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In an extension to the scale invariant standard model by two real singlet scalars s and s0 in addition to the
Higgs field, we investigate the strong first-order electroweak phase transition as a requirement for
baryogenesis. This is the minimal extension to the scale invariant standard model with two extra degrees of
freedom that possesses the physical Higgs mass of 125 GeV. The scalar s0 being stable because of the Z2

discrete symmetry is taken as the dark matter candidate. We then show that the electroweak phase transition
is strongly first order, the dark matter relic density takes the desired value ΩDMh2 ∼ 0.11, and the
constraints from direct detection experiments are respected only if ms0 ≡mDM ≳ 4.5 TeV. The model also
puts a lower bound on the scalon mass, ms ≳ 200 GeV.
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I. INTRODUCTION

After the discovery of the Higgs particle in July 2012 at
the LHC [1,2], the last missing piece of the standard model
(SM) prediction, made almost a half-century ago [3,4],
was completed. The SM has been tested by the most
stringent scrutinies over many different experiments and it
has passed them successfully. However, there are a number
of issues, either theoretical or experimental/observational,
that are not compatible with the SM predictions. The gauge
hierarchy problem, the strong first-order electroweak phase
transition (EWPT) and other conditions needed in the
baryogenesis mechanism, and the problem of dark matter
are some examples of unanswered puzzles in the SM.
These inconsistencies led people to think of theories
beyond the SM such as the GUT, SUSY, etc. Our goal
in this paper is to address the above-mentioned SM short-
comings rather in a minimal extension of the scale invariant
standard model (MSISM).
The negative Higgs mass term −m2

HH
†H in the SM

potential causes a quadratical divergent term proportional
to the energy scale cutoff Λ2 after including the quantum
corrections. In fact, the Higgs mass term is the only term
that breaks the classical scale invariance in the SM.
Therefore, by omitting the Higgs mass term from the
SM potential, we have practically removed the problem of

gauge hierarchy.1 In the seminal paper of Coleman and
Weinberg [7], it was shown that in a scale invariant gauge
theory the radiative corrections break the scale invariance
and that triggers the spontaneous symmetry breaking.
Following their work, Gildener and Weinberg [8] argued
that in the SISM the radiative corrections break the
electroweak symmetry and thereby the Higgs mechanism
is restored for the SISM. The SISM with only one
classically massless scalar (Higgs) cannot be realistic
because, as computed by Gildener and Weinberg from
the quantum corrections, the Higgs mass can be just as light
as around 5 GeV, which is far lighter than the observed
Higgs mass, mH ∼ 125 GeV. As discussed in [8], in
general among the n scalars, in addition to the Higgs
scalar in the extended SISM, there is at least one heavy
scalar that may be interpreted as the Higgs particle and
there is one classically massless scalar that is dubbed the
“scalon.” In this paper we add only two extra scalars to the
SISM, as the most minimal scale invariant extension of
SISM that contains the correct Higgs mass. There are
papers in the literature (see, for instance, [9–11]) that have
sought a similar scope, but none of them has presented an
analytical investigation of the electroweak phase transition
and, furthermore, they have usually involved extra fer-
mionic degrees of freedom in the hidden sector. Among
papers which address the problem of dark matter using a
scale invariant extension of the SM with multiple scalars,
one may refer to Ref. [12], in which the detectability of the*parsaghorbani@gmail.com
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1Even with the vanishing Higgs mass, the quadratically
divergent term depends on the regularization scheme and may
reappear due to the quantum corrections [5]. Nevertheless, in the
dimensional regularization scheme, the Higgs remains massless
to all orders of perturbation [6].
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real scalar in direct detection experiments is examined. In,
for instance, Ref. [13], on the other hand, the strongly first-
order electroweak phase transition is studied in the scale
invariant SM with additional isospin singlet scalar fields.
In the current work, we are interested only in studying
the pure scalar and minimal extension of the SISM by
investigating both the dark matter (DM) and the EWPT at
the same time.
This paper is organized as follows. In the next section we

build up the model extending the SISM with two real
scalars. Then in Sec. III we derive the critical temperature
and the washout criterion for the electroweak phase
transition. In Sec. IV the stability conditions are given
and then Sec. V will be on dark matter computations.
Finally in Sec. VI we examine the model with the
experimental bounds on dark matter elastic scattering off
the nucleus. We conclude in Sec. VII.

