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1 Introduction

Assuming the holographic principle [1, 2] is correct then holographic correspondences must

also exist between spacetimes that are not asymptotically Anti-de Sitter (AdS) and field

theories that are not necessarily conformal (CFT). Going beyond the AdS/CFT correspon-

dence [3] opens Pandora’s box, since there are uncountably many spacetimes that are not

asymptotically AdS, and most of them are devoid of interest for physics. When deviating

from the canon, it is thus useful to do so as little as possible. With this perspective in

mind, a number of interesting holographic correspondences have emerged in that past five

years: Schrödinger holography [4–7], Lifshitz holography [8], warped AdS holography [9–

11], de Sitter holography [12] and flat space holography [13, 14]. In this paper we add to

this list of potentially interesting and useful holographic correspondences by considering

Lobachevsky holography.
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Lobachevsky holography is meant in the sense that spacetime asymptotes to the

Lobachevsky plane H2 times some internal spacetime.

ds2 = dρ2 + sinh2ρ dϕ2 + γij(x
k, ρ) dxi dxj (1.1)

Here ρ is a radial coordinate, ϕ ∼ ϕ+2π an angular coordinate and xi are some coordinates

of the internal spacetime. In the large ρ limit the internal metric approaches an invertible

boundary metric γ
(0)
ij depending only on the internal coordinates xk.

γij(x
k, ρ) = γ

(0)
ij (xk) + o(1) (1.2)

The simplest example — and the only one considered explicitly in this work — is when

the internal space is a line or an S1, which permits us to use techniques of three-dimensional

gravity and two-dimensional field theories. The main difference to AdS2 holography [15,

16] [where the sinh2ρ in (1.1) essentially gets replaced by cosh2ρ] is that AdS2 has two

disconnected boundary components, while the Lobachevsky plane topologically is a disc.1

The simplest theory that has a Lobachevsky solution is conformal Chern-Simons gravity [17,

18].

This paper is organized as follows. In section 2 we propose the Lobachevsky bound-

ary conditions. In section 3 we construct the asymptotic symmetry algebra of conformal

Chern-Simons gravity with Lobachevsky boundary conditions. In section 4 we discuss

non-perturbative states and calculate their canonical boundary charges. In section 5 we

perform the one-loop calculation. In section 6 we conclude.

Our conventions are such that the Levi-Civita symbol satisfies εtϕy = 1. Symmetriza-

tion is defined as T(αβ) = 1
2 (Tαβ + Tβα).

2 Lobachevsky boundary conditions

The line-element (1.1) can be expanded asymptotically. Using the coordinate y = 2e−ρ

instead of ρ we require the metric to fulfill the boundary conditions

gµν =

 gyy = 1/y2 +O(1/y) gyϕ = O(1/y) gyi = O(1)

gϕϕ = 1/y2 +O(1/y) gϕi = O(1)

gij = γ
(0)
ij +O(y)

 , (2.1)

where γ
(0)
ij is some invertible matrix with the appropriate signature. We call the boundary

conditions (2.1) “Lobachevsky boundary conditions”.

As an example we focus on three spacetime dimensions, where

γ
(0)
ij dxi dxj = ±dt2 , (2.2)

1The Lobachevsky plane H2 is sometimes called “Euclidean AdS2” and was pictorially represented

by M.C. Escher in his hyperbolic tessellation series “Circle Limits”. We refrain from using this slightly

unfortunate nomenclature since global Euclidean AdS2 has a line-element ds2 = dρ2 + cosh2ρ dϕ2 and

exhibits two disjoint boundaries at ρ = ±∞, whereas H2 has a single boundary at ρ =∞. These are crucial

global differences that have important consequences for the holographic description. Of course, locally both

spaces are equivalent.
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with the plus (minus) sign referring to Euclidean (Lorentzian) signature. Our background

metric in three dimensions is then given by the global Lobachevsky line-element.

ds̄2 =
dy2

y2
+

dϕ2

y2
(1− y2/4)2 ± dt2 (2.3)

We furthermore denote the sub-leading components as follows

gtt = ±1 + g
(1)
tt y + g

(2)
tt y

2 + . . . gtϕ = g
(1)
tϕ + g

(2)
tϕ y + . . . (2.4)

and so on. This is thus the form of our Fefferman-Graham expansion, with g
(1)
µν (g

(2)
µν )

referring to the first (second) subleading term of the state-dependent contribution to the

asymptotic Lobachevsky metric (2.1). Further subleading terms denoted by the ellipsis

in (2.4) need not have integer powers in y.

In three dimensions the diffeomorphisms ξ that preserve these boundary conditions

are given by

ξt = T (ϕ) +O(y) ξϕ = L(ϕ) +O(y2) ξy = yL′(ϕ) +O(y2) . (2.5)

The functions T and L are only subject to the periodicity condition on ϕ, but otherwise

free functions of one variable.

For later purposes we list some geometric identities for the three-dimensional Loba-

chevsky background (2.3), which can be rewritten as

ds̄2 = g
(2)
ab dxa dxb ± kµkν dxµ dxν (2.6)

where g
(2)
ab dxa dxb = dρ2 + sinh2ρ dϕ2 is the two-dimensional Lobachevsky line element

and kµ a covariantly constant vector field normalized to unity, k2 = ±1 (in the coordinates

above k = ∂t).

R̄µν =
1

2
ḡµνR̄± kµkν (2.7a)

R̄ = −2 = −R̄µνR̄µν = R̄µνR̄λν R̄λµ = R(2) (2.7b)

∇̄λR̄µν = 0 = ∇̄µkν = kµR̄µν (2.7c)

R
(2)
abcd = g

(2)
ad g

(2)
bc − g

(2)
ac g

(2)
bd (2.7d)

The quantities with superscript, like R(2), are defined on the Lobachevsky plane H2.

The four Killing vectors of the Lobachevsky background (2.6) are given by

T0 = i∂t L0 = i∂ϕ L±1 = ±e±iϕ (∂ρ ± i coth ρ ∂ϕ) . (2.8)

They form an sl(2)⊕ u(1) isometry algebra.

[L0, L±1] = ∓L±1 [L1, L−1] = 2L0 [T0, Ln] = 0 (2.9)
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3 Asymptotic symmetry algebra

The boundary conditions presented in the previous section do not depend on any partic-

ular theory; however, not every gravitational theory consistently supports a Lobachevsky

background. In this section we choose Lorentzian signature and focus on conformal Chern-

Simons gravity.

In subsection 3.1 we present the action and explain why one should expect Lobachevsky

holography to work for this theory. In subsection 3.2 we derive the canonical charges and

show that they are non-trivial, integrable, finite and conserved. In subsection 3.3 we study

the action of pure gauge transformations and consider descendants of the vacuum. In

subsection 3.4 we provide the asymptotic symmetry algebra, including its central charges.

