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A B S T R A C T  

 

Past studies show that until now the Random Vortex Method (RVM) has only been used to solve the flow 

of Newtonian fluids. In this paper, by presenting a new approach, the RVM is developed for the first time 
with the aim of simulating the flow of non-Newtonian fluids. For this purpose, a numerical simulation of 

two-dimensional flow of non-Newtonian power-law fluid in a T-junction is presented. The simulation is 

conducted for Re = 50-200 at the inlet of the channel and different power-law indexes (n = 0.2-1.4). The 
RVM solves the Navier–Stokes equations as a function of time and determines the velocity at any point 

of the channel directly and without determining a mesh on the geometry. Potential velocity, an initial 

condition for the flow analysis by the RVM, is obtained using the Schwarz–Christoffel conformal 

mapping. The effect of two parameters of power-law index and Reynolds number on the recirculation 

zone has been investigated. Acceptable agreement among the results of the present study and the existing 

numerical and experimental results shows the capability of the proposed method, according to which the 
RVM can be considered a powerful promising method in simulating the non-Newtonian fluids in laminar 

and turbulent flow regimes. 

doi: 10.5829/ije.2022.35.05b.11 
 

 

NOMENCLATURE 

U inlet velocity of the channel (m/s) b heterogeneous source term in the vorticity equation 

H inlet height of the channel (m) Gr(x,t) Green function 

n power-Law index Δt time step (s) 

m power-Law consistency index Re Reynolds number at the inlet section of the channel 

Q1 inlet flow rate of the channel (m3/s) Rer local Reynolds number 

Q2 outlet flow rate from the longitudinal branch (m3/s) ux velocity profile in x direction (m/s) 

Q3 outlet flow rate from the lateral branch (m3/s) uave average velocity (m/s) 

z complex number on z-plane Lr recirculation length (m) 

t complex number on t-plane Greek Symbols 

t  conjugate of t   Del operator 

dt/dz Schwarz-Christoffel transfer function µ dynamic viscosity (pa.s) 

N total number of vortexes ω* dimensionless vorticity in normal direction to the x-y plane 

F(tj) Schwarz-Christoffel transfer function ρ fluid density (kg/m3) 

( )jW z
 

induced velocity equation on the vortex j σ standard deviation of Gaussian distribution 

t* dimensionless time   shear rate (s-1) 

V* dimensionless velocity vector 
*  dimensionless shear rate 

x* x-dimensionless coordinates µa apparent viscosity (pa.s) 

y* y-dimensionless coordinates ω vorticity in normal direction to the x-y plane (s-1) 

u* dimensionless velocity in x direction Superscript 

v* dimensionless velocity in y direction * dimensional variable 

*Corresponding Author Institutional Email: teymourtash@um.ac.ir (A. R. Teymourtash) 
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1. INTRODUCTION 

 

One of the most promising and accurate methods for 

studying the viscous flow in the laminar and turbulent 

regimes, is the Random Vortex Method (RVM). So far, 

all studies performed with this method are limited to 

Newtonian fluids. However, the behavior of most real 

fluids used in the food, petroleum and petrochemical 

industries, such as solutions and molten polymers, 

industrial oils, as well as materials that have viscous and 

elastic properties (viscoelastic) is considered non-

Newtonian, and because of its wide application in 

industry, it is a topic that is always discussed and various 

methods are used to study and simulate such process. 

Numerous methods for studying and modeling non-

Newtonian fluid flow have been discovered and 

identified. Each has proven its strengths and weaknesses 

through repeated research. But, what is certain is that the 

discovery and appearance of an accurate method to 

simulate fluid flow has always been of interest. For this 

reason, this paper develops the RVM in order to simulate 

the flow of non-Newtonian fluids by introducing a new 

approach for the first time. For this purpose, the non-

Newtonian power-law fluid in a T-junction is simulated 

using RVM. 

The T-junctions are often used as phase separators for 

raw materials (liquid-gas) in industrial applications such 

as refrigeration system, advanced thermodynamic cycle, 

nuclear reactors, petroleum exploitation pipelines and so 

on [1]. More applications of T-junction have been 

mentioned in the research of Yang et al. [1]. The 

junctions (T or Y) are commonly located in such a way 

that the inlet two-phase flow to the branch is unequal 

separated between the side and main branches, and puts 

the gas-rich flow in the side branch and the liquid-rich 

flow in the main branch. 