II. MINIMAL EXTENSION OF SCALE
INVARIANT STANDARD MODEL

In the SM, if we set the Higgs mass term to zero, the only
term remaining in the Higgs potential will be λðH†HÞ2 or
λh4 after gauging away three components of the Higgs
doublet. In the Gildener-Weinberg notation [8], the scalar
potential with n scalars, si, is shown as 1=24λijklsisjsksl,
where λijkl denotes the coupling. As discussed in [14], in
order to have a scale invariant version of the standard model
possessing a Higgs doublet with the observed Higgs mass
of 125 GeV, as well as other SM particles with their
physical masses, at least two more scalars (singlet) must be
added to the theory. The reason comes from Eq. (4.6) of [8],
where the scalon gaining mass through the radiative
corrections depends only on the masses of the Higgs
particle, the gauge bosons, and the mass of the top quark.
In the absence of any additional scalar except the Higgs and
the scalon, this expression will be negative. In this paper,
therefore, we stay in the most minimal potential with only
two extra scalars, which we call here s and s0. We also
assume that these scalars appear with the Z2 symmetry in
the potential to attribute the latter to the dark matter
candidate,

V trðh; s; s0Þ ¼
1

4
λhh4 þ

1

2
λhss2h2 þ

1

4
λss4 þ

1

2
λss0s2s02

þ 1

4
λs0s04; ð1Þ

where h stands for the Higgs field, H† ¼ 1ffiffi
2

p ð0 hÞ. At high
temperature, above the electroweak phase transition tem-
perature, the theory lives in its symmetric phase and the
vacuum expectation values (VEVs) of the fields are
temperature dependent. Let us assign the VEV of each
field as

vhðTÞ≡ hhi; vsðTÞ≡ hsi; vs0 ðTÞ≡ hs0i: ð2Þ

We require that the vacuum expectation values after the
phase transition be ðvh ¼ 246 GeV; vs ≠ 0; vs0 ¼ 0Þ so
that the scalar field s0 remains stable because of the Z2

symmetry and thus it can play the role of the dark matter
candidate. We see later that the value of vs is not fixed and it
depends on the value of the couplings in the model.
In the Lagrangian in Eq. (1), the term λhs0h2s02 could in

principle be considered because s0 undergoes no VEV.
Although this term contributes in the DM relic density, we
know from the singlet Higgs portal model (SHP) that λhs0
must be small to evade the direct detection bounds. It is
therefore reasonable to assume that vanishing. The inclu-
sion of the Z2 odd terms s0s3 and s03s in the Lagrangian is
allowed by the scale invariance but will lead to the decay of
the DM scalar s0 and the observed relic density will not be
obtained; hence we avoided such terms in the Lagrangian.
In the scale invariant standard model, the flat direction is

defined as the direction along which the tree-level potential
is vanishing. This condition is equivalent to imposing the
Ward identity of the scale symmetry in a scalar theory [15].
The flat direction for the potential in Eq. (1) is obtained via
a rotation in the ðh; sÞ space by the angle α,

cos2α ¼ −
λhs

λh − λhs
; λ2hs − λhλs ¼ 0: ð3Þ

The mass matrix (being meaningful after the phase tran-
sition at low temperature) is off-diagonal only in the ðh; sÞ
block. This is because of our special choice; we have taken
a nonzero VEV for h and s and vanishing VEV for s0.
Finally, the mass eigenvalues after the EWPT read

m2
h ¼ 2v2hðλh−λhsÞ; m2

s ¼ 0; m2
s0 ¼−v2h

λhλss0

λhs
: ð4Þ

The one-loop correction at zero temperature gives a
small mass to the classically massless eigenstate s, the so-
called scalon field [8]:

δm2
s ¼

−λhs
32π2m2

h

ðm4
h þm4

s0 þ 6m4
W þ 3m4

Z − 12m4
t Þ: ð5Þ

Without the introduction of the second singlet scalar s0
while having the observed Higgs mass of 125 GeVand the
correct masses for the top quark and gauge bosons, the
mass correction to the scalon field s could not be positive.
Now by means of the radiative correction, the scalon can be
interpreted as the mediator in DMmodels. This can be seen
from Eq. (5). For more details, see [14].
The one-loop effective potential consists of the tree-level

potential in Eq. (1), the Coleman-Weinberg one-loop
correction at zero temperature, and the one-loop correction
at finite temperature,
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Veff ¼ V tr þ V1-loop
0 þ V1-loop

