz and three different bath temperatures. (b) As a function of pulse amplitude at the fixed T = 1000 ns and
various thermal noise amplitudes. The solid and dashed lines are for the AP and SAP protocols, respectively.

shows that for both protocols a longer pulse duration only gives a better result if the temperature at the
nodes is very low. Yet, there is an optimal pulse duration at which the transfer process is fast enough to
overcome the decoherence effects.

In figure 3(b) the role of coupling rate is investigated for T = 1000 ns. Since the mechanical damping
rates and noises depend on G; through 7;, an enhanced pulse amplitude results-in an increase in the
decoherences, too. Hence, one observes a global maximum for the coupling rate amplitude A\, even at
zero-temperature where the QST is performed optimally. However, similar to the pulse duration T, the
optimal value of )\ is different for AP and SAP protocols and also it depends on the temperature of the
nodes.

From the curves in figure 3 one observes that the general behavior of fidelity more or less depends on
the product Ay T. In particular, the effect of thermal noise on the QST is not noticeable for small values of
the product A\yT. The AP becomes sensitive to the thermal noise about TAy/27 & 10, while this number is
about ~0.2 for the SAP. It is also concluded that in the AP protocol as the speed of the QST process
increases the transfer efficiency decreases. Because by speeding up transfer process in the AP protocol the
evolution of system evolution does not follow the dark mode and the fiber mode can also get populated.
However, in the SAP protocol the diabatic processes are compensated for, thus it retains the performance
even in the shorter pulse durations.

Finally, in figure 4 we compare the optimal performance of the protocols for various coherent and
squeezed vacuum states at three different temperatures expressed in terms of the mechanical occupation
number ny,. In producing these plots we have assumed a given coupling rate of \o/27 = 10 MHz and the
optimization is only carried over the pulse duration. The figure shows that the SAP protocol always
outperforms that of AP. This is more notable in the case of coherent states (figure 4(a)). At very low
ambient temperature ny, = 0 both protocols result-in almost the same fidelities. Nonetheless, as the
temperature rises the SAP gives significantly better outcome for coherent states. Furthermore, the optimal
fidelity in QST of a coherent state becomes almost independent of its amplitude |« at higher temperatures.
In contrast, for a squeezed vacuum state the performance of both protocols gets more limited at larger
squeezing parameter values r for all temperatures. This is such that even for zero thermal noise ny, = 0 the
error in QST of the state | = 0,7 = 2) is about 15 percent. Interestingly, the curves in figure 4(b) suggest
that for ny, 2 10 the performance of the SAP protocol for weakly squeezed vacuum states (r < 0.2) is more
or less the same and independent of temperature. This number extends to r S 0.9 for the AP. We eventually
must emphasize that our results clearly show that the efficiency of the protocols depends on the state being
transferred. This mainly stems from the fact that different states have different sensitivities to the noise and
decohering effects.

5.2. Multi-mode fiber

We now turn to investigate the effect of higher order modes of the fiber on the transfer efficiency in the
protocols. To begin, we first restrict our calculations to the fiber central mode f, and the first pair of
neighboring modes f. This brings us to a set of Langevin equations of motion as in equation (23) with the
vector operator u = (my, f-1, o, fr1, m2) 7. Since we are putting our focus on the transfer of quantum
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Figure4. The optimal QST for (a) a coherent state |, r = 0) and (b) a squeezed vacuum state |« = 0,r) via AP (filled markers)
and SAP (open markers) protocols at three different temperatures. Here, we have set Ag/27m = 10 MHz and the optimization is
performed over T.