In the RVM, a limited number of vortexes are 

generated and are followed in the form of a numerical 

algorithm using the Lagrangian perspective. To solve the 

unsteady flow, each time step is divided into two half 

steps. In the first half step, the effects of the viscosity are 

neglected and this time step is passed by the convection 

mechanism. In the second half step, the viscosity effects 

are influenced by the random movement of the vortex 

bubbles generated by the diffusion mechanism. 

RVM is employed to solve the two-dimensional 

equations of motion and the time function of 

incompressible fluids in laminar and turbulent flows. The 

method is based on solving the time-dependent vorticity 

equation, which is obtained from the effect of the Curl 

operator on the Navier-Stokes equations and its 

integration with the continuity equation. 

The condition of no-slip on the wall at any point in 

time is the boundary condition for solving the fluid flow 

equations. In the RVM, to reduce the wall velocity 

tangential component to zero, a number of definite 

constant rotational vortexes are produced and their 

movements are generated due to both mechanisms of 

convection, diffusion and Lagrangian perspective 

accordingly. The motion of each vortex stems from the 

potential velocity of the fluid in addition to the total 

instantaneous velocities induced by the other vortexes 

and their images at the center of the intended vortex. 

Similarly, the instantaneous velocity at any point in the 

field is obtained using the instantaneous velocities 

induced by the vortexes, their images, and the velocity of 

the potential velocity passing through that point. 

The RVM was first introduced by Alexandre Chorin 

who proposed a model for turbulent flow around a 

cylinder in 1973 [2]. He modified this method in 1978 to 

import the boundary conditions to the calculations for the 

boundary layer analysis, and named it the Random 

Vortex Method [3]. Thereafter, RVM became known as 

a numerical method for solving the flow field. 

Gagnon and Giovannini [4] were other people who 

did their research using the RVM. In this study numerical 

simulation and physical analysis of high Reynolds 

number recirculating flows behind sudden expansions 

have been investigated. 

Many researchers have recently done their 

investigation using RVM, some of which are mentioned 

here. Noori and Zafarmand [5] simulated the laminar and 

turbulent flow inside some divergent channels and 

investigated the effects of the divergence angle and 

Reynolds number on the reverse flow inside the channel 

using RVM. In this study, the flow inside divergent 

channels with different angles and Reynolds numbers 

was investigated; while, instantaneous and average 

velocities being calculated. A demonstration of the 

production of vortexes and their distribution was 

presented. The movement of the produced vortexes 

instantly and at different times was well depicted. In 

addition to the above results in this study, the effect of 

divergence angle and Reynolds number on flow 

separation within divergent channels was investigated 

and the results are presented in a useful graph. 

Zafarmand et al. [6] studied the turbulent flow in a 

channel using the vortex blob method. They obtained and 

discussed the physical concepts of turbulence and 

entropy generation. At first, time-averaged velocities and 

then their fluctuations were calculated. It was observed 

that turbulence structures occupy different positions and 

move with convection velocity. To verify the second law 

of thermodynamics, averaged vorticity and its 

fluctuations as well as averaged entropy and its 

fluctuations were calculated. In this research, for the first 

time, the turbulence structures were visualized and 

presented by employing the vector of velocity 

fluctuations, vorticity and entropy generation 

fluctuations. 
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Zafarmand and Ghadirzad [7] studied high Reynolds 

viscous flow simulation past a cylinder as well as an 

elliptical airfoil by random vortex blob. In both cases, the 

obtained mean time velocities were compared with 

available numerical and experimental results. Having 

known the velocity field, by employing momentum 

balance, the drag and lift coefficients caused by flow past 

the elliptical airfoil with different diameter ratios were 

calculated. 

Tadayoni-Navaei and Zafarmand [8] used the RVM 

for geometries with the unsolvable Schwarz-Christoffel 

formula. In this paper, the Schwarz-Christoffel mapping 

function for a square cavity is numerically obtained. 

Then, the instantaneous and the average velocity fields 

were calculated inside the cavity using the RVM. The 

advantage of this modeling is that for calculation of 

velocity at any point of the geometry. There is no need to 

use meshing in the entire flow field and the velocity in a 

special point can be obtained directly; also, no need to the 

other points. 

Jin et al. [9] suggested a circle theorem technique to 

handle 2-D flows around arbitrary cylinders in discrete 

vortex method. In this work, a novel boundary method is 

proposed based on the circle theorem technique. Under 

this algorithm, the identical vortices were introduced 

outside the body to counteract the lost strengths of 

vortices through the use of the circle theorem and surface 

curvature. A series of numerical simulations of flow over 

various cross-sectional bodies at high Reynolds numbers 

were performed to validate the accuracies in predicting 

the hydrodynamic loads, including flow past elliptic, foil, 

square, and triangular cylinders. 

