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1 Introduction

The Standard Model (SM) is the most successful theory of interacting fundamental particles

known so far. Nevertheless, there are theoretical and observational shortcomings which are

left unanswered up to now. Some important examples of such drawbacks are the hierarchy

in the Higgs sector [1, 2] and the problem of dark matter (DM) and dark energy (see [3,

4] for the latest Planck/WMAP results). Therefore it seems that a theory beyond the

standard model is inevitable. Among other extensions to the standard model, the minimal

supersymmetry standard model (MSSM) has drawn a lot of attentions as it is capable in

addressing the above mentioned problems (see e.g. [5, 6] for the DM issue in SUSY and

see for instance [7] and the references therein for the DE study in SUGRA). Despite the

broad consensus on the fact that SUSY might be observed in the experiments but the

latest results of the Large Hadron Collider (LHC) experiments, CMS and ATLAS [8, 9] in

run-I show no evidence for any s-particle. Although it is still soon to consider the MSSM

theory excluded before the forthcoming results of the LHC run-II come up, however there

is already enough motivation to think about the alternative theories.

In the SM scheme the natural is that the electroweak scale and the Planck scale be of

the same order. We observe instead that the scale of the weak interactions is much smaller

than the GUT or the Planck scale. What causes this problem is the introduction of a mass

scale in the electroweak sector, that is the Higgs mass. From the quantum corrections

the physical Higgs mass should be much bigger than what we observe in the experiments

unless a delicate fine-tuning takes place in the theory. An example of such fine-tuning is

the cancellation of the quantum corrections of the Higgs mass in the MSSM.

A different way to avoid the hierarchy problem is setting to zero the tree-level quadratic

Higgs mass term in the standard model lagrangian [10, 11]. The resulting theory is usually

called the scale invariant standard model (SISM) or the conformal standard model (CSM).

But if the Higgs particle is massless in the SM how the spontaneous symmetry breaking
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can occur without the Higgs mass term? The answer is that in the quantum level the

Higgs scalar gains a small mass from the radiative corrections that is a conformal anomaly

that breaks the scale invariance. This conformal anomaly is the means for spontaneously

breaking the electroweak symmetry. It was demonstrated first by Coleman and E. Weinberg

(CW) [12] that an abelian gauge theory possessing a massless scalar can undergo the

spontaneous symmetry breakdown in the vacuum expectation value of the massless scalar

through the radiative corrections.

This idea was implemented for the standard model by Gildener and S. Weinberg

(GW) [13] who argued that the SISM with n scalars consists a number of “heavy Higgs”

and one light scalar named “scalon”. In order for the standard model to include the heavy

Higgs boson with mass around 125 GeV observed by the LHC in July 2012 the model must

possess at least three scalars. For some recent work on dark matter in the framework of

the scale invariant extension of the standard model see [14, 15].

The goal of the current paper is to examine if the scale invariant standard model

with a number of weakly coupled massless scalars can account for the WIMP candidate

produced via the freeze-out mechanism. The two scalar extension to SISM, where both

scalar bosons take non-zero vevs giving the correct values for Higgs mass, turn out to be

not an appropriate DM freeze-out model as the light scalon is unstable in the lack of the

Z2 symmetry. Nevertheless further scalar fields in the scale invariant lagrangian can play

the role of the DM if we keep only the Z2 symmetric terms involving the DM candidates

and require that the DM scalar takes zero vev.

In this paper we examine the SISM with one heavy Higgs, one light scalon as the

mediator between SM and DM sectors, and additional one and two scalars as single DM and

two-component DM candidates respectively. Both single scalar DM and two-component

scalar DM are consistent with the direct and indirect constrains.

The paper is arranged as the following. In the next section we elaborate the scale

invariant standard model and introduce the scalar dark matter extension to that. In par-

ticular we will see that the radiative correction to scalon mass given in eq. (2.15) is crucial

in finding a consistent model of dark matter. In section 3 we test the DM scenarios with

the WMAP and Planck observational data, and LUX and Xenon100 direct experiments.

In two subsections 3.1 and 3.2 we study the validity of the single and two-component scalar

models against such bounds. In the last section we summarize the results and discuss about

the possible scale invariant fermionic extension and explain why it disparages the fermionic

DM candidate in SISM.

2 Extending scale invariant standard model

Standard model is classically scale invariant provided that the Higgs mass term is absent.