3.1 Conformal Chern-Simons gravity

Lobachevsky space can be obtained as a ν → 0 limit from warped AdS, where ν is the warp-

ing parameter (see e.g. [9]). In topologically massive gravity [19, 20] the warping parameter

ν scales with the Chern-Simons coupling µ in this limit. This suggests that topologically

massive gravity in the scaling limit µ→ 0 should support Lobachevsky solutions. This limit

leads to conformal Chern-Simons gravity, which indeed has such solutions [17, 18]. This

theory is topological, in the sense that it has zero local physical degrees of freedom, and

appears to be the simplest purely gravitational theory permitting the study of Lobachevsky

holography.

The conformal Chern-Simons gravity action

SCSG[g] = − k

4π

∫
d3x ελµν Γσλρ

(
∂µΓρνσ +

2

3
ΓρµτΓτ νσ

)
(3.1)

contains one coupling constant, the Chern-Simons level k. Besides diffeomorphism invari-

ance in the bulk the theory described by the action (3.1) also enjoys invariance under local

Weyl rescalings of the metric,

g → e2Ωg , (3.2)

with some Weyl factor Ω that asymptotically vanishes linearly, Ω = O(y), due to our

boundary conditions (2.1). The equations of motion descending from the action (3.1) are

solved if and only if the Cotton tensor vanishes, Cµν = 0. Thus, all conformally flat

spacetimes are classical solutions of conformal Chern-Simons gravity and vice versa.

3.2 Canonical charges

To compute the charges corresponding to the gauge transformations found in the previous

sections we use the expressions for their variation derived in [17, 18]. These are obtained in

the first order formulation and expressed in terms of the Dreibein eiµ related to the metric

as gµν = eiµe
j
νηij . Therefore, it is useful to provide a Fefferman-Graham expansion in

terms of this quantity. The most general expansion resulting in (2.1) is

eiµ =

 eȳy = 1/y +O(1) eȳϕ = O(1) eȳ t = O(y)

eϕ̄y = O(1) eϕ̄ϕ = 1/y +O(1) eϕ̄t = O(y)

et̄y = O(1) et̄ϕ = O(1) et̄t = −1 +O(y)

 . (3.3)
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Just as for the metric, we assume a Fefferman-Graham expansion of the Dreibein compo-

nents:

et̄t = −1 + y et̄(1)t + y2 et̄(2)t + . . . et̄ϕ = et̄(1)ϕ + y et̄(2)ϕ + . . . (3.4)

Note that using Lorentz invariance, we could restrict the form of (3.3) further, but we

prefer to keep the Lorentz gauge unfixed.

Now, the expressions for the variations of the diffeomorphism charges2 are [17, 18]

δQ[ξµ] =
k

2π

2π∫
0

dϕ
[
ξµ
(
eiµ δλiϕ + λiµ δeiϕ + 2ωiµ δωiϕ

)
+ 2θi δωiϕ

]
. (3.5)

In these expressions ωiµ is the spin connection and λiµ is a Lagrange multiplier. They

are given by the torsion constraint dei + εijk ω
jek = 0 and equations of motion λmn =

−2
(
Rmn − 1

4ηmnR
)
. The Ricci tensor and scalar are given by standard identities. In

the present case it turns out that the contribution from the Lorentz parameters θi to the

charges vanishes, so that the last term in (3.5) can be dropped.

After a straightforward but lengthy calculation we obtain the result for the diffeomor-

phism charges,

Q[ξµ] =
k

2π

2π∫
0

dϕ
[
T (ϕ)

(
∂tg

(1)
ϕy − 2g

(1)
tϕ

)
+ L(ϕ) f(g(1), g(2))

]
(3.6)

with

f(g(1), g(2)) = ∂t∂ϕg
(1)
tϕ − 2∂ϕg

(1)
ϕy

+ 3g
(2)
tt + 2g(2)

ϕϕ + g(2)
yy − 3∂tg

(2)
ty −

1

2
∂2
t g

(2)
ϕϕ +

1

2
∂2
t g

(2)
yy

+
5

4
(g

(1)
tt )2 − 1

2
(g(1)
ϕϕ)2 − (g(1)

yy )2 + 3(g
(1)
tϕ )2 + (g

(1)
ty )2 − (g(1)

ϕy )2

+
3

4
g

(1)
tt g

(1)
ϕϕ −

5

4
g

(1)
tt g

(1)
yy −

1

4
g(1)
ϕϕg

(1)
yy

−
(

2g
(1)
tt +

3

2
g(1)
ϕϕ −

5

2
g(1)
yy

)
∂tg

(1)
ty − 3g

(1)
tϕ ∂tg

(1)
ϕy + 3g(1)

ϕy ∂tg
(1)
tϕ

− g(1)
ty ∂tg

(1)
tt +

3

2
g

(1)
ty ∂tg

(1)
ϕϕ +

1

2
g

(1)
ty ∂tg

(1)
yy

+
1

2
(∂tg

(1)
ϕϕ)2 − 1

4
(∂tg

(1)
yy )2 +

1

2
(∂tg

(1)
ϕy )2

− 1

4
(∂tg

(1)
tt )(∂tg

(1)
ϕϕ) +

1

4
(∂tg

(1)
tt )(∂tg

(1)
yy )− 1

4
(∂tg

(1)
ϕϕ)(∂tg

(1)
yy )

+
1

2

(
g

(1)
tt + g(1)

ϕϕ − g(1)
yy

)
∂2
t g

(1)
yy −

1

2
g

(1)
tt ∂

2
t g

(1)
ϕϕ − g(1)

ϕy ∂
2
t g

(1)
ϕy .

(3.7)

We summarize some properties of the charges (3.6), (3.7):

• The charges depend not only (quadratically) on the linearized fluctuations g(1), but

also (linearly) on the next order g(2).

2In conformal Chern-Simons gravity there are also conserved Weyl charges. In the present case we

impose boundary conditions that require the asymptotic Weyl factor to vanish at least linearly in y, which

leads to vanishing Weyl charges.
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• The charges are integrable, despite of the appearance of bi-linear terms.

• The charges are manifestly finite.

• The charges are conserved in time as a consequence of the asymptotic equations of

motion (see appendix A).

The properties above, in particular the first two items, are also true for Compère-Detournay

boundary conditions [11] for asymptotically warped AdS spacetimes [9] in topologically

massive gravity [19, 20].

Evaluating the diffeomorphism charges for the background (2.3), we realize that all

expansion coefficients are zero except g
(2)
ϕϕ = −1/2. Therefore the first term in the

charges (3.6) vanishes, while the second one, with f(0, ḡ(2)) = −1, leads to

Q̄[ξµ] = − k

2π

2π∫
0

dϕL(ϕ) . (3.8)

This means that the L-charge zero-mode is nonzero for the vacuum whereas all other

charges are zero. This zero-mode corresponds to the angular momentum J = Q[∂ϕ], and

thus we have

J̄ = Q̄[∂ϕ] = −k . (3.9)

Thus, the background (2.3) has a Casimir angular momentum that equals minus the Chern-

Simons level. Other exact backgrounds and their canonical charges are discussed in sec-

tion 4 below.