T : ð6Þ

If T ≫ mi with mi the tree-level mass of particle i, the one-
loop thermal contribution is approximated asV1-loop

T ≃CT2ϕ2

and the total one-loop effective potential becomes [16]

Veff ≃ −
1

4
Bϕ4 þ 1

2
Bϕ4 log

ϕ2

v2ϕ
þ CT2ϕ2; ð7Þ

whereϕ is the radial field in the polar coordinate system, i.e.,
ðh; sÞ≡ ðϕ cos α;ϕ sin αÞ2; hence v2ϕ ¼ v2h þ v2s . The coef-
ficients B and C are

B ¼ 1

64π2v4ϕ
ðm4

h þm4
s0 þ 6m4

W þ 3m4
Z − 12m4

t Þ ð8Þ

C ¼ 1

12v2ϕ
ðm2

h þm2
s0 þ 6m2

W þ 3m2
Z þ 6m2

t Þ: ð9Þ

In the case of nomixing, i.e., when cos α ¼ 0, then vϕ ¼ vH,
and the problem turns into studying the electroweak sym-
metry breaking in the scale invariant standard model, which
has been investigated in [18,19].

III. CRITICAL TEMPERATURE AND
WASHOUT CRITERION

The strong first-order electroweak phase transition is one
of the three Sakharov conditions [20] for the baryogenesis.
For the CP violation in the minimal scale invariant
extensions of the SM, see [15]. The phase transition takes
place at the critical temperature Tc at which the free energy
(effective potential) has two degenerate minima at T ¼ Tc.
In this section, we follow [21] to calculate analytically the
washout criterion, i.e., vðTcÞ=Tc > 1, which guarantees the
strong first-order phase transition.
The minimization condition on the thermal effective

potential in Eq. (7), with the derivative being along the
radial field,

∂
∂ϕVeff

����
vϕðTÞ

¼ 0; ð10Þ

leads to a set of T-dependent equations for the vacuum
expectation value,

vsymðTÞ ¼ 0; ð11Þ

v2brkðTÞ log
v2brkðTÞ
v2ϕ

¼ −
C
B
T2; ð12Þ

where vsym is the VEVof the radial field in the symmetric
phase and vbrk is the VEV in the broken phase. In the SM,
the vbrk is the temperature-dependent vacuum expectation
value of the Higgs doublet, but in our case vbrk is the VEV
along the flat direction, i.e., the VEV of the mixing of
the Higgs doublet and the scalon. Equation (12) has no
analytic solution for vbrk. Nevertheless, the solution can be
expressed in terms of the Lambert W function, which is
defined as

z ¼ wew ⇔ w ¼ WðzÞ; ð13Þ
where z and w in general are complex numbers. In terms of
the Lambert W function, Eq. (12) is written as

v2brk ¼
−CT2=B

Wð− C
Bv2ϕ

T2Þ : ð14Þ

At the critical temperature Tc, the effective potential in
Eq. (7) must be vanishing at the minimum vbrk as it is
vanishing also at the minimum vsym ¼ 0 of the symmetric
phase. Multiplying Eq. (12) by v2ϕ and substituting its right-
hand side in VeffðvbrkÞ ¼ 0 from Eq. (7), we arrive at
v2brkðTcÞ ¼ ð2C=BÞT2

c. Therefore, the condition for the
electroweak phase transition to be strongly first order
(the washout criterion) becomes

vbrkðTcÞ
Tc

¼
ffiffiffiffiffiffi
2C
B

r
> 1: ð15Þ

Finally, substituting vbrk from Eq. (15) into Eq. (7),
expanding the effective potential, and setting that to zero,
we obtain

T2
c ≃ ð

ffiffiffiffiffi
11

p
− 3ÞB

C
v2ϕ: ð16Þ

Before going further with more constraints on the
parameters, regarding the values of B and C in Eqs. (8)
and (9), it is clear that the ratio vc=Tc can easily be large
enough, leading to a very strong first-order phase transition.