However it is possible for such a theory to gain mass through an anomaly. It was shown for

the first time in the seminal work of Coleman and E. Weinberg (CW) [12] that the massless

scalar electromagnetic theory is spontaneously broken through radiative corrections where

both the gauge vector and the scalar field in the theory become massive. The scale invariant

standard model with massless Higgs at the classical level can become massive by the same
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mechanism as worked out by Gildener and S .Weinberg (GW) [13]. In the version of the SM

studied by GW there is no Higgs mass term. The only term remaining in the Higgs potential

is the quartic term λH
(
H†H

)2
. However, in the absence of the mass term m2

HH
†H, the

theory can not admit a non-zero vacuum expectation value. To cure this problem they

add instead a number of scalar fields in the quartic form λijklΦiΦjΦkΦl to the classically

massless SM. They show that through the radiative corrections in the GW theory there

exist a number of “heavy” Higgs with a mass comparable to intermediate gauge bosons

together with a “light” scalar which they dub scalon. We take this light scalar (scalon) as a

mediator coupled both to the heavy Higgs in the SISM and to the dark sector. In the dark

sector the additional scalars are such that the new terms preserve the scale invariance so

they are in the quartic form as introduced by GW. Furthermore the DM scalars enjoy the

Z2 to be stable. The lagrangian under the above circumstances takes the following form,

LSISM = L′SM − V (H, s, ϕi) , (2.1)

where L′SM is the massless Higgs SM (standard model lagrangian without the usual Higgs

potential term). The potential term V (H, s, ϕi) is defined as

V (H, s, ϕ) =
λH
4

(H†H)2 +
λ

2
s2(H†H) +

λs
4
s4 +

1

2
s2
∑
i

λiϕ
2
i +

1

4

∑
i

λϕiϕ
4
i , (2.2)

where H, s, and ϕi are respectively the doublet Higgs, the scalon and DM scalars. In the

current work we consider only i = 1, 2 cases. At the minimum of the potential (2.2) the

Higgs field H and the scalar s take non-vanishing vacuum expectation values vH and vs
and the DM scalars vϕi takes vanishing vev, vϕi = 0.

To apply the same approach as GW [13] we need to find a flat direction in some RG

scale Λ in the scalar fields configuration along which the potential (2.2) vanishes. From now

on we use only real singlet scalar h, the only component of the complex Higgs doublet which

is left after the symmetry breaking. We can describe the configuration of the real scalar

fields h and s in terms of the spherical coordinates of angles n ≡ (n̂h = cos θ, n̂s = sin θ)

and a radial field φ. Then h = n̂hφ and s = n̂sφ. Let n̄ ≡ (cosα, sinα) be along the flat

direction for some RG scale µ = Λ, then we have

V (n̄φ) = 0⇒ cos2 α =
λH − λ±

√
λ2 − λHλs

λH − 2λ+ λs
, (2.3)

therefore there are two flat directions for the potential (2.2). We could pick only one flat

direction by choosing,

λ2 − λHλs = 0 ⇒ cos2 α =
λH

λH − λ
. (2.4)

The local minimum of the tree-level potential along the flat direction occurs at the vevs

vH and vs by setting the first derivative of the potential (2.2) to zero at the special α given

in (2.4),
∂V

∂x

∣∣∣
n̄〈φ〉

= 0⇒ λHv
2
H = −λv2

s λsv
2
s = −λv2

H , (2.5)
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where x = h, s, ϕi. Using eq. (2.5) the tree-level mass matrix is easily driven at the vevs,

M2
tree ≡

∂2V

∂x∂y

∣∣∣
n̄〈φ〉

=

(
M2

tree(h, s) 0

0 λiv
2
s

)
, (2.6)

where x, y = h, s, ϕi. The mass matrix (2.6) is a diagonal 3 × 3 matrix if i = 1 and a

diagonal 4× 4 matrix if i = 2 with,

M2
tree(h, s) = 2λHv

2
H

(
1 −vH/vs

−vH/vs v2
H/v

2
s

)
. (2.7)

After diagonalizing the mass matrix (2.6) the tree-level mass eigenvalues for all scalars in

the theory are obtained as the following,

m2
H = 2(λH − λ)v2

H , m2
s = 0, m2

ϕi
= −λHλi

λ
v2
H . (2.8)

The masses mH and ms in eq. (2.8) become diagonal entries of the mass matrix (2.7) if we

make a rotation in (h, s) space,(
h

s

)
→

(
cosα − sinα

sinα cosα

)(
h

s

)
, (2.9)

with α being the angle given in eq. (2.4). As long as the scalon s is massless it can be

shown that the elastic scattering cross section of DM off nuclei becomes drastically large

and the model is immediately excluded by the direct detection experiments. The singlet

scalar s however receives a small mass along the flat direction via the radiation corrections.