3.3 Action of gauge transformations and vacuum descendants

As a consistency-check we demonstrate that the canonical charges are invariant under

trivial gauge transformations. It turns out that these have a fairly complicated action on

the components of g
(1)
ij and g

(2)
ij . We present below the action on g

(1)
ij but give just two

examples of g
(2)
ij .

We consider a diffeomorphism generated by a vector field ξ with components

ξt = T1y + T2y
2 + T3y

3

ξϕ = L1y
2 + L2y

3 + L3y
4

ξy = H1y
2 +H2y

3 +H3y
3

(3.10)

and a Weyl rescaling (3.2) with Weyl factor

Ω = ω1y + ω2y
2 + ω3y

3 . (3.11)

All expansion coefficients Ti, Li, Hi and ωi are functions of t and ϕ. Under this gauge

transformation the metric components transform as

δg
(1)
tt = −2∂tT1 − 2ω1 δg

(1)
tϕ = ∂tL1 (3.12a)

δg
(1)
ty = −T1 + ∂tH1 δg(1)

ϕϕ = −2H1 + 2ω1 (3.12b)

δg(1)
ϕy = 2L1 δg(1)

yy = 2H1 + 2ω1 . (3.12c)
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Two representative example of the subleading components are

δg(2)
ϕϕ = 2∂ϕL1 + 2ω2 − 2H2 + T1∂tg

(1)
ϕϕ + 2ω1g

(1)
ϕϕ −H1g

(1)
ϕϕ

δg(2)
yy = 4H2 + 2ω2 + T1

(
∂tg

(1)
yy + 2g

(1)
ty

)
+ 3H1g

(1)
yy + 2ω1g

(1)
yy + 4L1g

(1)
ϕy .

(3.13)

Neither T3, L3, H3 nor ω3 contributes to any component of δg
(2)
ij .

From (3.12) it is clear that the charges corresponding to T (ϕ) are gauge invariant.

Checking the transformation properties of f is slightly lengthy, but straightforward. It

turns out that f is not invariant by itself, but transforms by a combination of the equations

of motion. The quantity

finv = f − 1

2
(g(1)
ϕϕ − g(1)

yy ) eomtϕ +

(
2g

(1)
ty +

1

2
∂t(g

(1)
ϕϕ − g(1)

yy )

)
∂t (eom)tϕ (3.14)

is off-shell gauge invariant, with eomtϕ as defined in (A.1).

It is worthwhile noting that the terms in f linear in g
(1)
ij are not invariant on their

own. Also the full linear term is not invariant. Thus, the quadratic contributions to f are

essential for consistency.

It is possible to exploit small gauge transformations generated by (3.10) to set to

zero most of the metric components in g(1) and g(2) and thereby considerably simplify the

expression for the canonical charges. Namely, by choosing suitably the functions T1,2, L1,2,

H1,2 and ω1,2 we can always impose the gauge-fixing conditions

g
(1,2)
ty = g(1,2)

ϕy = g(1,2)
ϕϕ = g(1,2)

yy = 0 . (3.15)

The on-shell condition (A.1) then additionally sets to zero g
(1)
tt , while (A.2) [(A.3)] requires

g
(1)
tϕ [g

(2)
tt ] to depend on ϕ only. In this gauge and going on-shell the charges (3.6), (3.7)

simplify to

Q[ξµ] =
k

2π

2π∫
0

dϕ
[
−2T (ϕ) g

(1)
tϕ (ϕ) + 3L(ϕ)

(
g

(2)
tt (ϕ) + (g

(1)
tϕ (ϕ))2

)]
. (3.16)

They are manifestly conserved, ∂tQ = 0. A slightly more complicated but otherwise similar

gauge choice fixes g
(1,2)
tt = g

(1,2)
ty = g

(1,2)
ϕy = g

(1,2)
yy = 0. If one demands τ -independence of

g
(1)
ϕϕ the same statements as above hold, with g

(2)
tt replaced by 2

3 g
(2)
ϕϕ.

When acting on the vacuum with the asymptotic symmetry group, non-trivial lin-

earized states are generated. In fact, acting with the diffeomorphism

ξ = T (ϕ)∂t + L(ϕ)∂ϕ + yL′(ϕ)∂y (3.17)

on the metric (2.3) produces a state gµν = ḡµν + hµν with

hµν =

 hyy = 0 hyϕ = L′′(ϕ)/y hyt = O(y2)

hϕϕ = −L′(ϕ) +O(y2) hϕt = −T ′(ϕ) +O(y3)

htt = O(y3)

 . (3.18)
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The corresponding T -charges are nonzero. We refrain from computing the quantity f

for the descendants since this quantity is unlikely to make sense for linearized solutions.

The fact that g
(1)
ϕy = L′′(ϕ) also completes the argument that the linear term in f is not

gauge invariant on its own, while the full expression for f (3.7) is on-shell gauge invariant

[and (3.14) is even off-shell gauge invariant].

3.4 Central extensions

Let us now present the full asymptotic symmetry algebra including central extensions. The

computations follow the standard procedure, which for conformal Chern-Simons gravity is

performed in detail in [17, 18]. We define our algebra generators as

Tn = G̃[T (ϕ) = einϕ; L(ϕ) = 0] Ln = G̃[T (ϕ) = 0; L(ϕ) = einϕ] , (3.19)

where G̃ is the canonical generator of Poincaré transformations, including the boundary

piece from the canonical charge (3.6). Replacing in the end Dirac brackets by commuta-

tors, i{, } → [, ], and suitably shifting the zero mode generator L0 we obtain finally the

asymptotic symmetry algebra.

[Tm, Tn] = 2kmδm+n, 0 (3.20a)

[Tm, Ln] = mTm+n (3.20b)

[Lm, Ln] = (m− n)Lm+n + 2km(m2 − 1) δm+n, 0 (3.20c)

We see that the central charge of the Virasoro algebra is

c = 24k . (3.21)

The result (3.21) for the central charge is consistent with the µ → 0 (and 8Gµ → 1/k)

limit of the right central charge appearing in warped AdS holography, cR = (15µ2`2 +

81)/[Gµ(µ2`2+27)] [9]. As expected, the centerless subalgebra of the asymptotic symmetry

algebra (3.20) generated by T0, L0, L±1 coincides with the isometry algebra (2.9) of the

Lobachevsky background.

In conclusion, the asymptotic symmetry algebra (3.20) consists of an affine û(1) algebra

generated by Tn and a Virasoro algebra generated by Ln. The central charge is positive

provided the level k is positive, with the overall sign choice of the action as in (3.1). Our

results suggest that the dual field theory is a warped CFT [21].