Gaussian states the dynamics of the first and second moments are then given by equation (19) and the
corresponding drift and diffusion matrices are found as outlined at the end of section 3.3. The eigenmodes
of the system with three fiber modes in the absence of decoherences are straightforward to find. The

‘darkest” mode recalling the sign of interactions (g, = +g¢, ., =g and g, , = —g, | = &) reads
2 2 T
AO:M<g2) glgz)o)_ g1g2>_gl> > (33)
Orsr Orsr

where A is the normalization factor. Even though the normal mode A, is dark with respect to the fiber
mode f, it still has a finite coupling to the first sideband modes f.; and hence these modes can get
populated during the QST process. In other word, the adiabatic mode Ay is not totally dark when other
modes of the fiber are taken into account. Nonetheless, the contribution of the sideband modes is inversely
proportional to the fiber free spectral range. Meaning that this adiabatic mode can still behave as a dark
mode with respect to the fiber, provided the QST is performed at short enough ranges, see the discussion at
the end of section 5.3.

To fully investigate the effect of this leakage of the information we perform a numerical analysis on the
AP protocol. The numerics of the SAP protocol are too expensive for the multimode fiber case. Instead, we
shall elaborate an effective single-mode model that includes the dynamics of the higher order modes
through their adiabatic elimination in the next section.

The numerical results are presented in figure 5 for the QST of |« = 1,7 = 1). Obviously, due to the
limits in the computational resources only a finite number of fiber modes can be taken into account. Hence,
we first analyze the error that one commits by this consideration. That is, fidelity of the AP protocol is
computed for different number of fiber modes N = 1, 3,5, .. ., where the modes nearest to the resonance
mode f; are symmetrically included at each stage. The relative error is then calculated by

|[Fn — Fn-2|

, (N =3), 34
AR N2 (34)

eEN=2
where Fy is the fidelity of an N-mode fiber with mode indices n € [—%(N - 1), —l—%(N — 1)] involved in
the computations. We plot the relative errors in figure 5(a) for three different free spectral range values. A
monotonic decrease in the error suggests that the fidelity converges rather rapidly as the number of involved
fiber modes increases. The other important observation is that as dpsg grows greater than Ay, contribution
of the farther fiber modes in the QST process becomes negligible. For example, when dpsg = 2 the
relative error is already less than five percent by only adding fi; modes into the calculations.

We next investigate performance of the protocol with respect to the free spectral range, i.e., length of the
fiber. The representative results are shown in figure 5(b), where each curve corresponds to the infidelity of
the protocol for a given value of dgsr as a function of the protocol duration T. In performing the numerics
we have included enough number of fiber modes into the calculations such that a relative error less than
one percent is guaranteed. That is, for Jgsg = 0.5)¢ 13 fiber modes with indices n € [—6,+6], dpsr = Ao
nine fiber modes with n € [—4, +4], and for dpsg = 2, only five fiber modes with n € [—2,+2] are
involved in the calculations. The clear message of the plot is that the information leakage to the higher fiber
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Figure 5. (a) Variations of the relative error in the final fidelity € with respect to the number of fiber modes included in the
numerics for three different values of drsg. Here, T = 2000 ns and the transferred state is |« = 1,7 = 1). (b) The infidelity in
QST of the same state as a function of the pulse duration for three different free spectral range values. The number of modes
included in the calculations are chosen such that the relative error is less than one percent. The dashed lines show results from the
effective single-mode model. The other parameters used in both panels are Ao /27 = 10 MHz and ny, = 0.

modes is suppressed, provided the fiber free spectral range dominates the rate of coupling of the mechanical
nodes to the fiber. This result is in agreement with equation (33) and the discussion below it. That is, for
Opsr > g, &, the chance of exciting higher fiber modes becomes negligible, and thus, the dark adiabatic
mode is the main state transfer channel. It is worth reminding that to ensure the validity of cavity adiabatic
elimination, we have adjusted the branching ratio such that x = 0.2k,. Therefore, we compute

n ~ {0.557,0.386,0.239} and k ~ {22.6, 8.1, 3.3} gk for dpsr = {0.5, 1,2} N, respectively.

5.3. Effective single-mode model
The numerical analysis of the multimode fiber case is too expensive for the shortcut to AP protocol.
Therefore, we elaborate an effective single-mode fiber model by adiabatic elimination of the higher order
modes and only keeping the nearest to the resonance mode f.

