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Recent work in the literature has argued that the joint effect of spacetime curvature and the Gribov

ambiguity may introduce further modifications to the Green functions in the infrared. This paper focuses

on a simple criterion for studying the effect of spacetime curvature on the size of the Gribov region,

improving the accuracy of the previous analysis. It is shown that, depending on the sign of the scalar and

Riemann curvature, the Gribov horizon moves inward or, instead, outward with respect to the case of flat

spacetime. This is made clear by two novel inequalities, derived here for the first time.
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I. INTRODUCTION

Ever since Gribov [1] and other authors [2] discovered
the limitations of quantum Yang-Mills theory in the
Coulomb gauge, many efforts have been devoted to study-
ing the issue in a variety of contexts. In general, in non-
perturbative quantum gauge theory, it may happen that a
gauge orbit intersects the surface defined by the gauge-
fixing condition at more than one point. This leads to a
ghost operator having zero modes, i.e., nonvanishing ei-
genfunctions belonging to the zero eigenvalue. The pres-
ervation of the gauge-fixing condition under gauge
transformations is then expressed by a partial differential
equation admitting a number of solutions rather than a
unique solution, a property usually studied through the
so-called Gribov pendulum example [1,3,4].

In our paper, we study the Gribov problem in curved
spacetime, motivated by the following results:

(i) The work in Ref. [5] has shown that, in a curved
background, a proper gauge fixing cannot be
achieved, not even in the Abelian case.

(ii) When black holes, neutron stars, quark and hybrid
stars, and cosmological setups are studied, it is
important to consider the dynamics of quantum
chromodynamics on a curved background [6].

(iii) The coupling to the gravitational field destroys the
perturbative renormalizability of the Yang-Mills
field with field strength F�

�� even in the purely

Yang-Mills sector [7]. In addition to the familiar
term in F���F

��� in the heat-kernel a2 coefficient,

there are now not only the usual terms in

R2; R��R
��; R����R

����;

but also terms in [7]

��2F���;
�F���

;�; ��2R��T
��; ��4T��T

��

as well, where T�� is the Yang-Mills stress-energy
density in curved spacetime, and � is the Planck
mass. The presence of the last three terms means
that—although the Yang-Mills coupling constant
gets renormalized—the finite part of the effective
action now depends on the auxiliary mass in a way
that cannot be absorbed into a running coupling
constant. Each choice of auxiliary mass corre-
sponds to a different theory [7].

(iv) The Yang-Mills field, in turn, spoils a basic prop-
erty of pure gravity based on Einstein’s general
relativity. Indeed, although many remarkable can-
cellations occur in the computation, the presence of
the Yang-Mills field destroys [7] the one-loop fi-
niteness of pure gravity [8].

Section II outlines the method proposed in Ref. [4] to
study the effects of curvature on the size of the Gribov
region. Sections III and IV study the effects of the Ricci
and Riemann tensors. The challenge of evaluating gluon
and ghost propagators in curved spacetime is analyzed in
Sec. V, while our results are interpreted in Sec. VI.

II. EFFECTS OF THE CURVATURE ON THE SIZE
OF THE GRIBOV REGION

Consider a point p on a given spacetime ðM;gÞ, and
choose Riemann normal coordinates in a neighborhood
of p. Such a coordinate system is built as follows. For
each X 2 U � TpðMÞ, consider the affinely parametrized
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geodesic �X starting from p with initial velocity X. By
definition, the exponential map is such that

e X: X 2 U ! q ¼ �Xð1Þ:
The points q form a neighborhood I of p. If U is suffi-
ciently small, the exponential is invertible and one can use
coordinates of the vector X in TpðMÞ to identify the point q.
In such a coordinate system, if one takes the coordinate
lines to be orthogonal at p, the metric tensor g�� and

Christoffel symbols ��
�� are given by the following ap-

proximate formulas:

g�� ¼ 	�� � 1

3
R���
X

�X
 þ OðkXk3Þ; (2.1)

��
�� ¼ � 1

3
ðR�

��
 þ R�
��
ÞX
 þ OðkXk2Þ: (2.2)

Thus, in Riemannian geodesic coordinates, spacetime dis-
plays only a tiny deviation from flatness. If the gravita-
tional field, described by the Riemann curvature tensor, is
weak, one can use perturbation theory to study the mod-
ifications introduced by a nonvanishing Riemann tensor.