4 Non-perturbative states and their charges

In this section we discuss non-perturbative states — exact metric backgrounds that solve

the equations of motion and are smooth and regular, at least outside possible black hole

horizons. We restrict ourselves exclusively to stationary and axi-symmetric solutions. By

comparison, in AdS3 holography such states are the BTZ black holes [22]. In the present

case, however, we shall demonstrate that there are no regular and smooth black hole

solutions. Nevertheless, we are able to identify three non-trivial non-perturbative states

and calculate their canonical boundary charges.
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The line-element

ds2 = −dt2 + 2Adtdϕ+
(
r2 −Br

)
dϕ2 +

dr2

r2 −Br +A2 + C
(4.1)

for any values of A, B (and with C = 0) is a solution of Cµν = 0 that asymptotes to

H2 × R in the large r limit (for non-vanishing C the relation B2 = 4A2 must hold).

Note that all curvature invariants are constant and coincide with the ones of Lobachevsky

spacetime (2.7). Moreover, the line-element (4.1) after the coordinate redefinition r = 1/y+

B/2 + (B2 − 4A2 − 4C) y/16 is manifestly compatible with our boundary conditions (2.1).

In the notations of sections 2 and 3 we obtain the non-vanishing expansion coefficients

g
(1)
tϕ = A g(2)

ϕϕ = −4A2 +B2 + 4C

8
. (4.2)

Thus, the zero mode charges are given by

M = Q[∂t] = −2kA J = Q[∂ϕ] = k

(
2A2 − B2

4
− C

)
. (4.3)

The non-perturbative states generated by the line-element (4.1) could be relevant states

in the dual field theory, unless they have to be ruled out for physical reasons. We show now

that indeed nearly all of these states are ruled out because they correspond to geometries

with naked closed time-like curves (CTCs).

CTCs emerge unless a) there is a double zero in the dϕ2 term and no coincident pole

in the dr2 term (solution with a center), b) there is a double zero in the dϕ2 term and a

coincident double pole in the dr2 term (Poincaré horizon), c) there is a single zero in the

dϕ2 term and a coincident single pole in the dr2 term (solution with center), d) there is no

zero in the dϕ2 term (solution with second asymptotic region). We disregard possibility d)

since it violates our assumption about cylindrical topology. [Solitonic solutions of this type

can be brought into the form ds2 = −dt2 + 2Adt dϕ+
(
r2 +B2

)
dϕ2 + dr2/(r2 +A2 +B2)

with M = −2kA and J = k (2A2 +B2).]

Let us focus first on the case C = 0. Possibility a) requires B = 0 and generically leads

to a solution with conical defect. The only exception arises if additionally A = ±1 holds.

Possibility b) requires A = B = 0. Possibility c) requires A = 0 and generically leads to a

solution with conical defect. The only exception arises if additionally B = ±2 holds.

A similar analysis can be performed for C 6= 0, which implies B = ±2A from the

equations of motion Cµν = 0. Possibility a) requires A = B = 0 and the absence of conical

defects sets C = 1. Possibility b) does not exist for C 6= 0. Possibility c) requires negative

C and B = ±2
√
−C. The absence of conical defects sets C = −1.

In terms of the canonical charges all the regular states with C 6= 0 coincide with

some states with C = 0. Thus, to classify all allowed states in terms of mass M and

angular momentum J it is sufficient to consider the cases a), b) and c) for vanishing C.

Moreover, it is sufficient to require B to be non-negative, since it appears only quadratically

in the charges (4.3). According to the analysis above, there are four different regular non-
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perturbative states for C = 0, B ≥ 0:

Global Lobachevsky: (A = 0, B = 2) M = 0 J = −k (4.4a)

Poincaré Lobachevsky: (A = B = 0) M = 0 J = 0 (4.4b)

Rotating Lobachevsky: (A = ±1, B = 0) M = ±2k J = 2k (4.4c)

Global Lobachevsky is our vacuum state. The other three are non-vacuum states.

Up to trivial gauge transformations, we have not found any additional solutions be-

sides (4.1). It seems plausible to us that there are no further solutions with cylindrical

topology, except for singular ones or solutions that are gauge-equivalent to the ones pre-

sented in this section. Therefore, we conjecture that the four states listed in (4.4) comprise

all (regular, stationary and axi-symmetric) non-perturbative states.

5 One-loop calculations

In this section we analyze the one-loop partition function for conformal Chern-Simons

gravity (3.1) with Lobachevsky boundary conditions (2.1), (2.2), with the idea to compare

with some corresponding field theoretical partition function, similar to the Einstein gravity

precursor with Brown-Henneaux boundary conditions [23–25].

Here we use Euclidean signature, work on H2 × S1, and employ the same strategy as

applied earlier for the one-loop calculations in three-dimensional gravity [26, 27] (and much

earlier in four dimensions [28]). We subdivide all metric fluctuations into fluctuations hgf

satisfying some gauge fixing condition and pure gauge fluctuations hgauge parametrized by

the gauge group parameters ζ, h = hgf + hgauge(ζ). In this formalism, the ghost factor is

given by the Jacobian in the change of the variables: Dh = ZghDhgfDζ. To obtain the

one-loop partition function, one has to truncate the classical action to the second order in

fluctuations, S2, and evaluate the path integral

Z =

∫
Dh e−S2(h) =

∫
ZghDhgfDζ e−S2(h) = Zgh

∫
Dhgf e

−S2(hgf) , (5.1)

where we used that S2 does not depend on the gauge parameters ζ, so that the corre-

sponding integration may be performed giving an irrelevant (infinite) constant equal to the

volume of the gauge group.

The remainder of this section is organized as follows. In subsection 5.1 we calculate the

second variation of the classical action around the (Euclidean) Lobachevsky background

and derive the one-loop determinant of the gauge-fixed fluctuations hgf . In subsection 5.2

we evaluate the ghost determinant. In subsection 5.3 we consider boundary conditions for

the physical and ghost modes, relying on the analysis of section 2 and 3. In subsection 5.4

we study aspects of the Lobachevsky ↔ field theory map. In subsection 5.5 we assemble

all pieces and present the result for the partition function.
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5.1 Second variation of the action

The second variation of the classical action around the (Euclidean) Lobachevsky back-

ground (2.3) is given by

δ(2)SCSG =

∫
d3x
√
ḡ hαβδCαβ , (5.2)

where we dropped the overall normalization constant in the action and hαβ is the metric

fluctuation around the classical background. The second variation of the Cotton tensor is

given by

δCαβ = −1

2
εµνα∇µ

[(
∇2 +R

)
hνβ + (∇ν∇β + 2Rνβ)hγγ − 6hγ(νR

γ
β) − 2∇(ν (∇ · h)β)

]
−1

2
εµναR

γ
µ (∇γhνβ −∇νhβγ −∇βhνγ) + (α↔ β) . (5.3)

We decompose the field hµν into its transverse-traceless (TT), ‘trace’ and gauge modes:

hµν = hTTµν + h gµν + 2∇(µξν) . (5.4)

The hTTµν harmonics satisfy the standard conditions:

∇µhTTµν = 0 gαβhTTαβ = 0 (5.5)

They play the role of the gauge-fixed modes hgf introduced above.