Mimeau et al. [10] compared the semi-Lagrangian 

Vortex Method (VM) and Lattice Boltzmann Method 

(LBM) for incompressible flows. In this study, a proven 

version of each method was used and compared on 

different three dimensional benchmarks in terms of 

numerical accuracy, convergence, numerical diffusion 

and dissipation. It was shown that both methods converge 

to the same solution but in a different way. The VM 

performs better than the LBM for the lowest resolution 

whereas LBM appears to be more accurate for the 

growing resolutions. 

Qian and Yao [11] studied the McKean–Vlasov type 

stochastic differential equations (SDEs) arising from the 

random vortex method, which arise from the random 

vortex dynamics and other physics models. By 

introducing a new approach, they resolved the existence 

and uniqueness of both the weak and strong solutions for 

the McKean–Vlasov stochastic differential equations 

whose coefficients are defined in terms of singular 

integral kernels such as the Biot–Savart kernel. 

Extensive studies have been performed on T-

junctions as well as non-Newtonian fluids. Hayes et al. 

[12] studied the flow specification of a Newtonian fluid 

in a two-dimensional, planar, right angled Tee branch by 

solving the Navier-Stokes equations. In this work the 

effects of the branch length and the grid size on the 

interior flow field were examined to assess the accuracy 

of the solutions. They concluded that the length of the 

side branch has very little influence on the interior flow 

field, particularly at higher Reynolds number. 

Khandelwal et al. [13] studied the treatment of power-

law fluid in a T-channel in the laminar regime. The two-

dimensional numerical calculations have been done using 

Ansys Fluent. In this paper the parameters such as wake 

length, critical Reynolds number and the variation of 

viscosity were calculated by using constant density and 

non-Newtonian power-law viscosity model. The results 

showed that for a particular power-law index (n), length 

of recirculation zone increases in the side branch with 

increasing Re. Also, it increases with decreasing n for the 

fixed Re. The critical Reynolds number decreases with 

decreasing n. 

Brandi  et  al.  [14]  carried  out  research  using  the 

Direct  Numerical  Simulation ( DNS)  and  Linear 

Stability Theory (LST) analysis on an Oldroyd-B fluid 

flowing between two parallel plates. In this paper, the 

laminar-turbulent transition was studied and the 

convection of Tollmien–Schlichting waves was 

investigated for the incompressible, two-dimensional 

flow between two parallel plates. The viscoelastic fluid 

adopted was modeled by the Oldroyd-B constitutive 

equation.  DNS  and  LST  were  used  to  verify  the 

stability of the viscoelastic fluid flow to unsteady 

disturbances. 

Zhou et al. [15] examined the dynamics and 

interfacial evolution for bubble breakup in shear-

thinning, non-Newtonian fluids in a microfluidic T-

junction. The result showed that the length of the bubble 

tip is linearly stretched with time, and the elongation rate 

increases with the concentration of CMC solution. Also, 

the rheological property of the CMC solution could 

significantly affect the bubble breakup process in the 

microfluidic T-junction. 

Kwak and Nam [16] presented a simple factor for the 

vortex formation in power-law fluids flowing inside a 

channel. Their research explored the feasibility of 

applying the flow reversal condition on the Couette–

Poiseuille (C–P) power-law fluid to predict the vortex 

generation. 

Luo et al. [17] presented the results of mixing the non-

Newtonian inelastic fluids in a turbulent patch of T-

junction. Results were obtained based on a Direct 

Numerical Simulation (DNS) of a turbulent flow in a 

converging T-junction for both Newtonian (water) and 

non-Newtonian inelastic fluid (dilute Xanthan Gum 

solution). Based on experimental data, the Bird-Carreau 

law was used to capture the inelastic shear thinning 

property of the solution and passive scalar was 

introduced in the transverse branch to investigate the 

mixing in such configuration. 
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Yang et al. [18] carried out an experimental 

investigation to compare the phase separation 

performance between the single and double branching T-

junctions. The experimental data were compared with the 

predicted values produced by theoretical models based 

on water-air mixture, and they found out that there is no 

suitable model for the refrigerants. It was concluded that 

the inlet mass flux has little influence on phase separation 

while the phase separation efficiency drops sharply with 

the increase of inlet quality. 