The effective potential then reads [12],

δV (n̄φ) ≡ V 1-loop
eff (n̄φ) = A(n̄)φ4 +B(n̄)φ4 log

φ2

Λ2
, (2.10)

where A(n̄) and B(n̄) are dimensionless coefficients,

A(n̄) =
1

64π2v2
φ

[
m4
h

(
−2

3
+ log

m2
h

v2
φ

)
+m4

ϕi

(
−2

3
+ log

m2
ϕi

v2
φ

)
+ 6m4

W

(
−5

6
+ log

m2
W

v2
φ

)

+ 3m4
Z

(
−5

6
+ log

m2
Z

v2
φ

)
− 12m4

t

(
−1 + log

m2
t

v2
φ

)]
, (2.11)

and

B(n̄) =
1

64π2v4
φ

(
m4
h +m4

ϕi
+ 6m4

W + 3m4
Z − 12m4

t

)
. (2.12)

In eqs. (2.11) and (2.12) vφ stands for the vev of the radial field φ, and the factors behind

the quartic masses are the number of degrees of freedom for the fields appearing in the

loop. It has been shown in [13] that the mass correction to the classically massless scalar

s is given by

δm2
s =

d2δV (n̄φ)

dφ2

∣∣∣
〈φ〉

= 12v2
φ

(
A+

7

6
B +B log

v2
φ

Λ2

)
, (2.13)
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where the minimization condition of the effective potential (2.10) at the vev vφ,

Λ = vφ exp

(
A

2B
+

1

4

)
, (2.14)

leads to

δm2
s = 2Bv2

φ = − λ

32π2m2
H

(
m4
H +m4

ϕi
+ 6m4

W + 3m4
Z − 12m4

t

)
, (2.15)

where eq. (2.5) and v2
φ = v2

H + v2
s have been used. The tree-level potential in the flat

direction can be expressed in terms of the couplings λH , λ, λi, λϕi and the Higgs vev vH ,

V (h, s, ϕi) =
1

2
m2
Hh

2 +
1

2
m2
ϕi
ϕ2
i + (λH + λ)

√
1− λ

λH
vHh

3 +
1

4

(λH + λ)2

λH
h4

+ (λH + λ)

√
− λ

λH
h3s+ 2

√
−λ (λH − λ)vHh

2s− λh2s2

+
λHλivH√
−λ(λH − λ)

sϕ2
i −

λiλHvH√
λH(λH − λ)

hϕ2
i +

√
−λλHλi
λH − λ

shϕ2
i

+
1

2

λHλi
λH − λ

s2ϕ2
i −

1

2

λiλ

λH − λ
h2ϕ2

i +
1

4
λϕiϕ

4
i .

(2.16)

where for the single DM i = 1 and for the two-component DM i = 1, 2.

3 Direct and indirect probes

In this section we check the validity of the single and two-component scalar dark matter

models introduced in section 2 against the direct experiments and the indirect observational

data. We have utilized the package micrOMEGAs [16, 17] for numerically computing the

relic density and the DM-nucleon elastic scattering cross section.

3.1 Single dark matter

The case of single scalar dark matter is the simplest dark matter scalar model in the

scale invariant standard model. There are three types of scalars involved here. The SM

Higgs scalar h, the mediator scalar s which gives mass to the Higgs h if taking non-zero

expectation value vs. The latter cannot be a DM candidate in the freeze-out scenario as it

decays into other particles in SM. Now further scalars that we add to the theory provided

that they take zero vev and interact only with the scalar s will be stable and hence play

the role of dark matter particles.

The parameters used in the theory (2.1) are the set {λH , λ, λs, λ1, λϕ1 , α, v
2
s}. Evi-

dently there is no mass parameter for the Higgs field due to the scale invariance. Taking

into account the eqs. (2.4), (2.5) and (2.8) the free independent parameters reduce to

{λ, λ1} and λϕ1 where the parameter λϕ1 do not enter into calculations at tree level in

perturbation theory.