Let k be a unit vector tangential to the S1. Then the variation of the Cotton tensor

evaluated on TT fluctuations simplifies to

δCTTαβ = −1

2
εµνα∇µ

[(
∇2 + 2

)
hTTνβ − 2kγkνh

TT
γβ − 3kγkβh

TT
γν

]
−1

2
εµναkµk

γ
(
∇γhTTνβ −∇βhTTγν

)
+ (α↔ β) , (5.6)

where we used the background identities (2.7). Due to the diffeomorphism and Weyl

invariance, h and ξµ do not contribute to the variation (5.6).

Further, we make a Kaluza-Klein decomposition of the TT harmonics,

hTTµν =

(
hττ hτa
haτ hab

)
, (5.7)

where τ is the Euclidean time direction along the S1 and a, b = 1, 2. This split yields

δCTTττ = −εab∇a
(
∇2 − 1

)
hτb (5.8)

δCTTτa = −1

2
εbc∇b

(
∇2 + 2

)
hca +

1

2
ε ba ∇τ

(
∇2 − 1

)
hτb −

1

2
ε ba ∇b

(
∇2 − 3

)
hττ (5.9)

δCTTab =
1

2
ε ca
[
∇τ
(
∇2 + 3

)
hcb −∇c∇2hτb −∇bhτc

]
+ (a↔ b) . (5.10)

Here ∇2 := ∇µ∇µ. Later we shall also use ∆ := ∇a∇a.

– 11 –



J
H
E
P
0
6
(
2
0
1
3
)
0
1
5

After a long but otherwise straightforward algebra one may resolve the TT condi-

tions (5.5) and express hTT in terms of a scalar s and a pseudoscalar p

hTTµν = h(S)
µν (s) + h(P )

µν (p) , (5.11)

where

h(S)
ττ (s) = −∆(∆− 2)s (5.12a)

h(S)
aτ (s) = ∇a∂τ (∆− 2)s (5.12b)

h
(S)
ab (s) = −∇a∇b(∆ + 2∂2

τ )s+ gab∆(∇2 − 1)s (5.12c)

and

h(P )
ττ (p) = 0 (5.13a)

h(P )
aτ (p) = ε ba ∇b(∆− 2)p (5.13b)

h
(P )
ab (p) = −

(
ε ca ∇b∇c + ε cb ∇a∇c

)
∂τp . (5.13c)

Then one can demonstrate that

δCTTµν
[
h(P )(p)

]
= h(S)

µν

(
−(∇2 − 2)p

)
(5.14a)

δCTTµν
[
h(S)(s)

]
= h(P )

µν

([
(∇2 − 1)2 +

1

2
(∆− 2)

]
s

)
. (5.14b)

Now we can calculate the second factor in the last term of (5.1), which yields the

one-loop determinant of the gauge-fixed fluctuations hgf

ZTT =

∫
DhTTµν e−S2(hTT )

=

[
det
(
−(∇2 − 2)

)(
(∇2 − 1)2 +

1

2
(∆− 2)

)]−1/2

0

, (5.15)

where the subscript 0 means that the determinant is calculated for H2 scalars (rather than

tensors or vectors).

5.2 Gauge modes

The ghost factor is equal to the Jacobian appearing in the path integral measure after the

change of variables (5.4),

Dhµν = ZghDhTTµν DhDξµ . (5.16)

To compute Zgh it is convenient to Kaluza-Klein decompose ξµ and further decompose the

vector part into exact and co-exact contributions,

ξµ = ξ(1)
µ + ξ(2)

µ + ξ(3)
µ (5.17)

ξ(1)
τ = u ξ(1)

a = 0 (5.18)

ξ(2)
τ = 0 ξ(2)

a = ∂av (5.19)

ξ(3)
τ = 0 ξ(3)

a = ε ba ∂bw (5.20)
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with three scalars u, v, w. Each change of variables generates a Jacobian factor

Dhµν = J1DhTTµν DhDuDvDξ(3)

Dξµ = J2DuDvDξ(3) , (5.21)

so that the ghost contribution to the one-loop partition function is the ratio of these

Jacobians.

Zgh = J1/J2 (5.22)

Each of these factors can be calculated by using the normalization condition for the path

integral measure. Then,

1 =

∫
Dhµν exp(−〈h, h〉)

=

∫
J1DhTTµν DhDuDvDξ(3) exp

(
−
∫

d3x
√
g hµνh

µν

)
=

∫
J1DhDuDvDξ(3) exp

(
−
∫

d3x
√
g (h, u, v, ξ(3))A(h, u, v, ξ(3))t

)
where t means a transposition, and

A =


3 2∂τ 2∆ 0

−2∂τ −4∂2
τ − 2∆ −2∆∂τ 0

2∆ 2∆∂τ 2∆(∂2
τ + 2∆− 2) 0

0 0 0 −2(∇2 − 1)

 . (5.23)

Therefore, the Jacobian factor J1 yields

J1 = [detA]1/2 (5.24)

=
[

det (−∆)0 det
(
(∇2 − 1)2 + (1/2)(∆− 2)

)
0

det
(
−(∇2 − 1)

)T
1

]1/2
.

The subscript 0 (1) means that the determinant is calculated on H2-scalars (vectors). The

superscript T means that the vectors are transverse. By using the identity

(∇2 − 1)ε ba ∇bw = ε ba ∇b(∇2 − 2)w (5.25)

one can rewrite the vector determinant in (5.24) as a scalar determinant,

det
(
−(∇2 − 1)

)T
1

= det
(
−(∇2 − 2)

)
0

(5.26)

The Jacobian factor J2 can be calculated similarly. The identity

1 =

∫
Dξµ exp

(
−
∫

d3x ξµξ
µ

)
=

∫
J2DuDvDξ(3) exp

(
−
∫

d3x
√
g (u2 + v(−∆)v + ξ(3)

µ ξ(3)µ)

)
(5.27)

yields

J2 = [det(−∆)]
1/2
0 . (5.28)
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Therefore, the one-loop ghost determinant simplifies to

Zgh =

[
det
(
−(∇2 − 2)

)
0

det

(
(∇2 − 1)2 +

1

2
(∆− 2)

)
0

]1/2

. (5.29)

The ghost determinant (5.29) is formally the inverse of the physical determinant (5.15),

which appears to suggest a trivial one-loop partition function. However, as we show below

it is crucial to take into account the different boundary behavior of physical and ghost

modes, as a consequence of which the one-loop partition function becomes non-trivial.

5.3 Boundary conditions

Let us define the boundary conditions on the scalar fields s, p, h, u, v, w consistent with

the Lobachevsky boundary conditions (2.1), (2.2) on hµν . In this analysis one can use the

asymptotic version of the metric (2.3)

ds̄2 =
dy2

y2
+

dϕ2

y2
+ dτ2 (5.30)

with the Christoffel connection Γ̄ϕϕy = −Γ̄yϕϕ = Γ̄yyy = −y−1. The corresponding two-

dimensional Laplace operator is just ∆̄ = y2
(
∂2
ϕ + ∂2

y

)
.