The dynamics of nth fiber mode can be adiabatically eliminated if the condition
3t 4 n*0fsg 2 V1> V1020 &1y s satisfied. Considering that we are interested in the regime where r >> Ao, X
this condition simplifies to ndgsg = Ao for all fiber modes with n # 0. Therefore, in the following we
eliminate all fiber modes except for the ‘resonant’ mode by assuming dgsg 2 Ag. For this, we set fn;ko =0in
the left-hand side of equation (17b), and then find the steady state relation of f,-, operators. By plugging
them back into the equations for m,, m,, and f; an effective three-mode system dynamics is derived. Hence,
one arrives at a set of equations as in equation (23) but the dynamics matrix (24) replaced by

-y +Tn) @ —il'},
M(t) = & —J¢ I$) ) (35)
—il'p, & —i(+Tn)

where I'jj = ¥¢) #0% with (7,7 = 1, 2) are the fiber-induced mechanical damping rates. The cross
f FSR
damping I'y; induces a dissipative coupling between the mechanical nodes. Meanwhile, the noise operator

vector is modified to n = (2, @y, Z,)T with the modified mechanical noise operators given by

—_ . gin
o =61 = Pn- (36)
¢ nZ#OVf + 1”5F5R<p

Alongside the modification of the diagonal elements in the effective diffusion matrix, these effective noise
operators give rise to cross-mechanical mode noise correlations. The results of this effective model in the AP
protocol are compared to the exact multimode results in figure 5(b). One infers a reasonable agreement
between the two results provided the free spectral range satisfies the condition dgsg = Ag. This is such that
already for dpsr = 2\ the effective model captures almost all features of the exact numerical results. Having
established the validity of the effective single-mode model we now move to study performance of the SAP
protocol in a multimode fiber.

In our numerical analysis with the effective single-mode fiber model we set drsg = 2\ to ensure the
validity of the results. The fidelity of the QST via AP and SAP protocols are investigated for different
coupling rates )\, which as for the fixed free spectral range value correspond to different multimode fiber
lengths L. The results are presented in figure 6, where the infidelities are plotted against duration of the
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Figure 6. Effective single-mode model: infidelity of the AP (a) and SAP (b) QST protocols as a function of the protocol duration
T for various coupling rate values. The number on the curves give \¢/27 in units of megahertz. The thermal occupation number
is set to ny, = 10. (c) The optimal performance (minimum infidelity) of the AP (filled markers) and SAP (open markers) with
respect to the length of the fiber L = 7¢/dgsr for two different mechanical bath thermal occupation numbers. The state under
study is the coherent squeezed state |1, 1), dpsg = 2. Here, 1 & 0.24 and similar to the rest of paper we have set ko = 5.

protocols for various values of coupling rate \g. As the coupling rate increases, the performance of both
protocols is increased and the required pulse duration becomes smaller, but the SAP is always faster and
more efficient (figures 6(a) and (b)). The overall performance of both protocols is almost the same at low
temperatures and short fiber lengths. Nevertheless, for high mechanical bath occupation numbers the SAP
outperforms the AP protocol. At any temperature, the performance drops by increasing the length of fiber,
evidently because of the reduced coupling rate Ay, see figure 6(c). This in turn stems from the necessity of
satisfying the condition dgsg 2 Ao, which guarantees transfer of the quantum state through dark fiber mode
when a multimode fiber is employed.

6. Conclusion

We have investigated the QST between two distant mechanical resonators coupled via a lossy optical fiber.
Specifically, two protocols are studied: the AP and shortcut to AP. By the shortcut to AP protocol one
eliminates the diabatic transitions between adiabatic modes of the system during the transfer process. We
have shown that this can be done by the modification of the coupling pulses and that it results-in a fast and
efficient state transfer. The effect of thermal noise in the local nodes on the efficiency of the protocols has
been investigated, showing that the fast functioning of the SAP protocol is crucial in retaining the QST
performance in high temperatures. The case of multimode fiber has also been considered via both
numerical calculations and an effective single-mode model that relies on adiabatic elimination of the
off-resonant fiber modes. We find that a safe QST requires a large free spectral range for the fiber.
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