To evaluate the relic density for the single scalar DM scenario we need to solve the

Boltzmann differential equation for the time evolution of number density nϕ1 ,

dnϕ1

dt
+ 3Hnϕ1 = −〈σannvrel〉

[
n2
ϕ1
−
(
nEQ
ϕ1

)2]
, (3.1)

– 5 –
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Figure 1. Direct and Indirect probes for single scalar DM in the SISM: (left) the allowed DM mass

constrained from DM relic abundance measured by Planck/WMAP against the scalon mass; (right)

the allowed DM mass constrained by Planck/WMAP for relic density and by Xenon100/LUX for

the elastic scattering cross section of DM off the proton.

where H is the Hubble expansion rate, the 〈〉 means thermal averaging, σann denotes the

dark matter annihilation cross section and vrel is the relative velocity (for more details on

Boltzmann equation see e.g. [18, 19]). The stability condition puts already some constraints

on the space of parameters. From eqs. (2.5) and (2.8) we find that v2
s = −m2

H/2λ−v2
H . Now

fixing the Higgs mass to mH = 125 GeV and the Higgs vev, vH = 246 GeV and using the

fact that v2
s > 0, it turns out that −0.128 < λ < 0. Then from m2

H = 2(λH −λ)v2
H in (2.8)

we get λH = λ+ 0.128. Finally in eq. (2.8) we have m2
ϕi

= −λHλiv2
H/λ. Substituting m4

ϕi

into eq. (2.15) and putting the masses of mH ,mZ ,mW and mt we obtain from δm2
s > 0

that λi > −1.65λ/λH . We see that the scale symmetry not only decreases the number of

independent parameters but also constrains quite strongly the parameter space. We have

solved the Boltzmann equation (3.1) by scanning over the allowed values of the couplings λ

and λ1 and kept only the couplings that give the correct relic abundance 0.1172 < ΩDMh
2 <

0.1226 for dark matter measured accurately by WMAP and Planck. Both the mediator

mass given in (2.15) and the mass of the DM i.e. mDM ≡ mϕ1 in (2.8) are related directly

to the couplings λ and λ1. In figure 1 the dependence of the mDM on the mediator mass

ms for the constrained parameter space from the relic density is plotted. It is seen from

the left plot in figure 1 that the DM mass grows for smaller coupling λ which in turn leads

to greater mediator mass ms.

We can check our model as well with the direct detection measurements studying the

elastic scattering cross section of the dark matter off the nuclei used in the experiments.

The scalar DM in our model interacts with the quarks through only the Higgs portal which

is a mixing of the scalars s and h here. The Feynman diagram describing the DM-quark

interaction ϕ1q → ϕ1q is a tree-level diagram drawn in figure 5 in [20]. The effective

potential for such an interaction is given by

Leff = αqϕ1ϕ1q̄q , (3.2)

where the effective coupling αq is

αq = mq
2λHλ1

λH − λ

(
1

m2
s

+
1

m2
H

)
. (3.3)
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It is a good approximation if we consider only the zero momentum transfer in the DM-

nucleon scattering. In this limit the quark currents are replaced by the nucleonic currents

and the spin-independent (SI) elastic scattering cross section reads

σN
SI =

α2
Nµ

2
N

πm2
DM

, (3.4)

where αN is a factor depending on the effective coupling in eq. (3.2), the mass of the

quarks, the quarks scalar form factors, and the mass of the nucleon which e.g. in the

Xenon experiments is the xenon mass (see for instance [21–23] for more details). We have

calculated such elastic scattering for the parameter space which is already restricted by the

relic density bounds imposed by Planck and WMAP. Despite the very narrow parameter

space we deal with in the current model we observe that still for dark matter masses heavier

than around 2 TeV we have a viable parameter space that respect both the Planck and

the Xenon100 bounds. In fact for mDM & 2 TeV not only the the bounds by LUX and

Xenon100 are respected but even the forthcoming bounds by Xenon1T might not exclude

the model. This result is obvious from the right plot in figure 1. We should emphasize the

role of the non-zero although small scalon mass, in obtaining acceptable results for an only

2-dimensional shrieked parameter space. It is clearly seen from the right panel in figure 1

that when the scalon mass goes to zero the scattering cross section grows very fast. A

small change to scalon mass from e.g. 0 to 1 GeV reduces the cross section for about 15

orders of magnitudes!