After long but straightforward calculations we obtain the boundary conditions on the

scalar fields s and p,

s = s−1(τ, ϕ)y−1 + s0(τ, ϕ) +O(y) p = p−1(τ, ϕ)y−1 + p0(τ, ϕ) +O(y) , (5.31)

where O(y) means any power (possibly non-integer) of y that is equal or greater than one.3

The leading contributions s−1, p−1, s0 and p0 are asymptotically growing and asymptoti-

cally constant modes. The growing and constant terms are isolated solutions that will play

an important role below. In appendix B we discuss which physical states are generated by

these modes.

Let us now turn to the gauge sector. One can easily find the boundary conditions for

gauge modes in the decomposition (5.4),

h = O(y) ξτ = O(y) ξϕ = O(1) ξy = O(1) . (5.32)

Thus, all the gauge scalars are of the same order,

h, u, v, w = O(y) . (5.33)

The scalar h (u) [v] {w} corresponds to a multiple of ω1 (T1) [H1] {L1} in the notation of

section 3.3, and thus manifestly generates small gauge transformations. Isolated asymp-

totically constant solutions are allowed for v and w, but they do not generate independent

3At first glance the Lobachevsky boundary conditions also seem to allow modes of the form s ∼
y ln(y)σ(ϕ). However, imposing the asymptotic equation of motion (A.1) for these fluctuations requires

vanishing σ. Thus, we impose the boundary conditions (5.31) with no loss of essentiality.
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solutions for ξa and have to be discarded. To see this, let us take v, w in the form of a

Taylor series

v =

n∑
i=0

vi (ϕ) yi w =

n∑
i=0

wi (ϕ) yi . (5.34)

Then,

ξϕ = ∂ϕv − ∂yw =
[
v′0 − w1

]
+

n∑
i=1

[
v′i − (i+ 1)wi+1

]
yi . (5.35)

and

ξy = ∂yv + ∂ϕw =
[
v1 + w′0

]
+

n∑
i=1

[
(i+ 1) vi+1 + w′i

]
yi . (5.36)

From these expressions it is clear that one can obtain arbitrary Taylor expansions for ξϕ
and ξy by adjusting the Taylor coefficients of v and w with the constraints v0 = w0 = 0.

Let us analyze the isolated modes s−1, p−1, s0 and p0. To this end, it is convenient to

relax for a while the Lobachevsky boundary conditions (2.1) and extend the space of metric

perturbations to all square integrable TT modes. Such modes are generated through the

relations (5.13) and (5.12) by the scalar modes s̄ and p̄ satisfying the boundary conditions

s̄ = s−1y
−1 + s0 + o(y1/2) and p̄ = p−1y

−1 + p0 + o(y1/2). In other words, square integrable

TT modes are generated by square integrable scalar modes and by isolated asymptotically

growing and constant modes s−1, p−1, s0 and p0. This implies that the TT fields generated

by the isolated modes are orthogonal to the TT fields generated by square integrable scalars.

Let us consider the asymptotically constant modes. Since L2(H2 × S1) is a closure of

the space of smooth rapidly decaying functions S(H2 × S1), one has the conditions

0 =

∫
d3x
√
g h(S)

µν (s0)h(S)µν(s̃) (5.37)

0 =

∫
d3x
√
g h(P )

µν (p0)h(P )µν(p̃) (5.38)

for p̃, s̃ ∈ S(H2 × S1). Using the Schwartz space has an obvious advantage that one can

integrate by parts in (5.37) and (5.38) thus arriving at

0 =

∫
d3x
√
g s̃
(
2∇2(∇2 − 2) + ∆

)
∆(∆− 2)s0 (5.39)

0 =

∫
d3x
√
g p̃∆(∆− 2)(∇2 − 2)p0 . (5.40)

By these equations, s0 and p0 have to satisfy the differential equations

0 =
(
2∇2(∇2 − 2) + ∆

)
∆(∆− 2)s0 (5.41)

0 = ∆(∆− 2)(∇2 − 2)p0 (5.42)

and behave as a constant at the boundary. One can show that for any given dependence

on ϕ and τ the problems above may have at most one solution (up to an overall constant).

Indeed, suppose that there are two modes, p
(1)
0 and p

(2)
0 satisfying (5.40) such that p

(1,2)
0 =

P (ϕ, τ) + O(y). Then the difference p
(1)
0 − p

(2)
0 = O(y) and also satisfies (5.40). On the
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O(y) fields the operators on the right hand side of (5.40) are positive and invertible [29].

Consequently, p
(1)
0 − p

(2)
0 = 0. Therefore, one can simply try zero modes of the operators

in (5.41) and (5.42) until this solution is found. The solutions are identical for s0 and p0

and read

s0, p0 =

[
sinh(ρ)

1 + cosh(ρ)

]|h|
e−ihϕ fs,p0 (τ) , (5.43)

where fs,p0 are arbitrary functions of τ and h is an integer. These solutions satisfy

∆s0 = ∆p0 = 0 (5.44)

and obey a regularity condition at the origin, limρ→0 |s0|, |p0| < ∞. One can easily check

that the corresponding TT modes are non-zero except for h = 0.

By repeating the same analysis for s−1 and p−1 we arrive at

s−1, p−1 =

[
sinh(ρ)

1 + cosh(ρ)

]|h|
(|h|+ cosh(ρ)) e−ihϕ fs,p−1 (τ) , (5.45)

and

(∆− 2)s−1 = (∆− 2)p−1 = 0 . (5.46)

Non-zero TT modes are generated for |h| ≥ 2.

The modes (5.43), (5.45) have remarkable properties

h(P )
µν (i∂τs0) = h(S)

µν (s0) , h(S)
µν (∂τs−1) = h(P )

µν (i(∂2
τ + 1)s−1) . (5.47)

Since the function fs,p0 (τ) in (5.43) is arbitrary, this implies that the s0 and p0 modes

generate the same metric fluctuations. To avoid double counting in the path integral, we

should keep one set of the modes only. The same applies to s−1 and p−1.

The calculation above also demonstrates that the tensor modes generated by p−1 or

s−1 and by p0 or s0 cannot be obtained from O(y) scalars (as happened with the v and

w gauge modes) since this would contradict the orthogonality conditions (5.37) and (5.38)

and similar conditions for s−1 and p−1.

5.4 Aspects of the Lobachevsky ↔ field theory map

It is instructive to perform an analysis similar to section 4 of [34] where the correspondence

between states in AdS and the conformal field theory was studied. As a first step, we write

the three-dimensional d’Alembert operator on scalar fields as sum of quadratic Casimirs,

using the explicit form of the Killing vectors (2.8) of the Lobachevsky background.

∇2 = T 2
0 + L2

0 −
1

2
(L+1L−1 + L−1L+1) = −∂2

t + ∂2
ρ + coth ρ ∂ρ +

1

sinh2ρ
∂2
ϕ (5.48)

Similarly, the two-dimensional Laplacian on scalar fields is just the quadratic Casimir of

the sl(2) part of the isometry algebra.