Rostami and Morini [19] experimentally studied the 

production of the Newtonian droplets with non-

Newtonian and Newtonian bearer flows inside the micro 

T-junctions. In this paper the generation of Newtonian 

microdroplets in both Newtonian and non-Newtonian 

carrier fluids through a commercial micro T-junction 

under an opposed-flow configuration was analyzed 

experimentally. 

Moghimi et al. [20] examined the effect of non-

uniform magnetic field on non-Newtonian fluid 

separation in a diffuser. The purpose of this study is to 

investigate the boundary layer separation point in a 

magnetohydrodynamics diffuser. As an innovation, the 

Re value on the separation point is determined for the 

non-Newtonian fluid flow under the influence of the non-

uniform magnetic field due to an electrical solenoid, in 

an empirical case.  The impact of the magnetic field 

intensity on the separation point analyzed from the 

physical point of view. It was observed the wall shear 

stress increases by increasing magnetic field intensity 

that leads to delaying the boundary layer separation. 

Maurya et al. [21] examined the combined effects of 

the power-law rheology and isothermal rotating cylinder 

on the characteristics of the power-law fluid flow inside 

the T-junctions. The range of parameters considered in 

this work is as: Reynolds number, 1 < Re ≤ 50, power-

law index, 0.2 ≤ n ≤ 1, Prandtl number, 10 ≤ Pr ≤ 100 and 

non-dimensional circumferential velocity of the cylinder, 

−5 ≤ α ≤ 5. Results suggest that the rotating cylinder can 

be used as a technique to create and/or reduce the 

formation of momentum and thermal boundary layers in 

the flow domain. 

Motahar [22] estimated non-Newtonian behavior of 

nanofluid phase change material containing mesoporous 

silica particles using a neural network approach. In this 

paper, the rheological properties of nanofluid phase 

change material containing mesoporous silica 

nanoparticles are predicted by the artificial neural 

networks (ANNs) method based on the experimental 

database reported in literature. The results showed that 

the developed ANN has a very low mean squared error 

for the training and test dataset. Also, the predicted 

dynamic viscosity and shear stress also have the 

maximum relative error of 6.26 and 0.418%, 

respectively. 

Vatani and Domiri-Ganji [23] experimentally studied 

the patterns of the two-phase flow (gas-liquid) inside a 

rectangular channel with 90° bend. The aim of this study 

was to analyze the behavior of two-phase flow in an 

inclined rectangular channel with 90̊ bend for various 

vertical lengths. The fluids used in this study were air and 

water. In this study, the effects of vertical length on flow 

regimes and pattern transition borders are examined. 

According to the flow visualization, no vortex was 

observed in the vertical section. The results showed that 

the flow regime in the vertical section is churn flow 

regime. Finally, it can be seen that the flow pattern 

structures are not greatly affected by changing the 

vertical length. 

In the continuation, this research uses the RVM to 

simulate the non-Newtonian fluid flow following a new 

approach for the first time. The target of this research is 

to develop the RVM in the non-Newtonian fluids 

simulation. For this purpose, the non-Newtonian power-

law fluid in a T-junction is simulated using RVM for 

Re=50-200 at the inlet of the channel and different 

power-law indexes (n=0.2-1.4). 

 

 

2. CONFIGURATION OF THE CASE GEOMETRY AND 
FINDING THE POTENTIAL VELOCITY 
 

Figure 1 shows a channel with the specifications. The 

inlet velocity of the channel is U, and the inlet height of 

the channel is H. Q1, Q2 and Q3 are the input flow rate, 

the output flow rate from the longitudinal branch and the 

output flow rate from the lateral branch, respectively. 

Since potential flow analysis for complicated 

geometries is a very difficult process, the mentioned 

geometries can be simplified using the conformal 

mapping. In this approach, a complicated geometry in the 

z-plane is transformed to a simpler geometry in the t-

plane. The Schwartz-Christoffel conformal transfer is 

used to compute the potential velocity in internal flows. 

The transformation converts the channel and its inner 

region, which is located on the z-plane axis, into the 

upper half of the transfer t-plane axis. 

 

 

 
Figure 1. Configuration of channel with a T-junction 
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The conversion of the channel shown in Figure 1 by 

the Schwartz-Christofel conformal mapping to its 

corresponding t transfer plane is illustrated in Figure 2. 

As mentioned before, to find the potential flow as an 

initial condition, the Schwartz-Christofel transfer 

function is used, which is obtained for a T-junction as 

shown in Equation (1) [25]: 

(1) 
2

2

1

5

dt t

dz t


−
=

−

 

According to Figure 2, the input flow to the channel 

is equivalent to one source and the output flows from the 

channel are equivalent to two sinks in the complex 

transfer t-plane. 