The ghost operator for quantum Yang-Mills theory in
curved spaces (omitting hereafter, for simplicity of nota-
tion, Lie-algebra indices) is

FPðAÞ ¼ �r�r� � ½A�;r��: (2.3)

It acts on anticommuting scalar fields, and reads eventu-
ally, in the above coordinates,

FPðAÞ! ¼ �g��ð@�@�!� ��
��@�!Þ � ½A�; @

�!�:
(2.4)

By virtue of the formula expressing Christoffel symbols in
Riemann normal coordinates, one finds

	����
�� ¼ 2

3
R�
�X

�; (2.5)

and hence

FPðAÞ! ¼
�
�hþ 2

3
R�
�X

�@� � 1

3
R�

�
�

X

�X
@�@�

�
!

� ½A�; @
�!�: (2.6)

The second and third terms, involving the Ricci and
Riemann tensors, respectively, are corrections which ac-
count for the presence of the gravitational field.

III. EFFECT OF THE RICCI TERM

Suppose now that ! is a real zero mode of the flat ghost
operator. We can thus use perturbation theory to evaluate
the shift to the zero-energy level. The Ricci contribution,
denoted by "1, takes the form

"1 � 2

3

R
R�
�X

� Trð!@�!ÞR
Trð!2Þ ¼ 2

3
R�
�

R
X� 1

2 @� Trð!2ÞR
Trð!2Þ

¼ � 1

3
R�
�

Rð@�X�ÞTrð!2ÞR
Trð!2Þ ¼ � 1

3
R�
�	

�
� ¼ �R

3
; (3.1)

where, by choosing Dirichlet boundary conditions for the
ghost field, we have been able to set to zero the boundary
term after integration by parts. (See the work in Ref. [9] for
a detailed discussion of these ghost boundary conditions in
quantum Yang-Mills theory.)

IV. CONTRIBUTION OF THE RIEMANN TERM

No conclusion can be reached without a proper treat-
ment of the Riemann term since—as will be shown
below—it also involves a term linear in X. Indeed, the
Riemann tensor contributes through

"2 � � 1

3
R�

�
�



R
X�X
 Trð!@�@�!ÞR

Trð!2Þ : (4.1)

At this stage, we first use the identity

Trð!@�@�!Þ ¼ 1

2
@�@� Trð!2Þ � Trðð@�!Þð@�!ÞÞ (4.2)

to reexpress "2 in the form

"2 ¼ � 1

6
R�

�
�



R
X�X
@�@� Trð!2ÞR

Trð!2Þ

þ 1

3
R�

�
�



R
X�X
 Trðð@�!Þð@�!ÞÞR

Trð!2Þ : (4.3)

As a second step we exploit the Leibniz rule, which
provides

@�ðX�X
@� Trð!2ÞÞ ¼ @�ðX�X
Þ@� Trð!2Þ
þ X�X
@�@� Trð!2Þ; (4.4)

in order to integrate by parts. Hence we find

Z
X�X
@�@� Trð!2Þ ¼

Z
@�ðX�X
@� Trð!2ÞÞ

�
Z
ð	�

�X

 þ 	


�X�Þ@� Trð!2Þ

¼ �	�
�

Z
X
@� Trð!2Þ

� 	

�

Z
X�@� Trð!2Þ; (4.5)

where we have again exploited Dirichlet boundary
conditions for the ghost field, bearing in mind that
@� Trð!2Þ ¼ 2Trð!@�!Þ.
As a third step, we again use the Leibniz rule, i.e.,