∆ = L2
0 −

1

2
(L+1L−1 + L−1L+1) = ∂2

ρ + coth ρ ∂ρ +
1

sinh2ρ
∂2
ϕ (5.49)

– 16 –



J
H
E
P
0
6
(
2
0
1
3
)
0
1
5

This means that the isometry algebra (2.9) can be used to classify solutions of the wave or

Laplace equation, like the ones we have encountered above. We can then label states |ψ〉
in the field theory according to their u(1) and sl(2) weights (j, h).

T0|ψ〉 = j|ψ〉 L0|ψ〉 = h|ψ〉 (5.50)

In what follows, the t- (or Euclidean τ -) dependence will not play any significant role,

which is why we disregard the weights j.

Now suppose that |ψ〉 is a primary state in the sense that L1|ψ〉 = 0. Using the

separation Ansatz |ψ〉 = f(τ) e−ihϕ F (ρ) we find that the function F satisfies

F (ρ) =
F0

(sinh ρ)h
(5.51)

where F0 is some normalization constant. Finiteness of the primary at small ρ requires

h ≤ 0. Compatibility with our boundary conditions (5.31), which we call “normalizability”,

leads to the inequality h ≥ −1. In conclusion, finite, normalizable primaries with integer

weights must have either weight h = 0 or weight h = −1. This explains from a field theory

point of view why we have found exactly two towers of (perturbative) states on the gravity

side, (5.43) and (5.45).

If a primary state represents a scalar field of mass m, (∆−m2)|ψ〉 = 0, then we obtain

from the identity ∆ = L0(L0− 1)−L−1L1 a relation between the mass m and the allowed

weights of the primary:

h =
1

2

(
1±

√
1 + 4m2

)
(5.52)

Note that h is real as long as the two-dimensional Breitenlohner-Freedman bound is satis-

fied, m2 ≥ m2
BF = −1

4 . Imposing finiteness at small ρ picks the lower sign in equation (5.52)

and requires non-negative m2. Normalizability (5.31) leads to the inequality m2 ≤ 2. Thus,

finite, normalizable scalar fields must have a mass in the range 0 ≤ m2 ≤ 2, concurrent

with (5.44) and (5.46), which saturate the respective bounds.

The analysis above allows us to discuss the algebraic properties of the modes (5.43)

and (5.45). The modes (5.43) [the modes (5.45)] obey the primary condition (5.51) only

for vanishing weight, h = 0 [weight h = −1]. This is consistent with the results we just

derived. Denoting these modes as s0,−1, p0,−1 = |0/ − 1, h〉s,p we obtain the following

algebraic relations.

L−1|0, h〉s,p = h |0, h+ 1〉s,p L−1| − 1, h〉s,p = (h− 1) | − 1, h+ 1〉s,p (5.53)

L1|0, h〉s,p = h |0, h− 1〉s,p L1| − 1, h〉s,p = (h+ 1) | − 1, h− 1〉s,p (5.54)

Thus, acting with the raising (lowering) operator L−1 (L1) on a state of weight h leads in

general to a state of weight h+ 1 (h− 1), as expected.

5.5 Partition function

We have now all the pieces available to assemble the result for the one-loop partition

function (5.1) of conformal Chern-Simons gravity with Lobachevsky boundary conditions.
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The contributions of TT modes and ghosts to the partition function, see (5.15) and

(5.29), are given by determinants of the same scalar operators, but the boundary conditions

are different. Therefore, there are non-compensated contributions of the boundary modes

p0 and p−1 (or s0 and s−1). To evaluate the contribution from p0, we compute

δCTTµν
[
h(P )(p0)

]
= h(S)

µν

(
−(∂2

τ − 2)p0

)
= h(P )

µν

(
−i∂τ (∂2

τ − 2)p0

)
, (5.55)

where we used (5.14), (5.44) and (5.47). This yields

Z0 =
[

det(−i∂τ )(∂2
τ − 2)

]−1/2

p0
. (5.56)

The operator in (5.56) is just a square root of the operator appearing in (5.15) for the

harmonic scalars, as may be anticipated. Similarly, for the p−1 mode we have

δCTTµν
[
h(P )(p−1)

]
= h(S)(−∂2

τp−1) = h(P )(−i∂τ (∂2
τ + 1)p−1) (5.57)

yielding

Z−1 =
[

det(−i∂τ )(∂2
τ + 1)

]−1/2

p−1
. (5.58)

The full one-loop partition function is

Z = Z0Z−1 . (5.59)

The complete and explicit cancellation of all bulk modes is a remarkable property of confor-

mal Chern-Simons gravity with Lobachevsky boundary conditions. We have thus achieved

an explicit separation between bulk modes and boundary modes.

However, there is an infinite degeneracy in the sl(2) weight h [see (5.43), (5.45)], so that

it is not clear how the determinants (5.56) and (5.58) can be defined. We shall comment

in the concluding section 6 on a possible resolution of this problem.

6 Discussion

In this paper we made the first steps to study Lobachevsky holography. We proposed

Lobachevsky boundary conditions (2.1) and implemented them successfully in conformal

Chern-Simons gravity (3.1). We constructed for this theory the canonical boundary charges

and proved that they are non-trivial, integrable, finite and conserved. We calculated these

charges for non-perturbative states in section 4. The asymptotic symmetry algebra (3.7)

contained an affine û(1) and a Virasoro algebra with positive central charge (3.21). We

then focused on the one-loop partition function and calculated it. After several technical

steps, including the careful consideration of boundary conditions, we managed to obtain

a clear separation between bulk and boundary modes in the final result (5.59). However,

we were not able to evaluate the determinants appearing in (5.56) and (5.58) due to an

infinite degeneracy coming from the solutions for the boundary modes (5.43), (5.45) which

are labeled by an integer h. We left this issue as an open problem and address now its

possible resolution.

The degeneracy probably can be removed by considering higher order terms in the

action beyond the quadratic level. If true, this would imply that the partition function is not
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one-loop exact. The relevance of fluctuations that do not solve the linearized equations of

motion actually is expected from the result for the conserved boundary charges (3.6), (3.7),

which also depend on fluctuations that do not solve the linearized equations of motion.

Given that the charges depend on the linearized modes quadratically, one may expect that

the cubic action resolves this issue already.

Despite of the technical difficulties encountered at one-loop, there is useful information

we can glean from the modes that contribute to the physical part of the partition func-

tion (5.59). The modes s0, p0 (5.43) should correspond to the descendants of the vacuum

generated by the û(1)-current algebra generators T−n, with positive integer n, since they

generate non-vanishing T -charges [see (B.1) plugged into (3.5)] and are zero (non-zero) for

n = 0 (n 6= 0). Similarly, the modes s−1, p−1 (5.45) should correspond to the Virasoro de-

scendants of the vacuum generated by L−n−1, with positive integer n, since they generate

vanishing T -charges, non-vanishing L-charges (though the evaluation of the latter is not

meaningful at linearized level) and are zero (non-zero) for n = −1, 0, 1 (|n| ≥ 2). We have

also exhibited some additional aspects of the Lobachevsky/field theory correspondence. In

particular, we have shown that the asymptotic modes transform properly under the isome-

tries of Lobachevsky space and that imposing normalizability and finiteness leads exactly

to the two towers of perturbative states that we found on the gravity side in our one-loop

calculation.