 

 

3-THE GOVERNING EQUATIONS 
 

The governing equation in RVM is the two-dimensional 

vorticity transport equation where its dimensionless form 

for the incompressible non-Newtonian fluid flow is 

derived as follows: 

(2) ( ) ( )
*

* * 2 *

*

1
. , ,V b x y t

t Re


 


+  =  +


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2 * 2 * 2 * 2 *

* *2 *2 * *2 *2

v v u u
b

x x y y x y
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= + − +   
        
2 2 * *

*2 *2 * *

u v

x y y x

      
+ − +  
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*2 * * *

* * * * * * * *
2

u v

y x x y x x y y

           
− − + + 

        

 

In the above relations, u* and v* are the fluid velocity 

in x and y directions respectively, µ is the dynamic 

viscosity and ω* is the vorticity in normal direction to the 

x-y plane. b is the heterogeneous term of the source term 

in the vorticity equation, which becomes to zero (b=0) 

for the Newtonian fluid. Furthermore, Re is the liquid 

phase Reynolds number at the inlet section of the channel 

which is derived for the non-Newtonian fluid flow as 

follows [26]: 

 

 

 
Figure 2. Transmission t-plane for the T-junction 

(4) 
2n nH U

Re
m

 −

=  

where ρ is the density of fluid, H is the inlet height of the 

channel, U is the inlet velocity of the channel, n is the 

Power-law index and m is the consistency index. 

The RVM scheme is based on the vorticity transport 

equation solution in two steps of convection and 

diffusion which for non-Newtonian flow, these two steps 

will be as follows, respectively [4]: 

(5) 
*

* *

*
. 0V

t





+  =


 

(6) 
*

2 *

*

1
b

t Re





=  +


 

The general solution of the vorticity transport equation is 

obtained by the summation of the above equations. In the 

RVM, the no-slip condition or zero relative velocity on 

the wall at any moment is considered as a boundary 

condition of the fluid flow equations. In order to zero the 

sliding velocity on the walls, a number of similar 

vortexes with the same circulation are generated, and are 

separated from the wall by the diffusion mechanism and 

enter the flow field. In the next step, these vortexes 

continue their motion by both diffusion and convection 

mechanisms. In addition, to eliminate the normal induced 

velocity by the vortexes, the vortexes image is used. 

To solve the diffusion equation, the Green function is 

used. According to Andrei Polyanin solution [27], the 

Green function of Equation (6) is: 

(7) ( )
1

2
2, exp

4 4

Re Re
Gr x t x

t t

   
= −   
   

 

According to the above relation, the derived Green 

functions in Newtonian and non-Newtonian fluids are 

similar. This means that in the non-Newtonian fluid, as 

in a Newtonian fluid, the diffusion mechanism can be 

solved using the random perpendicular motion. The 

motion due to the diffusion of the vortexes is as two 

perpendicular displacements which are the random 

variables with Gaussian distribution and a mean value of 

zero and a standard deviation of 2 t
σ

Re


=  ( t  is the 

time step). 

As a matter of fact, term b has its effects on the 

standard deviation σ. The effect of adding b to the 

diffusion equation for a non-Newtonian fluid (despite the 

same Green functions) could be simulated by an 

alternative approach. According to this approach, for a 

non-Newtonian power-law fluid, after calculating the 

shear rate and apparent viscosity in each time step for any 

location of the vortex, the local Reynolds and its standard 

deviation (

r

2 t
σ

Re


=

); where Rer is the local Reynolds in 
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any point of fluid, are determined for a random motion. 

In other words, in this approach, it is assumed that for a 

non-Newtonian fluid in each time step, each point of the 

fluid that indicates the position of a vortex has different 

viscosity. To determine the apparent viscosity, after 

finding the instantaneous velocities of u* and v* at any 

point of the geometry using the RVM, according to 

power-law model, the shear rate could be computed by 

the following relations [26]: 

(8 ) 

2 22

2 2
u v u v

x y y x


       
= + + +    

        

2 2 2
* * * *

* * * *
2 2

U u v u v

H x y y x

        
= + + +     

        

*U

H
=

 

where   is the shear rate. In the power-law model, µa is 

the apparent viscosity which is derived as follows [26]: 

(9 ) 

1

1 *

n

n

a

U
m m

H
  

−

−  
= =  

 

 

where *  is the dimensionless shear rate, n is the power-

law index and m is the consistency index. Now, a relation 

can be derived between the local Reynolds and the liquid 

flow Reynolds number at the inlet of the channel as 

follows: 