@�ðX� Trð!2ÞÞ ¼ 	�
� Trð!2Þ þ X�@� Trð!2Þ; (4.6)
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and the same with X� replaced by X
, to find, by virtue of
Dirichlet boundary conditions for !,

Z
X�X
@�@�Trð!2Þ¼ð	�

�	


� þ	�

�	


�Þ
Z
Trð!2Þ: (4.7)

The first term on the right-hand side in our formula for "2 is
therefore

~"2 ¼ � 1

6
ðR�

�



 þ R�

�
�
�Þ ¼ R

6
; (4.8)

which implies that

"2 ¼ R

6
þ 1

3

R
��� Trð!;�!;�ÞR

Trð!2Þ ; (4.9)

having defined

��� � R�
�
�

X

�X
: (4.10)

For example, in the so-called Euclidean de Sitter space,
upon defining a constant K, ��� is

��� ¼ Kðg��g�
 � 	
�

	

�
�ÞX�X


¼ Kðg��kXk2 � X�X�Þ; (4.11)

where kXk2 ¼ gðX; XÞ ¼ X�X
� > 0. Our ��� acts as

gðX; XÞg�� on the hyperplane orthogonal to X, while it
vanishes on the subspace generated by X. Hence the sign of
��� is ruled by the constant K, which is positive.

V. THE CHALLENGE OF GLUON AND
GHOST PROPAGATORS

When Yang-Mills theory is studied in flat space, it is
rather important to evaluate the gluon and ghost propaga-
tors, since their behavior in the infrared depends crucially
on the Gribov mass parameter, which is determined
through the so-called gap equation. More precisely, inves-
tigations of lattice gauge theory on very large volumes [10]
have found an infrared finite gluon propagator and a ghost
propagator which is no longer enhanced in the infrared.
The work in Ref. [11] has exploited a refinement of the
Gribov-Zwanziger method to obtain analytical results in
agreement with these lattice data. Moreover, the authors of
Ref. [12] obtained—in various truncations of Dyson-
Schwinger equations and functional renormalization group
equations—a one-parameter family of solutions for the
ghost and gluon dressing functions of Landau gauge
Yang-Mills theory, each member of the one-parameter
family being confining. In a general curved spacetime,
however, no momentum-space representation is available
in the first place, since the homogeneity required for its
existence is lacking, and the local momentum-space for-
malism built in Ref. [13] is only appropriate for studying
ultraviolet divergences. Thus, one needs a radical departure
from the calculational techniques available in flat space.

For this purpose, we have carefully considered the
Gusynin [14] technique, which relies in turn on the

Widom [15] formalism. Following Gusynin, one can ex-
press the matrix elements of the resolvent of a positive
elliptic operator H by means of the formula

Gðx; x0; �Þ � hxj 1

ðH � �IÞ jx
0i

¼
Z dnk

ð2�Þn ffiffiffiffiffiffiffiffiffiffi
gðx0Þp eilðx;x0;kÞ�ðx; x0; k;�Þ: (5.1)

Here lðx; x0; kÞ is a biscalar under general coordinate trans-
formations and constitutes a generalization of the phase
k�ðx� x0Þ� used in the flat case. This expression for the

resolvent is manifestly covariant. The generalization of the
linearity property of lðx; x0; kÞ that is valid in the flat case is
obtained by requiring that symmetric combinations of co-
variant derivatives should vanish in the coincidence limit,

rð�1
r�2

. . .r�mÞljx¼x0 � ½rð�1
r�2

. . .r�mÞl�¼ 0; m� 1;

(5.2)

along with

½r�l� ¼ k�: (5.3)

The square bracket denotes the coincidence limit, and
symmetrization is understood as running over the indices
enclosed by the round brackets. These conditions are suf-
ficient to determine lðx; x0; kÞ in a neighborhood of the
point x0. Indeed, the commutator of covariant derivatives
acts on tensors as follows:

½r�;r��f�1...�k
�1...�n

¼ R���
�if�1...�i�1��iþ1...�k

�1...�n

� R���i

�f�1...�k

�1...�i�1��iþ1...�n
(5.4)

þ T�
��r�f

�1...�k
�1...�n

þW��f
�1...�k
�1...�n

: (5.5)

Using this formula and Eqs. (5.2) and (5.3), one can find the
covariant derivatives of l in the coincidence limit. The
resolvent kernel Gðx; x0; �Þ is a solution of the equation

ðHðx;r�Þ � �ÞGðx; x0; �Þ ¼ 1ffiffiffi
g

p 	ðx� x0Þ; (5.6)

subject to the boundary conditions which define the do-
main of the operator H. By inserting into this equation the
integral formula for the resolvent kernel one gets the
equation

ðHðx;r� þ ir�lÞ � �Þ�ðx; x0; k;�Þ ¼ Iðx; x0Þ: (5.7)

The function Iðx; x0Þ is a biscalar and is defined by con-
ditions analogous to those satisfied by lðx; x0; kÞ,

½I� ¼ E; (5.8)

½rð�1
r�2

. . .r�mÞI� ¼ 0; (5.9)

where E is the unit matrix.
One then introduces an auxiliary parameter ", which

will be set to 1 at the end of the calculations, and
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�ðx; x0; k;�Þ and Hðx;r� þ ir�lÞ are expanded by fol-

lowing the rules l ! l=", � ! �="2r, i.e.,

�"ðx; x0; k;�Þ ¼
X1
m¼0

"2rþm�mðx; x0; k;�Þ; (5.10)

Hðx;r�þir�l="Þ¼
X2r
m¼0

"�2rþmAmðx;r�;r�lÞ: (5.11)

Substituting these expansions into Eq. (5.7) and collecting
terms of the same order in ", one gets a system of equations
for the coefficients �m which can be solved recursively.

The diagonal matrix elements of the heat kernel are then
given by the relation

hxje�tHjxi ¼ X1
m¼0

Z dnk

ð2�Þn ffiffiffi
g

p
Z
C

id�

2�
e�t�½�m�ðx; k; �Þ:

(5.12)

One finds from the recursion relations satisfied by the
coefficients �m that these coefficients are generalized ho-
mogeneous functions in the variables ðk; �Þ,

½�m�ðx; tk; t2r�Þ� ¼ t�ðmþ2rÞ½�m�ðx; k; �Þ�: (5.13)

Hence it follows that the heat-kernel expansion coefficients
are obtained from those of the Laplace transform of the
resolvent kernel,

EmðxjHÞ¼
Z dnk

ð2�Þn ffiffiffi
g

p
Z
C

id�

2�
e�t�½�m�ðx;k;�Þ: (5.14)

Conversely, the resolvent kernel may be obtained from the
heat kernel Kðx; x0; tÞ by the Laplace transform

Gðx; x0; �Þ ¼
Z 1

0
et�Kðx; x0; tÞdt; (5.15)

and the Green function Gðx; x0Þ is equal to Gðx; x0; � ¼ 0Þ.
The advantage of this approach is that it gives an algo-

rithm to calculate the coefficients EmðxjHÞ and it can be
generalized to the case of nonminimal operators.
Nonminimal second-order operators are indeed a very
interesting class of operators, whose general form is

H�� ¼ �g��hþ ar�r� þ X��: (5.16)

Here r� is the covariant derivative, including both the
Levi-Civita connection and the gauge connection. The
tensor X�� is a matrix in the internal indices. The parame-
ter a may assume all real values; in particular, for a ¼ 0
the operator reduces to a minimal one. Indeed, the gauge-
field operator for Yang-Mills theory falls into this class,