It is also of interest to understand the field theoretic interpretation of the additional

non-perturbative states in section 4 and of the absence of black hole solutions, whose

presence is usually required for modular invariance of the partition function [23].

We mention finally that there is a plethora of other topological theories where

Lobachevsky holography can be implemented, namely any three-dimensional spin-n theory

with some non-principal embedding of sl(2) [30]. It is conceivable that the problematic

issues we encountered above in the calculation of the one-loop partition function are absent

for some of (or even all) these theories, since at least for the simplest spin-3 example the

canonical charges turn out to be linear in the fields (up to a Sugawara-term) [31–33].
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A Asymptotic equations of motion

Only three of the asymptotic equations of motion are needed to prove conservation of the

charges.4 They are given by eomµν = 0, with

eomtϕ =
1

2
g

(1)
tt +

1

4
g(1)
ϕϕ +

1

4
g(1)
yy − ∂tg

(1)
ty +

1

4
∂2
t g

(1)
yy −

1

4
∂2
t g

(1)
ϕϕ , (A.1)

eomty =
∂

∂t
g

(1)
tϕ −

1

2

∂2

∂t2
g(1)
ϕy , (A.2)

eomϕy =

(
1− 1

4
∂2
t

)
∂t∂ϕg

(1)
ϕy

− 3

2
∂tg

(2)
tt +

3

2
∂tg

(2)
ty −

(
1− 1

4
∂2
t

)
∂tg

(2)
ϕϕ −

(
1

2
+

1

4
∂2
t

)
∂tg

(2)
yy

− g(1)
ty

[(
1− ∂2

t

)
∂tg

(1)
ty +

(
1− 1

4
∂2
t

)
∂2
t g

(1)
ϕϕ +

(
1

2
+

1

4
∂2
t

)
∂2
t g

(1)
yy

]
− 1

4

[(
1− ∂2

t

)
∂tg

(1)
ty

] (
∂tg

(1)
ϕϕ − ∂tg(1)

yy

)
+

3

4
∂2
t g

(1)
ty

(
g(1)
ϕϕ + g(1)

yy

)
+

1

16

[
g(1)
ϕϕ

(
9∂tg

(1)
ϕϕ − 5∂tg

(1)
yy − 4∂3

t g
(1)
yy

)
− g(1)

yy

(
5∂tg

(1)
ϕϕ − 8∂3

t g
(1)
ϕϕ − ∂tg(1)

yy + 4∂3
t g

(1)
yy

)
−
(
∂tg

(1)
ϕϕ − ∂tg(1)

yy

) (
10∂2

t g
(1)
ϕϕ − ∂4

t g
(1)
ϕϕ + 2∂2

t g
(1)
yy + ∂4

t g
(1)
yy

) ]
+ g(1)

ϕy

(
1− 1

4
∂2
t

)
∂tg

(1)
ϕy . (A.3)

We note that the last equation is actually a subleading equation in the large y expansion,

so this equation does not arise at the linearized level. Moreover, it relates terms linear in

g
(1)
ϕy with second order terms linear in g(2) or bi-linear in g(1), with a structure similar to

the expression for the Virasoro boundary charges (3.7).

B Physical states generated by scalar modes

Let us switch on the modes generated by s = s−1(τ, ϕ)/y + s0(τ, ϕ) + s1(τ, ϕ) y +

s2(τ, ϕ) y2+o(y2) and calculate explicitly the metric fluctuations (5.12). In the conventions

of sections 2, 3 we obtain

g(1)
ττ = 0 g(1)

τϕ = −2∂τ∂ϕs0 g(1)
τy = −2∂τ s̃ (B.1)

g(1)
ϕϕ = 2∂2

τ s̃ g(1)
ϕy = −2∂2

τ∂ϕs0 g(1)
yy = −2∂2

τ s̃ (B.2)

where s̃ = s1 − 1
2

(
∂2
ϕ + 1

2

)
s−1, and

g(2)
ττ = 0 g(2)

τϕ = −2∂τ∂ϕs̃ g(2)
τy = 2∂τ∂

2
ϕs0 (B.3)

g(2)
ϕϕ = š g(2)

ϕy = −4∂ϕŝ g(1)
yy = −š (B.4)

4In the twelve leading and subleading equations of motion there is only one linearly independent non-

trivial equation in addition to (A.1)–(A.3), namely the subleading equation eomyy = 0, which we do not

present here since it is not needed to prove the conservation of the charges.
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where ŝ = ∂2
τ s1 + 1

2

(
∂2
ϕ + 1

2 ∂
2
τ + 1

)
s−1 and š = ∂2

ϕ(3 − ∂2
τ )s0 + 6(∂2

τ + 1)s2. Similarly,

modes generated by p = p−1(τ, ϕ)/y + p0(τ, ϕ) + p1(τ, ϕ) y + p2(τ, ϕ) y2 + o(y2) yield

g(1)
ττ = 0 g(1)

τϕ = 2p̃ g(1)
τy = −2∂ϕp0 (B.5)

g(1)
ϕϕ = 2∂τ∂ϕp0 g(1)

ϕy = 2∂τ p̃ g(1)
yy = −2∂τ∂ϕp0 (B.6)

where p̃ = p1 − 1
2

(
∂2
ϕ + 1

2

)
p−1, and

g(2)
ττ = 0 g(2)

τϕ = −2∂2
ϕp0 g(2)

τy = −2∂ϕp̃ (B.7)

g(2)
ϕϕ = 4∂τ∂ϕp̂ g(2)

ϕy = −∂τ p̌ g(2)
yy = −4∂τ∂ϕp̂ (B.8)

where p̂ = p1 + 1
4 p−1 and p̌ = ∂2

ϕp0 − 6p2. The function p̃ (the function ∂τ s̃) generates the

same leading metric fluctuations g
(1)
µν as the function −∂τ∂ϕs0 (the function ∂ϕp0).

To discuss physical states at the linearized level we set to zero s̃ and p̃, and switch on

alternately s0 or p0. We start with states generated solely by s0. According to (3.12) such

states are not physical but pure gauge at linearized level if the condition (∂2
τ−2)∂τ∂ϕs0 = 0

is met. The on-shell condition (A.2) requires (∂2
τ−2)∂2

τ∂ϕs0 = 0. Therefore, physical states

with non-vanishing T -charges generated by s0 at linearized level are ϕ-dependent functions

that solve ∂2
τ s0 = 0 with ∂τs0 6= 0. Now we consider states generated solely by p0. Pure

gauge modes at the linearized level have to obey the condition (∂2
τ − 2)∂τ∂ϕp0 = 0. The

on-shell condition (A.1) requires ∂τ∂ϕp0 = 0. Therefore, no physical states are generated

by p0 at linearized level and their T -charges vanish.
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