IV. STABILITY CONDITIONS

The stability conditions impose already strong constraints
on the parameters of the model. The first derivative of the
tree-level potential in Eq. (1) must vanish at the VEVs,

∂V
∂h

����
hhi

¼ ∂V
∂s

����
hsi

¼ 0; ð17Þ

which in turn leads to

λhv2h ¼ −λhsv2s ; λsv2s ¼ −λhsv2h: ð18Þ
The positivity of the second derivatives of the potential in

Eq. (1) gives rise to

2Note that we are considering a one-step phase transition along
the flat direction ϕ. In general, if more scalars in the model take
a nonzero VEV, a two-step phase transition may be required.
See [17], for instance.
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λhs < 0; λss0 > 0: ð19Þ

From Eqs. (19) and (4), we get λh > 0. Now the radiative
correction to the scalon mass in Eq. (5) is positive if
ms0 > 316.5 GeV. Using Eq. (4) for ms0, one arrives at
λss0 > −1.65λhs=λh. Still we can make use of the Higgs
mass relation in Eq. (4) to constrain more the Higgs
coupling: λh ¼ λhs þ 0.128. As λh > 0 and λhs < 0,
then −0.128 < λhs < 0.

V. DARK MATTER

The scalar s0 taking a zero expectation value is stable and
can play the role of the thermal dark matter candidate
within the freeze-out scenario. In this section we add the
relic density condition to the washout criterion obtained in
the previous section and probe the space of the parameters.
The independent parameters in the model are not many; λhs,
λs0 , and λss0 , among which only the parameter λhs takes part
in the relic density computation. The dark matter sector
interacts with the visible sector via the scalar mediator s,

which has become massive through the radiative correction,
and its mass is given by Eq. (5). In fact, the scalar mediator
smixes with the Higgs field in the SM and the mixing angle
is that of the flat direction in Eq. (3). The Higgs vacuum
expectation value is known experimentally; vh ¼ 246 GeV
and the VEVof the scalar s is determined by other known
parameters of the theory as seen from Eq. (18).
The thermal evolution of the dark matter number density

ns0 in the early Universe is given by the Boltzmann equation,

dns0

dt
þ 3Hns0 ¼ −hσannvreli½n2s0 − ðnEQs0 Þ2�; ð20Þ

whereH is theHubble expansion rate, vrel stands for the dark
matter relative velocity, and the σann is the dark matter
annihilation cross section. We compute the relic abundance
using the MicrOMEGAs4.3 package [22] that numerically
solves the Boltzmann differential equation.We recall that the
potential we use to compute the relic density is the potential
in Eq. (1) after the electroweak symmetry breaking, which is
given by

Vðh; s; s0Þ ¼ 1

2
m2

hh
2 þ 1

2
m2

s0s
02 þ ðλh þ λhsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λhs
λh

s
vhh3 þ

1

4

ðλh þ λhsÞ2
λh

h4

þ ðλh þ λhsÞ
ffiffiffiffiffiffiffiffiffiffi
−
λhs
λh

s
h3sþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λhsðλh − λhsÞ

p
vhh2s

− λhsh2s2 þ
λhλss0vhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−λhsðλh − λhsÞ
p ss02 −

λss0λhvhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λhðλh − λhsÞ

p hs02 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λhsλh

p
λss0

λh − λhs
shs02

þ 1

2

λhλss0

λh − λhs
s2s02 −

1

2

λss0λhs
λh − λhs

h2s02 þ 1

4
λs0s04: ð21Þ

Note that the Higgs scalar field has a mass term now in
Eq. (21). The phase transition (going from the symmetric
phase with vh ¼ 0 to the broken phase with vh ≠ 0) is
followed by the scale symmetry breaking through the
radiative correction to the scalon mass. We constrain the
model by the observed dark matter relic abundance from
the WMAP/Planck [23,24] to be ΩDMh2 ∼ 0.11. In Sec. IV
the mass of the dark matter already had a lower bound due
to the positivity of the scalon mass:m0

s≡mDM>316.5GeV.
In Fig. 1 the dark matter mass is plotted against the only
independent coupling, i.e., λhs. As seen from this figure, the
viable range of the coupling shrinks to −0.007≲ λhs ≲ 0.
The scalon could be searched for at the Large Hadron
Collider (LHC) or future colliders via the exotic Higgs
decays h → ss and h → sss. It has been pointed out in
Ref. [25] that even couplings as small as Oð10−2Þ yield
Brðh → BSMÞ ∼ 10%. So even very small Higgs-scalon
coupling can in principle lead to a signature at the LHC. The
DM mass, however, sits almost within the same limit we