(10 ) 

2

1 * 1

*

1n n

r n n

a

UH UH U H
Re

mU
m

H

  

 


−

− −
= = =

 
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 

* 1n

Re

 −
=

 

In this equation, Rer is the local Reynolds number and Re 

is the Reynolds number at the inlet of channel, which in 

this study is Re=50-200. After calculating the fluid shear 

rate in each time step for each point inside each vortex 

locations, the local Reynolds and the standard deviation 

r

2 t
σ

Re


=  for a random motion is determined. In other 

words, in fluid flow simulation using RVM, the 

difference between the non-Newtonian and Newtonian 

fluids is the random motion of the vortexes. In Newtonian 

fluid, all vortexes in every time step move with the same 

constant standard deviation. Whereas, for a non-

Newtonian fluid, each vortex in each time step performs 

its random motion with a determined standard deviation 

and at the same time different. 

According to RVM, if N is the total number of 

vortexes, the induced velocity equation is shown below 

[5]: 

(11) 

( )jw z =  

( ) ( ) ( ) ( )
1 1

, ,  
N N

j i j i p j j
i i

i j

w t t w t t w t F t
= =



 
 

− + 
 
 

 
 

In this equation, the first term is the set of velocities 

induced by all vortexes on the vortex j. The second term 

is the set of velocities induced by the images of all 

vortexes on the vortex j, and the third term is the velocity 

of the passing potential at point tj corresponding to point 

zj. Also, t is the complex coordinate in the transfer plane, 

t  is the conjugate of t, and F(tj) is also a Schwarz-

Christoffel transfer function. 

 

 

4. VALIDATION OF RESULTS 
 

To validate the results of this research and indicate the 

ability of the presented method, first the non-Newtonian 

flow between two infinite parallel flat plates is solved by 

RVM and was compared with analytical results.  Also, 

the results of the present study were compared with the 

results of Hayes et al. [12] and Khandelwal et al. [13]. 

Consider a unidirectional non-Newtonian flow 

between two infinite parallel flat plates in the x direction, 

which located at y=± H/2. The velocity field ux, 

normalized by the mean velocity is given by 

Rakotomalala et al. [28]: 

(12) 
( )

1

22 1
1

1

n

n
x

ave

yu y n

u n H

+ 
 +  = −  +  

  

 

where n represents the Power-law index. The comparison 

between the analytical solution and the present results for 

a non-Newtonian flow between two infinite parallel flat 

plates with different power-law indexes is illustrated in 

Figure 3. According to this figure, there is a very good 

conformation between the presented method results and 

the analytical solution. Figure 4 shows the horizontal 

velocity profiles between two plates for various power-

law indexes resulting from the recent study. For the 

identical flow rate, when n>1 (shear thickening fluid) the 

profile of velocity becomes sharper. Whereas, when n<1 

(shear thinning fluid) the profile of velocity changes to 

plug flow profile. 

To validate the present method in solving non-

Newtonian flow, the output results have been compared 

with numerical and experimental results by Hayes et al. 

[12] and Khandelwal et al. [13]. This comparison is 

performed for the recirculation length Lr inside the side 

branch of the T-junction which is studied as the 

dimensionless ratio of Lr/H (H is the inlet height of the 

channel) for various power-law indexes (n=0.2, 0.4, 0.6 

and 1) at different Reynolds numbers. The results of this 

comparison can be observed in Figure 5. As this figure 

shows, a very good conformation exists between the 

results which show a promising performance of the 

current method for non-Newtonian fluid flow 

simulations. 
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Figure 3. Comparison of the analytical solution and the present results of RVM for a non-Newtonian flow between two infinite 

parallel flat plates with different power-law indexes 

 

 

 
Figure 4. Horizontal velocity profiles of non-Newtonian fluid flow between two infinite parallel flat plates with different power-

law indexes (Obtained from present study) 
 

 

For n=0.2, 0.4, 0.6 and 1, the minimum percentage of 

deviation of the values obtained in present study in 

comparison with the outcomes of Khandelwal et al. [13] 

were about 0.41%, 0.26%, 0.56% and 0%, respectively; 

while the maximum deviations were about 5.17%, 

2.45%, 1.61% and 2.93%, respectively. 