3.2 Two-component dark matter

Now in addition to scalars h and s we consider two scalars ϕ1 and ϕ2 as DM particles

with again vanishing vev. This will be a two-component example of dark matter models.

The set of parameters are enlarged compared to that of single scalar dark matter and is

{λH , λ, λs, λ1, λ2, λϕ1 , λϕ2 , α, v
2
s}. The independent parameters that inter in the calcula-

tions are the set {λ, λ1, λ2}. Notice that both DM particles ϕ1 and ϕ2 are stable; non of

them decays into the other or to SM particles. The time evolution of each DM scalar is

evaluated by two independent Boltzmann equations,

dnϕ1

dt
= −3Hnϕ1 − 〈σ11

annv
11
rel〉
[
n2
ϕ1
−
(
neq
ϕ1

)2]
, (3.5)

dnϕ2

dt
= −3Hnϕ2 − 〈σ22

annv
22
rel〉
[
n2
ϕ2
−
(
neq
ϕ2

)2]
, (3.6)

where the superscripts 11 and 22 in annihilation cross sections mean the cross section for

ϕiϕi → SM for i = 1, 2 respectively. The allowed region of the space of parameters that

must be used in solving the Boltzmann equations (3.5) and (3.6) are −0.128 < λ < 0,

λH = λ+ 0.128 and λi > −1.65λ/λH for i = 1, 2.

The results of the numerical computation for the relic density and the DM elastic

scattering cross section for two-component scalar dark matter are shown in figure 2. In

the right plot of figure 2 the allowed DM masses in the viable parameter space of the

relic abundance measured by Planck is drawn against the mediator mass. The behavior

– 7 –
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Figure 2. Direct and Indirect probes for two-component scalar DM in the SISM: (left) the al-

lowed DM mass constrained from DM relic abundance measured by Planck/WMAP against the

scalon mass; (right) the allowed DM mass constrained by Planck/WMAP for relic density and by

Xenon100/LUX for the elastic scattering cross section of DM off the proton.
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Figure 3. The λ1 dependency of the allowed DM mass constrained by Planck/WMAP for relic

density and by Xenon100/LUX for the elastic scattering cross section of DM off the proton. (Left)

single dark matter (right) two-component dark matter.

observed in the single scalar DM case is not the same as the two-component DM model, i.e.

growing the scalon mass does not leads necessarily to greater DM mass. In the right plot

in figure 2 the viable parameter space which evades both relic and direct constraints are

shown, We can see a big change in the range of the DM mass compared to that of the single

DM case analyzed in subsection 3.1. The bound for the mass of each scalar DM now is

lowered to mDM & 300 GeV. Again the non-vanishing scalon mass plays an important role

in obtaining a viable parameter space. In figure 3 we have shown how the DM mass and the

associated DM-nuclei cross sections constrained by the direct and indirect bounds change

with respect to the coupling λ1 instead of the coupling λ in both single and two-component

DM scenarios. In the two-component case, the dependency of the elastic scattering cross

section on the coupling λ2 is the same as the coupling λ1, so we refrain drawing a separate

plot for that.

3.3 Interacting dark matter components

In the last section the two DM candidates did not have any interaction among themselves.

Here we assume an interaction between DM components which respect the scale invariance
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in the potential (2.2),

Vint =
1

2
λintϕ

2
1ϕ

2
2 . (3.7)

In our calculations we find out that the presence of the new interacting term (3.7) does

not affect significantly the relic density. More precisely, to see the effect of the coupling λint

we fix all the couplings in the full lagrangian and change λint in the interval −3 < λint < 3.

We observe that the changes in the amount of relic density compared to when we set

λint = 0 is at most about %0.3 in the Planck/WMAP region.

4 Discussion

The minimal supersymmetry standard model is capable of addressing some important

drawbacks in the standard model such as the Higgs hierarchy problem and the issue of

dark matter. However MSSM due to possessing many free parameters is very difficult to

be detected experimentally as at LHC no evidence for such a theory has been recorded

so far. Motivated by this fact we are interested in studying the scale invariant standard

model (massless-Higgs standard model) which is free of hierarchy problem. In SISM the

Higgs boson receives mass from the vacuum expectation value of another scalar called

scalon which remains massless classically. However radiative corrections gives a small mass

to the scalon that is crucial if we want to extend this theory to include DM candidates.