H��
YM ¼ �g��hþ

�
1� 1

�

�
r�r� þ R��: (5.17)

This can also be expressed as an operator acting on
1-forms,

Hð�Þ ¼ 	dþ 1

�
d	: (5.18)

In the case � ¼ 1 it reduces to the Laplace-Beltrami
operator, whose action on 1-forms ’�dx

� is given by a
Bochner-Lichnerowicz formula,��

	dþ 1

�
d	

�
’

�
�
¼ ð�	�

�hþ R�
�Þ’�: (5.19)

We also recall that Endo [16] obtained a formula which
makes it possible to express the integrated heat kernel for a
generic value of the parameter � in terms of that relative to
the minimal case � ¼ 1, i.e.,

Kð�Þ
��0 ð�Þ ¼ Kð1Þ

��0 ð�Þ þ i
Z �=�

�
dyr�r�Kð1Þ

��0 ðyÞ: (5.20)

Unfortunately, the heat-kernel expansion corresponding
to our gauge-field operator does not exist in the singular
case � ! 0, i.e., the Landau choice of gauge parameter. In
fact in this limit only some heat-kernel coefficients are
finite, while the others diverge. A possible way out might
be to remove the divergent parts of such coefficients.
More precisely, the authors of Ref. [17] evaluated the
ghost propagator for Yang-Mills in de Sitter space [see
Eqs. (2.5) and (2.6) therein]. The authors of Ref. [17]
argued that, since ghost fields occur only in internal loops
and couple to the gauge field through a derivative coupling,
the divergent term in the ghost propagator does not con-
tribute to the calculation of n-point functions of gauge
fields. Hence they proposed that one should use the effec-
tive ghost propagator obtained by subtracting the divergent
contribution. We are currently trying to understand
whether such a subtraction procedure can also be advo-
cated for both gluon and ghost propagators when Yang-
Mills theory is studied in a generic curved spacetime in the
presence of a Gribov horizon.

VI. INTERPRETATION AND
CONCLUDING REMARKS

Within our scheme, the full shift to the zero-energy
level is

"1 þ "2 ¼ �R

6
þ 1

3

R
��� Trð!;�!;�ÞR

Trð!2Þ : (6.1)

If it were just for the � R
6 term, we might argue as follows

[4]: if the scalar curvature R is positive, the Gribov horizon
moves inward, and hence it is reached at a higher energy
and the gauge-field propagator should be more suppressed.
By contrast, if R is negative, the horizon moves outward,
and the energy is such that field fluctuations reaching the
horizon should be lower. In other words, the gauge-field
propagator should be less suppressed in the infrared if
R< 0. For these conclusions to remain qualitatively the
same, we should study the conditions "1 þ "2 < 0 and
"1 þ "2 > 0, respectively. The former is fulfilled provided
that
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2

R
��� Trð!;�!;�ÞR

Trð!2Þ < R; (6.2)

while the latter is satisfied in the opposite case, i.e., if

2

R
��� Trð!;�!;�ÞR

Trð!2Þ > R: (6.3)

For each choice of curved Riemannian background, one
has to check which of the two conditions above is satisfied.
It should be stressed that it is hard to obtain an estimate of
the integral on the left-hand side of Eqs. (6.2) and (6.3),
because the zero mode !, and hence the integral itself,
depends on the gauge connection at the Gribov horizon.
Such a difficulty becomes clearer if one bears in mind that
the Gribov horizon is not precisely localizable, not even in

the flat case (where it is known that, in a first approxima-
tion, it is an ellipsoid [4]). Nevertheless, we hope that the
scheme here proposed, with the explicit computational
recipe provided, will lead to further progress on the under-
standing of the Gribov phenomenon in curved spaces. It
would also be interesting to study the extension to curved
spacetime of the scheme proposed in Ref. [18] for the
elimination of infinitesimal Gribov ambiguities in non-
Abelian gauge theories.
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