Furthermore, for n=1, the minimum percentage 

deviation of the values in comparison with the results of 

Hayes et al. [12] is about 0.29%; while the maximum 

deviation is about 3.87%. As the figure shows, there is an 

acceptable conformation between the present study 

results and the both sets of results. 
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Figure 5. Comparison of recirculation length (Lr/H) with that of Khandelwal et al. [13] for n=0.2,0.4,0.6 and with that of Khandelwal 

et al. [13] and Hayes et al. [12] for n=1 at different values of Re 

 
 
5. RESULTS AND DISCUSSION 
 

The computation begins with the initial condition of the 

potential flow. Starting with a potential flow, the flow 

develops by generating vorticity along solid walls to 

annihilate the slip velocity. The vortexes motion stems 

from both convection and diffusion mechanisms. 

Vortexes that move away from the computational domain 

are neglected in the computational process. 

Once the vortexes fill all the computing domain, their 

number is almost constant; which means: 
0

dN

dt


 (N is 

the total number of vortexes within the computing 

domain). Afterwards, velocity can be evaluated 

anywhere in the flow. Such a velocity field is 

instantaneous, and to obtain the average velocity, the 

computation must be repeated in several time steps and 

then averaged. 

In order to investigate the effect of the parameters of 

power-law index and Reynolds number on the 

recirculation zone, after solving the non-Newtonian fluid 

flow using RVM, the streamlines inside the T-junction 

can be drawn. Figure 6 illustrates the streamlines inside 

a T-junction for Re=50, 100, 150 and 200, respectively. 

To demonstrate the effect of the power-law index over 

the flow, seven cases (n=0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4) 

are investigated, which is shown here as an example of 

one case (n=0.2). This figure shows that for a specific 

power-law index, increasing the Reynolds number 

increases the length of the recirculation zone. 

Figure 7 shows the streamlines inside a T-junction for 

n=0.2, 0.4, 0.6, 0.8, 1 and 1.2, respectively for four fixed 

Reynolds numbers Re=50, 100, 150 and 200 (here for 

Re=100). The results show that, by increasing the value 

of the power-law index, the length of the recirculation 

zone decreases. This is due to that by increasing the 

power-law index, the local Reynolds number decreases 

in the whole flow field. In other words, with increasing 

the power-law index, the shear thickening treatment of 

the fluid rises and as a consequence, the fluid viscosity 

grows higher which leads to a decrease into the length of 

the recirculation zone. 
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After finding the length of the recirculation zone in 

the lateral branch for different values of the Reynolds 

number and the power-law indexes, these values can be 

displayed on a graph to compare results. Figure 8 

illustrates the length of the recirculation zone within the 

T-junction in terms of the Reynolds number for the 

various power-law indexes. For a particular power-law 

index, this length increases nonlinearly with increasing 

Reynolds number. Also, for a fixed Reynolds number, 

the recirculation length increases with decreasing power-

law index. Therefore, it can be concluded that the 

recirculation length is a function of the power-law index 

and the Reynolds number. Another important conclusion 

that can be drawn from this figure is that the lower the 

power-law index, the greater the effect of the Reynolds 

number on the length of the recirculation zone. In 

contrast, increasing the Reynolds number for the power-

law indexes with high values does not have a significant 

effect on the length of the recirculation zone. 

It is important to determine the critical Reynolds 

number in which the start of the recirculation zone 

appears in the lateral branch, is very important. In present 

study critical Reynolds numbers are obtained for several 

of the power-law indexes. For this purpose, for a specific 

power-law index, the Reynolds number is gradually 

increased from the lower values with a tolerance of ±1, 

and for each value of the Reynolds number, the change 

of the velocity sign in the y-direction inside the lateral 

branch is checked. The change in the velocity sign 

indicates the presence of a recirculation zone there. For 

instance, Figure 9 illustrates the streamlines in a T-

junction for the critical Reynolds number for the cases of 

n=0.2 and 1.2, respectively. As can be seen from this 

figure, for n=0.2, up to Re=8, no sign change in velocity 

and therefore no wake is observed in the flow, but as the 

Reynolds number increases to Re=9, a recirculation zone 

in the lateral branch appears. In the same way, for n=1.2, 

no recirculation zone exists until Re=19 but this zone 

appears at Re=20. 

Figure 10 illustrates the critical Reynolds number in 

terms of power-law index obtained from present study in 

comparison with the results of Khandelwal et al. [13]. As 

the figure shows, there is very good conformation 

between both sets of results. By incrementing the power-

law index, the critical Reynolds number is enhanced, 

meaning that the start of the recirculation zone appearing 

in the lateral branch occurs at a higher Reynolds number. 