More scalars in the theory then can play the role of DM particle(s). By adding once one

scalar and then two scalars we have considered the case of single scalar dark matter and

two component dark matter in SISM. In this paper we have examined the SISM whether

it can accommodate the problem of dark matter as a WIPM in the freeze-out scenario.

We observed remarkably that the SISM despite having a narrow parameter space already

restricted due to the scale invariance is quite successful in overcoming the constraints dark

matter relic abundance and the direct detection of dark matter elastic scattering of nuclei,

far enough below the bounds put by Planck and Xenon100 as seen from figures 1 and 2.

In the following we discuss briefly the case in which the SISM is extended by a fermionic

DM candidate. Suppose in addition to Higgs scalar h and the scalon s the theory possesses

a Dirac fermion that is communicating with the SM sector through the Higgs portal by a

Yukawa interaction,

Lint = gsψ̄ψ + g5sψ̄γ
5ψ , (4.1)

where g and g5 are the Yukawa couplings. The coefficients in the effective potential (2.10)

in the absence of any DM scalars gets contribution from the fermion DM in the loop,

A(n̄) =
1

64π2v2
φ

[
m4
h

(
−2

3
+ log

m2
h

v2
φ

)
+ 6m4

W

(
−5

6
+ log

m2
W

v2
φ

)
+ 3m4

Z

(
−5

6
+ log

m2
Z

v2
φ

)

− 12m4
t

(
−1 + log

m2
t

v2
φ

)
− 4m4

ψ

(
−1 + log

m2
ψ

v2
φ

)]
, (4.2)

and

B(n̄) =
1

64π2v4
φ

(
m4
h + 6m4

W + 3m4
Z − 12m4

t − 4m4
ψ

)
. (4.3)
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The mass of the scalon then takes the form

δm2
s = 2Bv2

φ = − λ

32π2m2
H

(
m4
H + 6m4

W + 3m4
Z − 12m4

t − 4m4
ψ

)
. (4.4)

The coupling λ takes only negative values as pointed out in section 3. It should be noted

first that even before adding the DM fermion the scalon mass correction becomes negative

due to the existence of the heavy top quark in the loop. So the presence of the DM

fermion deteriorates the situation. In addition to Higgs scalar and the scalon, it is therefore

necessary to add more bosons (scalars or vector bosons) to the theory. In the presence of

further bosons the issue of fermionic DM in SISM is at least consistent by construction

(see [24] for an example). However the positivity of the scalon mass restricts strongly the

mass of the Dirac fermion ψ and the scalon s remains always very light, which in turn

as discussed in subsection 3.1 the theory might be ruled out by constraints from direct

detection tests.

Acknowledgments

We would like to thank A. Pukhov for very useful discussions and many email exchanges

on the micrOMEGAs. K.GH acknowledges Arak University for a grant under the con-

tract 93/4092.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974

[INSPIRE].

[2] E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].

[3] Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and

scientific results, arXiv:1502.01582 [INSPIRE].

[4] WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe

(WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19

[arXiv:1212.5226] [INSPIRE].

[5] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E.A. Baltz, DarkSUSY:

computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008

[astro-ph/0406204] [INSPIRE].

[6] G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept.

267 (1996) 195 [hep-ph/9506380] [INSPIRE].

[7] P. Brax, A.-C. Davis and H.A. Winther, Cosmological supersymmetric model of dark energy,

Phys. Rev. D 85 (2012) 083512 [arXiv:1112.3676] [INSPIRE].

– 10 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.13.974
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D13,974"
http://dx.doi.org/10.1103/PhysRevD.14.1667
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D14,1667"
http://arxiv.org/abs/1502.01582
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01582
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5226
http://dx.doi.org/10.1088/1475-7516/2004/07/008
http://arxiv.org/abs/astro-ph/0406204
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0406204
http://dx.doi.org/10.1016/0370-1573(95)00058-5
http://dx.doi.org/10.1016/0370-1573(95)00058-5
http://arxiv.org/abs/hep-ph/9506380
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9506380
http://dx.doi.org/10.1103/PhysRevD.85.083512
http://arxiv.org/abs/1112.3676
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3676


J
H
E
P
0
4
(
2
0
1
6
)
0
2
4

[8] ATLAS collaboration, Summary of the ATLAS experiment’s sensitivity to supersymmetry

after LHC Run 1 — interpreted in the phenomenological MSSM, JHEP 10 (2015) 134

[arXiv:1508.06608] [INSPIRE].