FIG. 1. The plot compares the dark matter mass against the
coupling λhswith thewashout criterion satisfied andΩDMh2 ∼ 0.11.
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obtained in Sec. IV, i.e., mDM > 318.3 GeV. In Fig. 2 we
have also demonstrated a histogram of the values vc=Tc
which are bounded by the correct relic density. It is observed
that vc=Tc > 3.8; in fact, it takes much larger values which
guarantees a very strong first-order electroweak phase
transition.

VI. DIRECT DETECTION CONSTRAINT

There are experiments that have been set up with the goal
of detecting the elusive dark matter directly. Among these,
the XENON1t experiment located at Gran Sasso in Italy
is the most recent and the more accurate one [26]. Although
the XENON1t experiment and no other experiments such
as LUX (see [27] for the recent results) have not detected
the dark matter, they have put a very stringent constraint on
the elastic scattering cross section of the dark matter off the
nucleus. We examine the current model by data from the
direct detection experiments.
The DM-nucleus cross section can be described simply

by the following effective potential,

Leff ¼ αqs0s0q̄q; ð22Þ

where q stands for the quark in the nucleon and s0 is the
dark matter field. The coupling αq is given by

αq ¼ mq
2λhλss0

λh − λhs

�
1

m2
h

−
1

m2
s

�
: ð23Þ

The DM-nucleus scattering is obtained from a tree-
level Feynman diagram leading to the following spin-
independent elastic scattering cross section:

σNSI ¼
α2Nμ

2
N

πm2
DM

; ð24Þ

where μN is the reduced mass for the DM-nucleus system
and αN denotes a coefficient that depends on the nucleon
form factors. For more details on αN , see [28] and the
references therein.
For the viable parameter space that we obtained in

Sec. V, we have computed the elastic scattering cross
section in Eq. (24) using the MicrOMEGAs4.3 package.
The result is shown in Fig. 3. According to Fig. 3, only the
dark matter mass mDM ≳ 4.5 TeV survives the XENON1t/
LUX cross section limits,3 while respecting both the relic
density constraint and the washout criterion. It is interesting
also to determine the allowed masses of the scalon s, which
is the mediator connecting the DM sector to the SM. As

FIG. 2. A histogram for the ratio vc=Tc with the correct relic
density Ωh2 ∼ 0.11. It is shown that vc=Tc ≳ 4, which guarantees
a very strong first-order phase transition.
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FIG. 3. The viable range of the DM mass is mDM ≳ 4.5 TeV
after imposing the XENON1t/LUX direct detection experiments
on the DM-nucleus elastic scattering cross section, the DM relic
density constraint, and the first-order phase transition condition.

FIG. 4. The plot shows the viable range of the scalon mass
being ms ≳ 200 GeV.

3Thanks to Christopher Tunnell for providing me with the
XENON1t data in Fig. 4 of [26].
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seen in Fig. 4, the scalon mass ms takes only values above
200 GeV.

VII. CONCLUSION

In this paper we have studied the minimal extension of
the scale invariant standard model with two extra scalars, s
and s0, in addition to the Higgs particle. Two scalars are the
minimum number of scalars that we should add to the scale
invariant standard model to give a mass of 125 GeV to the
Higgs and correct masses for other particles in the SM. The
classically massive scalar s0 is interpreted as a dark matter
candidate and the classically massless scalar s, called the
scalon, plays the role of the DM-SM mediator. We showed

that this model supports a very strong first-order electro-
weak phase transition even if we constrain the model
with the observed DM relic density by WMAP/Planck.
Imposing the limits from the direct detection experiments
such as XENON1t/LUX on the elastic scattering cross
section of the DM-nucleus still allows the dark matter mass
mDM ≳ 4.5 TeV and the scalon mass ms ≳ 200 GeV.
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