In the other words, with increasing the power-law index, 

the shear thickening treatment of the fluid rises and as a 

consequence, the fluid viscosity grows higher which 

leads to recirculation zones occurring at a higher 

Reynolds number.  

 

 

  

  
Figure 6. Streamlines inside a T-junction at different values of Re for n=0.2 (Obtained from present study) 
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Figure 7. Streamlines inside a T-junction at different values of n for Re=100 (Obtained from present study) 

 
Figure 8. Variation of recirculation length (Lr/H) with Re at different values of power-law indexes (Obtained from present study) 
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n=0.2 

  

n=1.2 

  
Figure 9. Streamlines for critical Reynolds number in which the start of the recirculation zone appears in the side branch for n=0.2 

and 1.2 (Obtained from present study) 

 

 

 
Figure 10. Comparison of critical Reynolds number for the 

onset of flow separation at different values of power-law 

indexes with that of Khandelwal et al. [13] 

 
 
6. CONCLUSION 
 

As mentioned earlier, the main purpose of this study is to 

develop the Random Vortex Method in simulating and 

solving the flow of non-Newtonian fluids, which in this 

research is offered for the first time with the introduction 

of a new approach. By observing the obtained results and 

comparing them with the numerical and experimental 

results of other researchers, there is a very good and 

acceptable agreement, which proves that the proposed 

method is very capable in simulating the flow of non-

Newtonian fluids. Therefore, from now on, the RVM can 

be considered as one of the reliable and accurate methods 

in non-Newtonian fluid analysis and many existing non-

Newtonian fluid problems can be investigated by this 

method. 

Important advantages of the RVM include its ability 

to study the fluid flow in a wide range of Reynolds 

numbers, including laminar and turbulent regimes, 

solving time-based equations, and no need to simplify 

governing equations. Therefore, this method can be used 

for two-phase flows that need to determine the 

instantaneous velocities. Also, simulation of turbulent 

flow in this method is possible easily and with very high 

accuracy and can be considered as future work. In 

addition to internal flows, this method can also be used 

to simulate external flows. 

In conclusion, it can be said that in this study, the 

capability of the RVM in simulating and solving the flow 

of non-Newtonian fluids has been proven. Therefore, it is 

suggested that other studies be performed to investigate 

the flow of non-Newtonian fluids with this method, 

especially the simulation of turbulent flows, which this 

method is able to solve with high accuracy. 
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Persian Abstract 

 چکیده 
 یکمقال  با ارائ     ینشتک  است د در امد  استهااد  یوتند  ش یالات ست   یامحل جر يبرايقط    (RVM اي تصتاديد   از روش ورتكس  تا نوممطالعات گذشته  شاتام مد د ک    

 یالست  يدوبعک یاممنظور، جر  ینا ياشتک  است د بر توستع  داد  یوتندش  یرغ یالات ست  یامجر يستاز  ی شت  اولین بار با  کف يبرا اي تصتاديد  روش ورتكسیک، جک  یكردرو

 يو شتاص   ا  Re = 50-200 ي دکد رینولکز ورودي  اشال در محکود برا يستاز  ی شت این  شتک  است د   ستازيی شت ب  صتورت دکدي   T تصتالا یکدر   یرشیوتند پاورلاغ

استهو س را ب  صتورت تابعد از زمام حل مد  نک و بکوم شیاز ب  شت ك  -ت شاویرمعادلا  روش ورتكس  اي تصتاديداشجام شتک  است د   n = 0.2-1.4  پاورلا در طیفمخهلف 

شچایکد سرد  پهاشسیل ب  دنوام شرط اولی  در تحلیل  بنکي بر روي  نکست  و  چننین بکوم شیاز ب  تعیین سترد  در تچام میکام ستیال، سرد  در  ر شقط  از  اشال را تعیین مد

اثر دو پارامهر شتاص  پاورلا و دکد رینولکز   ریستهويل ب  دست  دمک  است د-است     در این مقال  با استهااد  از ت کیل  چکیس شتوارت  صتاديدجریام ب  روش ورتكس  اي ت

   با توج  ب  دم  د کدارائ  شتک  را شاتام م روش  ی قابل د موجود،تجربشهایج دکدي و مطالع  حاضتر و   یجشها ینتوايق قابل ق ول ب بر شاحی  گردش مجکد بررستد شتک  است د

 دگري در شظر گريه   در رژیم  اي جریام درام و در م یرشیوتندغ سیالات  یامجر سازيی قکرتچنک در ش  یکوار ننک روش ام یک را روش ورتكس  اي تصاديد مد توام
 