[9] CMS collaboration, Search for supersymmetry with photons in pp collisions at
√
s = 8 TeV,

Phys. Rev. D 92 (2015) 072006 [arXiv:1507.02898] [INSPIRE].

[10] K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B

648 (2007) 312 [hep-th/0612165] [INSPIRE].

[11] R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy

problem from an almost decoupled hidden sector within a classically scale invariant theory,

Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

[12] S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous

symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

[13] E. Gildener and S. Weinberg, Symmetry breaking and scalar bosons, Phys. Rev. D 13 (1976)

3333 [INSPIRE].

[14] J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, Nucl.

Phys. B 898 (2015) 415 [arXiv:1401.5609] [INSPIRE].

[15] A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant

multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].

[16] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for

calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960

[arXiv:1305.0237] [INSPIRE].

[17] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter

candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

[18] S. Dodelson, Modern cosmology, Academic Press, Amsterdam The Netherlands (2003).

[19] K. Ghorbani and H. Ghorbani, Two-portal dark matter, Phys. Rev. D 91 (2015) 123541

[arXiv:1504.03610] [INSPIRE].

[20] K. Ghorbani and H. Ghorbani, Scalar split WIMPs in future direct detection experiments,

Phys. Rev. D 93 (2016) 055012 [arXiv:1501.00206] [INSPIRE].

[21] J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of

supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].

[22] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in

a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747

[arXiv:0803.2360] [INSPIRE].

[23] A. Crivellin, M. Hoferichter and M. Procura, Accurate evaluation of hadronic uncertainties

in spin-independent WIMP-nucleon scattering: disentangling two- and three-flavor effects,

Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].

[24] S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP

01 (2015) 143 [arXiv:1409.5776] [INSPIRE].

– 11 –

http://dx.doi.org/10.1007/JHEP10(2015)134
http://arxiv.org/abs/1508.06608
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06608
http://dx.doi.org/10.1103/PhysRevD.92.072006
http://arxiv.org/abs/1507.02898
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02898
http://dx.doi.org/10.1016/j.physletb.2007.03.023
http://dx.doi.org/10.1016/j.physletb.2007.03.023
http://arxiv.org/abs/hep-th/0612165
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612165
http://dx.doi.org/10.1103/PhysRevD.77.035006
http://arxiv.org/abs/0709.2750
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2750
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D7,1888"
http://dx.doi.org/10.1103/PhysRevD.13.3333
http://dx.doi.org/10.1103/PhysRevD.13.3333
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D13,3333"
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.014
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.014
http://arxiv.org/abs/1401.5609
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5609
http://dx.doi.org/10.1103/PhysRevD.92.075010
http://arxiv.org/abs/1508.03031
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03031
http://dx.doi.org/10.1016/j.cpc.2013.10.016
http://arxiv.org/abs/1305.0237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0237
http://dx.doi.org/10.1016/j.cpc.2015.03.003
http://arxiv.org/abs/1407.6129
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6129
http://dx.doi.org/10.1103/PhysRevD.91.123541
http://arxiv.org/abs/1504.03610
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03610
http://dx.doi.org/10.1103/PhysRevD.93.055012
http://arxiv.org/abs/1501.00206
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.00206
http://dx.doi.org/10.1103/PhysRevD.77.065026
http://arxiv.org/abs/0801.3656
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3656
http://dx.doi.org/10.1016/j.cpc.2008.11.019
http://arxiv.org/abs/0803.2360
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.2360
http://dx.doi.org/10.1103/PhysRevD.89.054021
http://arxiv.org/abs/1312.4951
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4951
http://dx.doi.org/10.1007/JHEP01(2015)143
http://dx.doi.org/10.1007/JHEP01(2015)143
http://arxiv.org/abs/1409.5776
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5776

	Introduction
	Extending scale invariant standard model
	Direct and indirect probes
	Single dark matter
	Two-component dark matter
	Interacting dark matter components

	Discussion

